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7.7. Gleichmäßige Stetigkeit 105
8. Der Zwischenwertsatz 108
9. Umkehrfunktionen 113
9.1. (Streng) monotone Funktionen 113
9.2. Die Definition von Umkehrfunktionen 115
9.3. Stetigkeit von Umkehrfunktionen 117
9.4. Die Wurzelfunktionen 118
9.5. Die Logarithmusfunktionen 119
9.6. Potenzen von reellen Zahlen 121
10. Die komplexen Zahlen 124
10.1. Der Körper der komplexen Zahlen 124
10.2. Folgen komplexer Zahlen 128
10.3. Reihen von komplexen Zahlen 130
11. Trigonometrische Funktionen 134
11.1. Definition von Sinus und Kosinus 134
11.2. Definition von π 137
11.3. Polarkoordinatendarstellung von komplexen Zahlen 141
11.4. Die Einheitswurzeln (∗) 143
12. Differentiation 145
12.1. Definition der Ableitung und erste Eigenschaften 145
12.2. Ableitung der Exponentialfunktion, sowie von Sinus und Kosinus 148
12.3. Die Kettenregel und die Umkehrregel 150
12.4. Stetig differenzierbare Funktionen 153
13. Der Mittelwertsatz der Differentialrechnung 156
13.1. Globale und lokale Extrema von Funktionen 156
13.2. Mittelwertsatz der Differentialrechnung 157
14. Arkusfunktionen und die Regel von l’Hôpital 164
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15. Das Riemann-Integral 174
15.1. Definition des Riemann-Integrals 174
15.2. Eigenschaften des Riemann-Integrals 178
15.3. Beispiele von integrierbaren Funktionen 182
15.4. Mittelwertsatz der Integralrechnung 185
16. Der Hauptsatz der Differential- und Integralrechnung 187
16.1. Stammfunktionen 187
16.2. Der Hauptsatz der Differential- und Integralrechnung 188
16.3. Bestimmung von Stammfunktionen 190
16.4. Stammfunktionen von elementaren Funktionen (∗) 191



3

16.5. Partielle Integration 191
16.6. Substitution 193
17. Uneigentliche Integrale 197
18. Die Gamma-Funktion (∗) 200
19. Funktionenfolgen (∗) 203
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Konventionen und Definitionen aus der Mengenlehre

Wir geben in der Vorlesung Analysis I eine axiomatische Einführung in die Analysis. Die
einzigen Begriffe, welche wir nicht definieren werden, sind die folgenden:

(1) der Mengenbegriff,
(2) die Menge der natürlichen Zahlen N := {1, 2, 3, . . . } sowie N0 := {0, 1, 2, 3 . . . },
(3) die Menge der ganzen Zahlen Z und der rationalen Zahlen Q.

Für Mengen verwenden wir hierbei die folgenden üblichen Schreibweisen:

(1) ∅ bedeutet die leere Menge, d.h. die Menge ohne Elemente.
(2) a ∈ A bedeutet, dass a ein Element der Menge A ist.
(3) A ⊂ B bedeutet, dass A eine Teilmenge von B ist.
(4) Seien A1, . . . , Ak Mengen, dann schreiben wir

A1 × · · · × Ak = {(a1, . . . , ak) | a1 ∈ A1, . . . , ak ∈ Ak}.
Beispielsweise ist

{1, 2, 3} × {A,B} = {(1, A), (1, B), (2, A), (2, B), (3, A), (3, B)}
und R× R× R = {(a1, a2, a3) | a1, a2, a3 ∈ R}
ist die Menge der Vektoren im R3.

Eine Abbildung f : A→ B von einer Menge A zu einer Menge B ordnet jedem Element in
A genau ein Element in B zu.1 Beispielsweise ist

N → Z
n 7→ n3 − 5n+ 2

eine Abbildung von der Menge N zur Menge Z. Hierbei bezeichnet die erste Zeile, dass wir
eine Abbildung von N nach Z betrachten, während die zweite Zeile die Abbildungsvorschrift
angibt, d.h. in diesem Fall wird dem Element n ∈ N das Element n3 − 5n+ 2 zugeordnet.

Ein weiteres Beispiel ist gegeben durch {A, 1, ∗} → Z
A 7→ −5,
1 7→ 3,
∗ 7→ −5.

Dies ist eine Abbildung von der Menge {A, 1, ∗} zur Menge Z der ganzen Zahlen.
Wir werden oft folgende grundlegende Aussage aus der Logik verwenden.

Satz 0.1. (Prinzip der Kontraposition) Wenn A und B zwei Aussagen sind, dann ist
die Aussage “aus A folgt B” äquivalent zur Aussage “aus nicht B folgt nicht A”. Oder
anders ausgedrückt

A =⇒ B ist äquivalent zu Negation von A ⇐= Negation von B.

1Man kann eine Abbildung A→ B auch definieren als Teilmenge S ⊂ A×B mit der Eigenschaft, dass
es zu jedem a ∈ A genau ein b ∈ B mit (a, b) ∈ S gibt. Aber diese Definition ist zu Anfang des Studiums
vielleicht nicht sehr hilfreich.
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1. Der Körper der reellen Zahlen

1.1. Die Körperaxiome. In der Analysis I beschäftigen wir uns mit dem “Körper der
reellen Zahlen”. Hierbei müssen wir erst einmal den Begriff des “Körpers” einführen.

Definition. Ein Körper ist eine Menge K zusammen mit zwei Abbildungen:2

K ×K → K “Addition”
(a, b) 7→ a+ b,

und
K ×K → K “Multiplikation”

(a, b) 7→ a · b,
welche folgende Eigenschaften erfüllen:

(A1) Für alle x, y, z ∈ K gilt

(x+ y) + z = x+ (y + z) (Assoziativgesetz).

(A2) Für alle x, y ∈ K gilt

x+ y = y + x (Kommutativgesetz).

(A3) Es existiert ein Element N ∈ K, so dass für alle x ∈ K gilt:

x+N = x (Existenz eines additiv neutralen Elements).

(A4) Zu jedem x ∈ K existiert ein Element y ∈ K, so dass

x+ y = N (Existenz von additiven Inversen).

(M1) Für alle x, y, z ∈ K gilt

(x · y) · z = x · (y · z) (Assoziativgesetz).

(M2) Für alle x, y ∈ K gilt

x · y = y · x (Kommutativgesetz).

(M3) Es existiert ein Element E ∈ K, so dass N 6= E, und so dass für alle x ∈ K gilt:

x · E = x (Existenz eines multiplikativ neutralen Elements).

(M4) Zu jedem x ∈ K mit x 6= N existiert ein Element z ∈ K, so dass

x · z = E (Existenz von multiplikativen Inversen).

(D) Für alle x, y, z ∈ K gilt

x · (y + z) = x · y + x · z (Distributivgesetz).

Wir nennen die Eigenschaften (A1)–(A4) die Axiome der Addition und die Eigenschaften
(M1)–(M4) die Axiome der Multiplikation. Die Eigenschaften (A1)–(A4), (M1)–(M4) sowie
(D), welche zusammen einen Körper definieren, werden Körperaxiome genannt.

Beispiel.

(1) Die Eigenschaften kommen uns natürlich bekannt vor, beispielsweise erfüllt K = Q
mit der üblichen Addition und Multiplikation alle Körperaxiome, wobei N = 0 und
E = 1. Mit etwas nachdenken sieht man auch, dass K = {a + b ·

√
2 | a, b ∈ Q}

2Eine Abbildung K ×K → K ordnet je zwei Elementen a und b in K ein Element in K zu. In diesem
Fall bezeichnen wir das a und b zugeordnete Element mit a+ b beziehungsweise a · b.
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mit der üblichen Addition und Multiplikation alle Körperaxiome erfüllt.3 Anders
ausgedrückt, K = Q und K = {a+ b ·

√
2 | a, b ∈ Q} sind Körper.

(2) Wenn wir K = Z mit der üblichen Addition und Multiplikation betrachten, dann
gelten die Axiome der Addition mit N = 0, zudem gelten die Axiome (M1) bis
(M3) mit E = 1 und das Distributivgesetz. Das Axiom (M4) gilt allerdings nicht,
beispielsweise gibt es für 2 ∈ Z kein z ∈ Z, so dass 2 · z = 1.

(3) Neben den Körpern K = Q, welcher aus der Schule bekannt ist, gibt es noch an-
dere Körper. Betrachten wir beispielsweise F2 = {N,E}, d.h. die Menge mit zwei
Elementen {N,E}. Wir definieren die Addition folgendermaßen:4

F2 × F2 → F2

(N,N) 7→ N +N := N
(N,E) 7→ N + E := E
(E,N) 7→ E +N := E
(E,E) 7→ E + E := N

und wir definieren
die Multiplikation
zudem wie folgt:

F2 × F2 → F2

(N,N) 7→ N ·N := N
(N,E) 7→ N · E := N
(E,N) 7→ E ·N := N
(E,E) 7→ E · E := E.

Wir können diese Abbildungen auch etwas salopper, aber dafür übersichtlicher, mit
folgender Additions- und Multiplikationstabelle beschreiben:

+ N E
N N E
E E N

und
· N E
N N N
E N E

Wir müssen nun zeigen, dass alle Körperaxiome gelten. Beispielsweise sind die
Definitionen der Addition und der Multiplikation symmetrisch, also gelten die Kom-
mutativgesetze (A2) and (M2). Es ist auch relativ elementar nachzuprüfen, dass (A3)
und (A4) sowie (M3) und (M4) gelten. Es ist hingegen eine etwas umständliche Fie-
selarbeit zu nachzuweisen, dass die übrigen Körperaxiome ebenfalls erfüllt sind. Für
(A1) muss man beispielsweise acht verschiedene Fälle verifizieren. Im Laufe der li-
nearen Algebra Vorlesung werden Sie sehen, dass die Definition der Addition und
Multiplikation auf F2 nicht willkürlich sind, sondern sich ganz natürlich aus der Ad-
dition und Multiplikation auf Z herleiten.5

(4) Es gibt noch sehr viele weitere Beispiele von Körpern, beispielsweise ist

K = Menge der rationalen Funktionen =
{
p(t)

q(t)

∣∣∣ p(t), q(t) 6= 0 Polynome in t
}

3Warum ist (M3) erfüllt?
4In diesem Fall ist F2 × F2 die Menge bestehend aus {(N,N), (N,E), (E,N), (E,E)}. Eine Abbildung

F2×F2 → F2 ordnet also jedem Element in {(N,N), (N,E), (E,N), (E,E)} entweder das Element E oder
das Element N in F2 zu.

5Es stellt sich nun die Frage, ob man auf jeder Menge X geschickt eine Addition und Multiplikation
definieren kann, so dass alle Axiome gelten. In der Algebravorlesung wird normalerweise gezeigt, dass man
dies für eine endliche Menge durchführen kann, genau dann, wenn die Anzahl der Elemente in X eine
Primpotenz ist, d.h. von der Form pn wobei p eine Primzahl ist und n ∈ N.
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mit der üblichen Addition und Multiplikation ein Körper.6

1.2. Folgerungen aus den Axiomen der Addition. In diesem Kapitel beweisen wir
verschiedene Aussagen, welche aus den Körperaxiomen folgen. Die Aussagen sind fürK = Q
aus der Schule vertraut. Indem wir diese jetzt direkt aus den Körperaxiomen herleiten,
erhalten wir diese Aussagen für alle Körper, beispielsweise für den Körper F2.

Satz 1.1. (Eindeutigkeit des additiv neutralen Elements) Sei K ein Körper. Dann
existiert genau ein Element k ∈ K, so dass für alle x ∈ K gilt

x+ k = x.

Beweis. 7

In der Universitätsmathematik muss jede Aussage bewiesen werden. Was heißt das in
diesem Fall? Wir müssen nur aus der Voraussetzung zusammen mit elementarer Logik
die gewünschten Aussagen herleiten. In diesem Fall dürfen wir also nur verwenden,
dass K ein “Körper” ist, d.h. wir dürfen nur die Axiome (A1)–(A4) und (M1)–(M4)
und (D) verwenden.

Die Aussage “es existiert genau ein Element mit einer Eigenschaft X” sind genau genom-
men zwei Aussagen auf einmal:

(1) Es gibt ein Element, welches die Eigenschaft X besitzt.
(2) Es gibt nicht mehr als ein Element, welches die Eigenschaft X besitzt. Mit anderen

Worten, wenn zwei Elemente k und k′ die Eigenschaft X besitzen, dann muss k = k′

gelten.

Wir müssen nun also beide Aussagen beweisen:

(1) Wegen Axiom (A3) wissen wir, dass es mindestens ein Element k ∈ K gibt, nämlich
k = N , so dass für alle x ∈ K gilt x+ k = x.

(2) Wir müssen nun noch zeigen, dass es nicht mehr als ein Element gibt, welches die Ei-
genschaft erfüllt. Es seien also k und k′ zwei Elemente mit der genannten Eigenschaft,
d.h. es gilt
(a) x+ k = x für jedes x ∈ K,
(b) x+ k′ = x für jedes x ∈ K.
Wir müssen zeigen, dass k = k′. In der Tat gilt

Kommutativgesetz (A2)
↓

k = k + k′ = k′ + k = k′.
↑ ↑

folgt aus (b) angewandt auf x=k folgt aus (a) angewandt auf x=k′ �

6Beispielsweise gilt in K, dass
1

2+t + 2t2−1
3+t2 = 3+t2+(2+t)(2t2−1)

(2+t)(3+t2) = 2t3+5t2−t+1
t3+2t2+3t+6 .

D.h. die Summe von zwei rationalen Funktionen ist wiederum eine rationale Funktion.
7Blauer, abgesetzter Text in einem Beweis ist nicht Teil des offiziellen Beweises, sondern der Versuch zu

erklären, was die Problemstellung ist, und eventuell den Beweisansatz zu motivieren.
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Definition. Es sei K ein Körper. Satz 1.1 besagt, dass es genau ein Element k ∈ K gibt,
so dass für alle x ∈ K gilt x+ k = x. Wir schreiben “0” für dieses Element und nennen es
die Null des Körpers. Man beachte, dass für alle x ∈ K aus dem Kommutativgesetz (A2)
folgt, dass 0 + x = x+ 0 = x.

Satz 1.2. (Kürzungsregel der Addition) Es sei K ein Körper und es seien x, y ∈ K.
Wenn es ein a ∈ K gibt, so dass x+ a = y + a, dann gilt x = y.

Beweis. Es sei K ein Körper und es seien x, y, a ∈ K mit x+a = y+a. Wir müssen zeigen,
dass x = y.

Der Beweisansatz ist erstmal ganz einfach: wir fangen “links” mit x anfängt und
versuchen geschickt umzuformen, so dass man am Ende bei y landet. Die Idee ist nun
die Umformungen so vorzunehmen, so dass wir unsere Voraussetzung x + a = y + a
einbringen können.

Wir führen also folgende Rechnung durch:

Eigenschaft der 0 Assoziativgesetz (A1)
↓ ↓

x = x+ 0 = x+ (a+ k) = (x+ a) + k = (y + a) + k
↑ ↑

nach Axiom (A4) gibt es ein k ∈ K, so dass a+ k = 0 nach Voraussetzung ist x+ a = y + a

= y + (a+ k) = y + 0 = y.
↑ ↑ ↑

Assoziativgesetz (A1) Wahl von k Eigenschaft der 0 �

Satz 1.3. (Eindeutigkeit des additiven Inversen) Sei K ein Körper und sei x ∈ K.
Dann existiert genau ein Element y ∈ K, so dass

x+ y = 0.

Beweis. Sei x ∈ K. Wegen Axiom (A4) wissen wir, dass es ein Element y ∈ K gibt mit
x+y = 0. Wir müssen nun wiederum die Eindeutigkeit von y zeigen. Es seien also y, y′ ∈ K
gegeben, mit x+ y = 0 und x+ y′ = 0. Wir müssen zeigen, dass y = y′. Es gilt

y + x = x+ y = 0 = x+ y′ = y′ + x.
↑ ↑ ↑ ↑

Kommutativgesetz (A2) Voraussetzung Kommutativgesetz (A2)

Es folgt nun aus Satz 1.2, dass y = y′. �

Definition. Sei K ein Körper.

(1) Es sei x ∈ K. Nach Satz 1.3 existiert genau ein Element inK, welches zu x addiert null
ergibt. Wir bezeichnen dieses Element mit “−x”, gesprochen minus x. Mit anderen
Worten −x ist das einzige Element in K mit x+ (−x) = 0.

(2) Für x, y ∈ K schreiben wir x− y := x+ (−y).
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Satz 1.4. Sei K ein Körper. Es gelten folgende Aussagen:

(1) −0 = 0.
(2) Für alle x ∈ K gilt −(−x) = x.
(3) Für alle x, y ∈ K gilt −(x+ y) = −x− y.

Beweis.

(1) Zur Erinnerung: für a und b in K gilt −a = b genau dann, wenn a+ b = 0. Wenn wir
also zeigen wollen, dass −0 = 0, dann müssen wir zeigen, dass 0 + 0 = 0. Aber dies
folgt sofort aus der Eigenschaft der 0.

(2) Sei x ∈ K. Wir müssen zeigen, dass −(−x) = x. Wie in Teil (1) müssen wir also
zeigen, dass (−x) + x = 0. Aber es gilt in der Tat, dass

(−x) + x = x+ (−x) = 0.
↑ ↑

Kommutativgesetz (A2) Definition von −x.

(3) Der dritte Teil ist eine Übungsaufgabe im 1. Übungsblatt. �

1.3. Folgerungen aus den Axiomen der Multiplikation. In diesem Teilkapitel be-
handeln wir nun die Axiome der Multiplikation. Die Axiome der Multiplikation sind ganz
ähnlich zu den Axiomen der Addition. Beispielsweise gilt sowohl für Addition als auch für
Multiplikation das Assoziativgesetz, das Kommutativgesetz und die Existenz eines neutra-
len Elements. Das Multiplikationsaxiom (M4) hingegen ist nicht mehr ganz analog zum
Axiom (A4), denn in der Multiplikation fordern wir nicht mehr die Existenz eines inversen
Elements für N . Die Symmetrie zwischen Addition und Multiplikation wird dann durch
das Distributivgesetz völlig aufgebrochen.

Satz 1.5. (Eindeutigkeit des neutralen Elements der Multiplikation) Es sei K ein
Körper. Es existiert genau ein Element k ∈ K, so dass für alle x ∈ K gilt

x · k = x.

Beweis. Der Beweis verläuft ganz analog zum Beweis von Satz 1.1. Man muss nur die
Axiome der Addition (A2) und (A3) durch die entsprechenden Axiome der Multiplikation
(M2) und (M3) ersetzen. �

Definition. Es sei K ein Körper. Wir nennen das durch den obigen Satz eindeutig bestimmte
Element die Eins des Körpers, welche wir mit “1” bezeichnen. Man beachte, dass für alle
x ∈ K wegen dem Kommutativgesetz (M2) gilt, dass 1 · x = x · 1 = x .

Satz 1.6. (Kürzungsregel der Multiplikation) Sei K ein Körper und zudem seien
x, y ∈ K. Wenn es ein a 6= 0 ∈ K gibt, so dass x · a = y · a, dann gilt x = y.

Beweis. Der Beweis ist ganz analog zum Beweis von Satz 1.2, wir müssen nur die Additi-
onsaxiome (A1) und (A4) durch die Multiplikationsaxiome (M1) und (M4) ersetzen. �
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Satz 1.7. (Eindeutigkeit des multiplikativ Inversen) Es sei K ein Körper und es sei
x ∈ K mit x 6= 0. Dann existiert genau ein Element y ∈ K, so dass

x · y = 1.

Beweis. Der folgende Satz wird ähnlich bewiesen wie Satz 1.3. �

Definition. Es sei K ein Körper. Für x 6= 0 in K bezeichnen wir mit x−1, gesprochen x
hoch minus eins, das durch Satz 1.7 eindeutig bestimmte Element, welches x · x−1 = 1
erfüllt.8Aus dem Kommutativgesetz (M2) folgt dann auch, dass x−1 · x = x · x−1 = 1.

Satz 1.8. Es sei K ein Körper. Es gelten folgende Aussagen:

(1) 1−1 = 1.
(2) Für alle x ∈ K \ {0} gilt (x−1)−1 = x.
(3) Für alle x, y ∈ K \ {0} gilt (x · y)−1 = x−1 · y−1.

Beweis. Der Beweis verläuft ganz analog zum Beweis von Satz 1.4. �

Satz 1.9. Es sei K ein Körper. Für alle x ∈ K gilt x · 0 = 0.

Beweis.

Obwohl wir den Satz natürlich so erwarten, ist er doch etwas überraschend: Die 0
wurde definiert durch die Axiome der Addition. Aber der Satz macht eine Aussage
über das multiplikative Verhalten der 0. Das einzige Axiom, welches die Addition mit
der Multiplikation verbindet, ist das Distributivgesetz. Wir werden dieses dement-
sprechend im Beweis verwenden.

Es sei x ∈ K. Dann gilt

0 + x · 0 = x · 0 = x · (0 + 0) = x · 0 + x · 0.
↑ ↑ ↑

Definition von 0 Definition von 0 Distributivgesetz (D).

Vergleichen wir nun die linke und die rechte Seite, so sehen wir, dass nun aus Satz 1.2 folgt,
dass 0 = x · 0. �

Wir beschließen das Kapitel mit folgendem Satz, in dem wiederum sowohl die Addition
als auch die Multiplikation verwendet werden.

Satz 1.10. Es sei K ein Körper. Für alle x, y ∈ K gilt

(1) (−x) · y = −(x · y),
(2) (−1) · y = −y,
(3) (−x) · (−y) = x · y.

8Hierbei ist “x−1” im Moment nur eine Notation und “x hoch minus eins” nur ein feststehender Begriff.
Wir haben nicht eingeführt, was “x hoch irgendwas” heißen soll.
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Beweis. Wir beweisen die Aussagen (1) und (3) in Übungsblatt 1. Aussage (2) folgt leicht
mit x = 1 aus Aussage (1). �

1.4. Weitere Definitionen.

Definition. Es sei K ein Körper.

(1) Für a1, . . . , as ∈ K definieren wir

a1 + a2 + · · ·+ as := (. . . ((a1 + a2) + a3) + . . . ) + as.

Es folgt aus dem Assoziativgesetz (A1), dass a1 + · · ·+ as nicht von der Reihenfolge
der Klammern abhängt.9Wir verwenden auch die übliche Summennotation, d.h. wir
schreiben

s∑
i=1

ai := a1 + · · ·+ as, für s = 0 definieren wir zudem
s∑
i=1

ai := 0.

(2) Für x, y ∈ K schreiben wir ab sofort

xy := x · y.
Zudem, wenn y 6= 0, dann schreiben wir

x

y
:= x/y := xy−1.

Für a1, . . . , as ∈ K definieren wir

a1 · a2 · · · · · as := (. . . ((a1 · a2) · a3) · . . . ) · as.
Ganz analog zu oben folgt aus dem Assoziativgesetz (M1), dass a1 · · · · · as nicht von
der Reihenfolge der Klammern abhängt. Wir verwenden zudem die übliche Produkt-
notation, d.h. wir schreiben

s∏
i=1

ai := a1 · · · · · as, für s = 0 definieren wir zudem
s∏
i=1

ai := 1.

Beispiel. Es sei K ein Körper und es seien {xij}i=1,...,r,j=1,...,s Elemente von K. Dann ist

r∑
i=1

s∑
j=1

xij =

Summand für i=1︷ ︸︸ ︷
s∑
j=1

x1j +

Summand für i=2︷ ︸︸ ︷
s∑
j=1

x2j · · ·+

Summand für i=r︷ ︸︸ ︷
s∑
j=1

xrj

= (x11 + · · ·+ x1s) + (x21 + · · ·+ x2s) + · · ·+ (xr1 + · · ·+ xrs).

Folgender Satz wird immer wieder verwendet ohne explizit erwähnt zu werden.

9Das Assoziativgesetz für s = 4 besagt beispielsweise, dass

((a1 + a2) + a3) + a4 = (a1 + a2) + (a3 + a4) = a1 + (a2 + (a3 + a4)),

d.h. es ist völlig egal, wie wir die Klammern setzen. Wir können diese dementsprechend weglassen. Je nach
Spitzfindigkeit des Mathematikers muss man wirklich noch beweisen, dass das Assoziativgesetz impliziert,
dass man Klammern weglassen kann. Ein vollständiger Beweis ist gegeben in [DF, Seite 19].
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Satz 1.11. Es sei K ein Körper. Für a1, . . . , ar ∈ K und b1, . . . , bs ∈ K gilt(
r∑
i=1

ai

)
·
(

s∑
j=1

bj

)
=

r∑
i=1

s∑
j=1

ai · bj.

Beweis. Die Gleichheit folgt aus mehrfacher Anwendung des Distributivgesetzes. �

Definition. Es sei K ein Körper. Für x ∈ K und n ∈ N definieren wir

xn := x · · · · · x︸ ︷︷ ︸
n−Mal

.

Zudem definieren wir x0 := 1 (auch für x = 0!) und für n ∈ N0 und x 6= 0 definieren wir10

x−n := 1/(xn) = (xn)−1.

Wir bezeichnen xn als x hoch n oder auch als n-te Potenz von x.
Der folgende Satz fasst einige elementare Eigenschaften von Potenzen zusammen.

Satz 1.12. Es seien x, y ∈ K mit x, y 6= 0 und es seien m,n ∈ Z, dann gilt

(1) xm · xn = xm+n

(2) (xn)m = xmn

(3) xnyn = (xy)n.

Beweisskizze. Die beiden ersten Aussagen folgen aus dem Assoziativgesetz (M1). Die dritte
Aussage benötigt das Assoziativgesetz (M1) und auch das Kommutativgesetz (M2). �

Wir haben in den letzten Kapiteln gesehen, dass für Körper die “üblichen” Rechen- und
Umformungsregeln gelten. Im Folgenden werden wir nun die verwendeten Körperaxiome
nicht mehr explizit aufführen und wir werden die obigen Sätze nicht mehr explizit zitie-
ren. Zudem verwenden wir ab sofort die üblichen Rechenregeln, ohne diese im Einzelnen
herzuleiten.

Bemerkung. Zum Abschluß der Diskussion der Körperaxiome, wollen wir noch kurz der
Frage nachgehen, warum die Axiome so formuliert sind, wie sie sind. Beispielsweise hätten
wir noch folgendes Axiom formulieren können

(A5) für alle x, y, z ∈ K gilt, dass x+ (y + z) = y + (x+ z).

Aber man kann sich leicht davon überzeugen, dass (A5) schon aus dem Assoziativgesetz
und dem Kommutativgesetz folgt. Das Ziel ist, einen Körper über möglichst wenige Axiome
zu charakterisieren, und dann ist (A5) überflüssig, nachdem es schon aus (A1) und (A2)
folgt. Jetzt stellt sich die Frage, ob man nicht vielleicht eines der anderen Axiome weglassen
könnte. Wir hatten gesehen, dass Z alle Axiome bis auf (M4) erfüllt. Nachdem (M4) jedoch

10Hier sieht man schön den Unterschied zwischen “:=” und “=”. Wir verwenden “:=” für eine Definition
und “=” für eine Gleichheit von gegebenen Objekten. Beispielsweise hatten wir für x 6= 0 schon 1/(xn)
und (xn)−1 eingeführt, und es gilt 1/(xn) = (xn)−1. Wir führen nun x−n neu ein, in dem wir es als
x−n := 1/(xn) definieren.
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nicht für Z gilt, kann (M4) nicht aus den anderen Axiomen folgen. Wir können Axiom (M4)
also nicht weglassen.

Es ist eine amüsante Aufgabe, sich für jedes Axiom ein Beispiel zu überlegen, für welches
alle anderen Axiome gelten, aber das gewählte Axiom gilt nicht. Beispielsweise gibt es auf R4

eine Multiplikation, welche zusammen mit der üblichen Addition auf R4 alle Körperaxiome
bis auf (M2) erfüllt. Diese Struktur nennt man die Quaternionenmultiplikation, siehe [E,
Kapitel 7.1] und

http://de.wikipedia.org/wiki/Quaternion.

1.5. Angeordnete Körper. Wir wollen uns an die Eigenschaften der rationalen und re-
ellen Zahlen rantasten. Die rationalen und reellen Zahlen, wie wir sie aus der Schule ken-
nen, besitzen neben der Addition und Multiplikation auch noch eine weitere Struktur,
nämlich man kann zwei reelle Zahlen x, y “vergleichen”, d.h. wir können davon reden, dass
x “größer” als y ist. Dies führt uns nun zu folgender Definition.

Definition. Ein angeordneter Körper ist ein Körper K zusammen mit einer Relation11“>”,
welche folgende Ordnungsaxiome erfüllt:

(O1) Für alle x, y ∈ K gilt genau eine der folgenden drei Aussagen:
x > y oder y > x oder x = y.

(O2) Für alle x, y, z ∈ K gilt: x > y und y > z =⇒ x > z (Transitivität).
(O3) Für alle x, y, a ∈ K gilt: x > y =⇒ x+ a > y + a.
(O4) Für alle x, y, a ∈ K gilt: x > y und a> 0 =⇒ x · a > y · a.

Beispiel.

(1) Es sei K = Q der Körper der rationalen Zahlen mit der üblichen Bedeutung von
“>”, dann ist Q ein angeordneter Körper.

(2) Hier ist ein etwas komplizierteres Beispiel von einem angeordneten Körper. Wie in
Kapitel 1.1 sei K der Körper der rationalen Funktion, d.h.

K = Menge der rationalen Funktionen =
{
p(t)

q(t)

∣∣∣ p(t), q(t) 6= 0 Polynome in t
}
.

Für f, g ∈ K schreiben wir dann

f > g :⇐⇒ Es existiert ein ε > 0, so dass f(x) > g(x) für alle x ∈ (0, ε).

Beispielsweise gilt x
x+1

> x3, weil diese Ungleichheit gilt für alle x ∈ (0, 1
2
). Man kann

nun zeigen, dass K mit dieser Ordnung > in der Tat die Ordnungsaxiome (O1) bis
(O4) erfüllt. Wir werden dieses Beispiel nicht weiter verfolgen.

(3) Es stellt sich nun die Frage, ob man nicht auch auf anderen Körpern eine Ordnung
“>” einführen kann, welche die Axiome (O1) bis (O4) erfüllt. Beispielsweise, ist dies
für den Körper F2 möglich? Wir werden diese Frage später noch beantworten.

11Strenggenommen ist eine Relation in K eine Teilmenge V von K ×K. Wir schreiben dann

a > b genau dann, wenn (a, b) ∈ V.
Diese genaue Definition kann uns jetzt aber egal sein.

http://de.wikipedia.org/wiki/Quaternion
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Definition. Es sei K ein angeordneter Körper. Für x, y ∈ K definieren wir 12

x < y :⇔ y > x,
x ≥ y :⇔ x > y oder x = y,
x ≤ y :⇔ x < y oder x = y,

und für x ∈ K definieren wir
x positiv :⇔ x > 0,
x negativ :⇔ x < 0.

Der zweite Teil von folgendem Satz ist das Gegenstück zu (O4) für a < 0.

Satz 1.13. Es sei K ein angeordneter Körper.

(1) Für alle x ∈ K gilt: x > 0 ⇐⇒ −x < 0.
(2) Für alle x, y, a ∈ K gilt: x > y und a < 0 =⇒ x · a < y · a.

Bemerkung. Die Tatsache, dass die Implikation in (O4) nur gilt, wenn a > 0, gehört zu den
größten Fehlerquellen der Analysis.

Beweis. Es sei K ein angeordneter Körper.

(1) Es sei x ∈ K. Dann gilt

x > 0 ⇐⇒ x+ (−x) > 0− x ⇐⇒ 0 > −x ⇐⇒ −x < 0.
↑ ↑ ↑

Ordnungsaxiom (O3) Definition von −x und 0 Definition von < 0

(2) Es seien also x, y, a ∈ K mit a < 0. Dann gilt

x > y ⇒ x·(−a) > y ·(−a) ⇒ x·
=ya︷ ︸︸ ︷

(−a) + xa+ ya >

=xa︷ ︸︸ ︷
y ·(−a) + xa+ ya ⇒ ya > xa.

↑ ↑ ↑
es folgt aus (1), mit x = −a, folgt aus (O3) folgt durch Vereinfachen
dass −a > 0, die Ungleichung
folgt nun aus (O4) �

Satz 1.14. Es sei K ein angeordneter Körper. Für jedes x ∈ K mit x 6= 0 gilt

x2 > 0.

Beweis. Nachdem x 6= 0 folgt aus Axiom (O1), dass entweder x > 0 oder 0 > x. Wir
beweisen jetzt den Satz für die beiden Fälle getrennt.
1. Fall: x > 0. In diesem Fall gilt x2 = x · x > 0 · x = 0.

↑ ↑
folgt aus dem Ordnungsaxiom (O4), da x > 0 Satz 1.9

2. Fall: 0 > x. Es sei also 0 > x. Dann gilt

der Vollständigkeit halber, dies folgt aus Satz 1.10
↓

x2 = x · x = (−x) · (−x) > 0.
↑

aus Satz 1.13 folgt, dass −x > 0, also folgt die Ungleichung aus dem 1. Fall �

12Die Notation :⇔ bedeutet hierbei, dass die linke Seite durch die rechte Seite definiert wird. Beispiels-
weise bedeutet x < y :⇔ y > x, dass wir genau dann x < y schreiben, wenn y > x.
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Korollar 1.15. Es sei K ein angeordneter Körper. Für jedes x ∈ K mit x>0 gilt 1
x
> 0.

Beweis. Es sei x ∈ K mit x > 0. Es gilt

1
x = x ·

(
1
x

)2
> 0 ·

(
1
x

)2
= 0.

↑
da x > 0 und da nach Satz 1.14 gilt

(
1
x

)2
> 0

erhalten wir die Ungleichung aus dem Ordnungsaxiom (O4) �

Korollar 1.16. In jedem angeordneten Körper gilt: 1 > 0.

Beweis. Es ist 1 = 1 · 1 = 12 > 0.
↑

Satz 1.14 �

Satz 1.17. Sei K ein angeordneter Körper.

(1) Für alle a, b, c, d ∈ K gilt: a > b und c > d =⇒ a+ c > b+ d.

(2) Für alle a, b ∈ K gilt: a > b > 0 =⇒ 1

b
> 1

a
> 0

(3) Für alle a, b, c, d ∈ K gilt: a > b > 0 und c > d > 0 =⇒ a · c > b · d.

Beweis. Der Satz wird in Übungsblatt 1 bewiesen. �

Korollar 1.18. Es sei K ein angeordneter Körper. Für jedes n ∈ N gilt:

1 + · · ·+ 1︸ ︷︷ ︸
n−Mal

> 0, insbesondere gilt 1 + · · ·+ 1︸ ︷︷ ︸
n−Mal

6= 0.

Beweis.

(a) Nach Korollar 1.16 wissen wir, dass 1 > 0.
(b) Wenn wir Satz 1.17 auf 1 > 0 und 1 > 0, erhalten wir 1 + 1 > 0.
(c) Aus 1 > 0 und 1 + 1 > 0 erhalten wir mithilfe von Satz 1.17, dass 1 + 1 + 1 > 0.
(d) Indem wir so fortfahren erhalten wir die erste Aussage.
(e) Die zweite Aussage folgt nun sofort aus (O1). �

Bemerkung. In dem Körper F2 mit zwei Elementen gilt 1 + 1 = 0. Das Korollar 1.18
besagt also insbesondere, dass der Körper F2 kein angeordneter Körper sein kann, d.h.
man kann auf F2 keine Ordnung “>” definieren, welche alle Axiome (O1) bis (O4) erfüllt.
Das gleiche Argument zeigt auch noch eine stärkere Aussage: ein angeordneter Körper ist
immer unendlich.

Definition. Es sei K ein angeordneter Körper und x ∈ K. Wir definieren den Absolutbetrag
von x als

|x| :=

{
x, falls x ≥ 0,
−x, falls x < 0.
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Satz 1.19. Es sei K ein angeordneter Körper und es seien x, y ∈ K, dann gilt:

(1) |x| ≥ 0,
(2) |x| = 0 ⇔ x = 0,
(3) | − x| = |x|
(4) |x · y| = |x| · |y|,
(5) |x+ y| ≤ |x|+ |y| (Dreiecksungleichung).

Beweis (∗). 13

(1) Die Aussage folgt aus einer Fallunterscheidung und Satz 1.13.
(2) Die Aussage folgt aus dem Ordnungsaxiom (O1).
(3) Die Aussage folgt sofort aus den Definitionen.
(4) Wir schreiben x = σ · x0 mit x0 ≥ 0 und σ ∈ {±1} und y = τ · x0 mit y0 ≥ 0 und

τ ∈ {±1}. Dann ist

|xy| = |σ · τ · x0 · y0| = |x0 · y0| = x0 · y0 = |x| · |y|.
↑ ↑ ↑

folgt aus (3), denn σ · τ ∈ {−1, 1} aus x0>0 & y0>0 denn x0 = |x| und y0 = |y|
und (O4) folgt x0 ·y0>0

(5) Es ist

x+ y ≤ |x|+ |y| und − (x+ y) = −x− y ≤ |x|+ |y|.
↑ ↑

dies folgt aus Satz 1.17, dies folgt aus Satz 1.17,
denn x ≤ |x| und y ≤ |y| denn −x ≤ |x| und −y ≤ |y|

Per Definition von | − | gilt |x+ y| = x+ y oder |x+ y| = −(x+ y) erhalten wir aus
den beiden Ungleichungen die gewünschte Ungleichung |x+ y| ≤ |x|+ |y|. �

Wir haben uns jetzt davon überzeugt, dass in einem angeordneten Körper die üblichen
Regeln für > gelten. Wie bei den Körperaxiomen werden wir daher im Folgenden auch die
Ordnungsaxiome (O1) bis (O4) nicht mehr explizit angeben, und wir werden auch nicht
mehr explizit auf die Sätze in diesem Kapitel verweisen.

1.6. Der Satz über die reellen Zahlen.

Definition. Sei K ein Körper, x ∈ K und n ∈ N. Wir definieren14

n · x := x+ · · ·+ x︸ ︷︷ ︸
n−Mal

.

Beispielsweise gilt für E ∈ F2 = {N,E} und n = 3, dass 3 ·E = E +E +E = N +E = E.

13Wenn ein Beweis mit ∗ markiert ist, dann bedeutet dies, dass wir den Beweis nicht in der Vorlesung
behandelt haben und dieser auch nicht Teil des Stoffes ist. Meistens handelt es sich um Beweise, welche
nicht besonders interessant sind. Man darf diese Beweise gerne lesen, es gibt aber keinerlei Verpflichtung.
Die Beweise fehlen in der Kurzversion des Skripts.
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Wir führen nun noch ein 5. Ordnungsaxiom ein, welches auf den ersten Blick etwas
eigenwillig ist.

Definition. Wir sagen ein angeordneter Körper erfüllt das archimedische Axiom, wenn gilt

(N) für alle x > 0 und y > 0 existiert ein n ∈ N, so dass

n · x > y.

Bemerkung. Das archimedische Axiom ist “so offensichtlich richtig” für K = Q, dass man
sich kaum vorstellen kann, dass es nicht immer erfüllt ist. Wenn wir aber zum vorerst letzten
Mal den Körper K der rationalen Funktionen mit der auf Seite 14 definierten Ordnung “>”
betrachten, dann sehen wir, dass “>” alle Axiome (O1) bis (O4) erfüllt. Aber “>” erfüllt
nicht das archimedische Axiom. In der Tat, für die rationalen Funktionen p = 1 und q = x
gilt15 1 > x, aber es gilt auch für alle n ∈ N, dass16 1 > n · x.

Bemerkung. Man kann das archimedische Axiom beispielsweise für K = Q wie in Abbil-
dung 1 veranschaulichen. Wenn wir eine Strecke der Länge x > 0 gegeben haben, und einen
Punkt y auf dem Strahl, dann kann man den Punkt y übertreffen, indem man die Strecke
der Länge x genügend oft abträgt.

���
�
�
�

positive x-Achse

Strecke der Länge x > 0
viermaliges Abtragen der Strecke übertrifft y

y

y

Abbildung 1. Veranschaulichung des archimedischen Axioms.

Wir führen nun noch ein letztes Ordnungsaxiom ein, nämlich das Vollständigkeitsaxiom.

Definition. Ein angeordneter Körper heißt vollständig, wenn das Vollständigkeitsaxiom gilt:

(V) Jede Cauchy-Folge in K konvergiert.

Die Definitionen von “Cauchy-Folge” und “Konvergenz einer Cauchy-Folge” werden in
Kapitel 4 nachgereicht. Wir werden dann auch sehen, dass Q das Vollständigkeitsaxiom
nicht erfüllt. Mit diesen Definitionen können wir aber nun folgenden Satz formulieren:

Satz 1.20. (Existenz und Eindeutigkeit der reellen Zahlen Es gibt (bis auf einen
eindeutig bestimmten Isomorphismus)17genau einen angeordneten Körper, welcher das ar-
chimedische Axiom erfüllt und welcher vollständig ist.

14Man könnte denken, dass es da doch nichts zu definieren gibt, weil wir doch schon eine Multiplikation
auf dem Körper besitzen. Aber diese gibt uns nur das Produkt von zwei Elementen des Körpers K, es gibt
uns nicht das Produkt einer natürlichen Zahl n mit einem Element k aus K.

15In der Tat, denn für x ∈ (0, 1) gilt, dass 1 > x.
16In der Tat, denn für x ∈ (0, 1

n ) gilt, dass 1 > nx.
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Beweisskizze (∗). Es gibt verschiedene Methoden den Satz zu beweisen. Wir skizzieren eine
Möglichkeit. Ein Dedekindschnitt ist ein Paar (U, V ) von Teilmengen von Q mit folgenden
Eigenschaften:

(1) U und V sind nicht leer.
(2) Es ist U ∪ V = Q.
(3) Für jedes x ∈ U und y ∈ V gilt x < y.
(4) V besitzt kein minimales Element, d.h. es gibt kein y ∈ V , so dass y ≤ z für alle

z ∈ V .

Wir bezeichnen mit K die Menge alle Dedekindschnitte. Wir führen folgende Definitionen
durch:

(1) Für (U1, V1), (U2, V2) ∈ K definieren wir

(U1, V1) + (U2, V2) := ({x1 + x2 | x1 ∈ U1, x2 ∈ U2}, {y1 + y2 | y1 ∈ V1, y2 ∈ V2}).
(2) Man kann relativ leicht zeigen, dass (K,+) die Axiome (A1) bis (A4) erfüllt mit

0 = ({x ∈ Q |x ≤ 0}, {x ∈ Q |x > 0}).
(3) Wir schreiben (U1, V1) < (U2, V2), wenn U1 ⊂ U2 und U1 ( U2.
(4) Für (U1, V1), (U2, V2) ∈ K mit (U1, V1) > 0 und (U2, V2) > 0, definieren wir

(U1, V1) · (U2, V2) := ({x1 · x2 | x1 ∈ U1, x2 ∈ U2}, {y1 · y2 | y1 ∈ V1, y2 ∈ V2}).
Die Multiplikation in den anderen Fällen ist etwas aufwändiger zu definieren, siehe
[E, S. 32].

In [L] und [E, Kapitel 1.4] wird nun gezeigt, dass alle Axiome erfüllt sind. Die Existenz
von einem solchen Körper wird in [E, Kapitel 1.2-1.3] auch durch zwei weitere Methoden
bewiesen. Die Eindeutigkeit wird auf [E, p. 42] bewiesen. �

Definition. Wir nennen den durch den Satz eindeutig bestimmten Körper den Körper der
reellen Zahlen und bezeichnen ihn mit R.

Dieser Körper der reellen Zahlen ist natürlich nichts anderes als die reellen Zahlen, wel-
che Sie schon aus der Schule kennen. Allerdings werden diese in der Schule in der Regel
etwas schwammig definiert (“Zahlen mit unendlich vielen Ziffern hinter dem Komma”).
Wir werden in der Vorlesung nur verwenden, dass die reellen Zahlen die Körperaxiome
(A1)–(A4), (M1)–(M4) und (D), sowie die Ordnungsaxiome (O1)–(O4), das archimedische
Axiom (N) und das mysteriöse Vollständigkeitsaxiom (V) erfüllen. Wir werden aus diesen
Axiomen alle weiteren Aussagen herleiten.

17Den Ausdruck “bis auf einen eindeutig bestimmten Isomorphismus” können Sie erst einmal ignorieren.
Der vollständigkeit halber ist hier noch die Definition: Ein Isomorphismus f : K → K ′ zwischen zwei
angeordneten Körper K und K ′ ist eine bijektive Abbildung f : K → K ′ mit folgenden Eigenschaften:

(1) Für alle x, y ∈ K ist f(x+ y) = f(x) + f(y).
(2) Für alle x, y ∈ K ist f(x · y) = f(x) · f(y).
(3) Für alle x, y ∈ K gilt x > y ⇒ f(x) > f(y).

Der Satz besagt also, dass wenn K und K ′ zwei vollständige angeordnete Körper sind, dann gibt es genau
einen Isomorphismus f : K → K ′.
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1.7. Reelle Zahlen und natürliche Zahlen. Wir wollen nun den Zusammenhang zwi-
schen den natürlichen Zahlen, und den abstrakt eingeführten reellen Zahlen klären. Dazu
benötigen wir noch folgende Definition.

Satz 1.21. Es bezeichne 1 das Eins-Element des Körpers R. Wir betrachten die Abbildung

ϕ : N0 → R
n 7→ 1 + · · ·+ 1︸ ︷︷ ︸

n−Mal

= n · 1.

Für a1, a2 ∈ N0 mit a1 6= a2 gilt auch ϕ(a1) 6= ϕ(a2).18

Beweis. Es sei a1, a2 ∈ N0 mit a1 6= a2. Nach (O1) gilt also entweder a1 > a2 oder a2 > a1.
Ohne Beschränkung der Allgemeinheit (o.B.d.A.) können wir annehmen, dass a1 > a2.
(Andernfalls gilt eben a2 > a1 und der folgende Beweis funktioniert genauso, nur mit den
Rollen von a1 und a2 vertauscht.) Es folgt, dass ein x ∈ N0 existiert mit a1 = a2+x. Daraus
wiederum folgt, dass

ϕ(a1) = ϕ(a2+x) = 1 +. . .+1︸ ︷︷ ︸
(a2+x)−Mal

= 1+. . .+1︸ ︷︷ ︸
a2−Mal

+ 1+ . . .+1︸ ︷︷ ︸
x−Mal

= ϕ(a2)+

> 0 nach Korollar 1.18︷ ︸︸ ︷
1+. . .+1 > ϕ(a2).

↑
folgt aus ϕ(x) > 0 und dem Ordnungsaxiom (O3)

Wir haben also gezeigt, dass ϕ(a1) > ϕ(a2). Es folgt nun aus (O1), dass ϕ(a1) 6= ϕ(a2). �

Es folgt aus Satz 1.21, dass wir n ∈ N0 mit ϕ(n) ∈ R gleichsetzen können. Wir fassen
daher von nun an N0 als Teilmenge der reellen Zahlen auf. Wir führen zudem folgende
Definitionen ein:

Z = N0 ∪ {−n ∈ R |n ∈ N} ⊂ R (die Menge der ganzen Zahlen),

Q = {p
q
| p, q ∈ Z mit q 6= 0} ⊂ R (der Körper der rationalen Zahlen).

Wir beschließen das Teilkapitel mit folgendem Satz. Dieser erscheint “ganz offensichtlich’,
aber wir wollen diesen wiederum nur aus den Axiomen herleiten.

Satz 1.22. Für jedes ε > 0 in R existiert ein n ∈ N, so dass
1

n
< ε.

Beweis. Es sei also ε > 0. Wir müssen zeigen, dass es ein n ∈ N gibt, so dass 1
n
< ε.

Wir müssen also zeigen, dass es ein n ∈ N gibt, welches eine gewisse Ungleichung
erfüllt. Das einzige Axiom, und die einzige Aussage, welche wir von diesem Typ
haben, ist das archimedische Axiom:
(N) Für alle x > 0 und y > 0 existiert ein n ∈ N, so dass n · x > y.
Wir müssen also das archimedische Axiom auf geschickt gewählte x und y anwenden.

18Eine Abbildung ϕ : A → B zwischen zwei Mengen bei der gilt, dass aus a1 6= a2 immer folgt, dass
ϕ(a1) 6= ϕ(a2), heißt injektiv. Wir werden diesen Begriff später noch ausführlicher diskutieren. Der Begriff
wird auch in der linearen Algebra verwendet.



21

Aus Korollar 1.15 folgt, dass 1
ε
> 0. Nach dem archimedischen Axiom (N), angewandt auf

x = ε und y = 1, existiert ein n ∈ N, so dass n · ε > 1, also n > 1
ε
. Es folgt nun aus

Satz 1.17, dass 1
n
< ε. �

1.8. Notationen. Wir führen noch einige Notationen ein. Die meisten davon sind wohl
aus der Schule geläufig.

Notation. Im Folgenden seien a, b zwei reelle Zahlen gegeben, wir definieren: 1920

[a, b] := {x ∈ R | a ≤ x ≤ b}, (geschlossenes Intervall)

(a, b) := {x ∈ R | a < x < b}, (offenes Intervall)

(a, b] := {x ∈ R | a < x ≤ b}, (halboffenes Intervall)

[a, b) := {x ∈ R | a ≤ x < b}, (halboffenes Intervall)

Eckige Klammen [ und ] bedeuten also, dass der Endpunkt enthalten ist, runde Klammern
( und ) bedeuten, dass der Endpunkt nicht enthalten ist. Die Notation unterscheidet sich
also von der an der Schule geläufigen Notation, dort wir beispielsweise das offene Intervall
(a, b) oft als ]a, b[ geschrieben. Darüber hinaus definieren wir

[a,∞) := {x ∈ R | a ≤ x}
(a,∞) := {x ∈ R | a < x}

(−∞, a] := {x ∈ R | x ≤ a}
(−∞, a) := {x ∈ R |x < a}

R>0 := {x ∈ R |x > 0} (die Menge der positiven reellen Zahlen)

R≥0 := {x ∈ R |x ≥ 0} (die Menge der nicht-negativen reellen Zahlen)

Notation. Für eine endliche Menge M ⊂ R bezeichnen wir mit maxM das maximale
Element von M und wir bezeichnen mit minM das minimal Element von M

Beispiel. Es ist max{1,−5, 7} = 7 und min{−1
2
, 3,−3} = −3.

Zum Abschluß wollen wir noch den Begriff des ab- und aufrundens einführen. Dazu
benötigen wir folgendes Lemma.21

Lemma 1.23.

(1) Für jede reelle Zahl r ∈ R existiert ein m ∈ Z mit m > r.
(2) Für jede reelle Zahl s ∈ R existiert ein n ∈ Z mit n < s.

20Hierbei bezeichnet beispielsweise {x ∈ R | a ≤ x ≤ b} die Menge aller reellen Zahlen, welche die
Eigenschaft besitzen, dass a ≤ x ≤ b.

20Wir erlauben auch explizit den Fall, dass a > b. Beispielsweise ist (3,−2) die leere Menge, weil es keine
reelle Zahl x gibt mit x > 3 und x < −2.

21Ein “Lemma” ist, wie ein “Satz” oder “Theorem” eine mathematische Aussage. Der Name “Lemma”
wird normalerweise für etwas uninteressantere Aussagen verwendet. Aber das ist reine Geschmackssache.
Ich hätte die Aussage auch wieder als Satz bezeichnen können.
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Beweis (∗).

(1) Die Aussage folgt aus dem archimedischen Axiom angewandt auf x = 1 und y = r.
(2) Wir wenden (1) auf r = −s und erhalten ein m ∈ Z mit m > −s. Dann gilt aber
−m < −(−s) = s. Also hat n := −m die gewünschte Eigenschaft. �

Definition. Für eine reelle Zahl z ∈ R definieren wir22

dze := min{n ∈ Z |n ≥ z} = minimales n ∈ Z mit n ≥ z “z aufgerundet”, sowie

bzc := max{n ∈ Z |n ≤ z} = maximales n ∈ Z mit n ≤ z “z abgerundet”.

Die kleinen horizontalen Striche geben also an, ob man ab- oder aufrundet.

22Es folgt aus Lemma 1.23, dass es ein n ∈ Z mit n ≥ z gibt. Deswegen ist dxe in der Tat definiert. Das
gleiche Argument gilt auch für bxc.
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2. Die vollständige Induktion

Im nächsten Kapitel führen wir Folgen von reellen Zahlen und die Konvergenz von reellen
Folgen ein. In diesem Kapitel unterbrechen kurzzeitig die Diskussion der reellen Zahlen, und
führen die vollständige Induktion als Beweismethode ein. Wir verwenden diese um mehrere
Aussagen herzuleiten, welche in späteren Kapiteln hilfreich sein werden.

Das ganze Kapitel beruht auf folgendem, eigentlich offensichtlichen Satz, aus der Logik.

Satz 2.1. (Prinzip der vollständigen Induktion) Für jedes n ∈ N0 sei eine Aussage
A(n) gegeben. Nehmen wir an, dass Folgendes gilt:

(1) A(0) ist wahr,
(2) für jedes beliebige n ≥ 0 gilt: Falls A(n) wahr ist, dann ist auch A(n+ 1) wahr.

Dann folgt aus (1) und wiederholter Anwendung von (2), dass A(n) wahr ist für alle n ∈ N0.

Ein typischer Induktionsbeweis verläuft nun wie folgt. Wir wollen zeigen, dass für jedes
n ∈ N0 eine bestimmte Aussage A(n) gilt. Wir führen folgende drei Schritte durch:

(1) Induktionsanfang: Man zeigt, dass A(0) gilt.
(2) Induktionsvoraussetzung: Man nimmt an, dass A(n) gilt für ein beliebiges n ≥ 0.
(3) Induktionsschritt: Man zeigt, dass unter der Induktionsvoraussetzung auch A(n+ 1)

wahr ist.

Es folgt nun aus dem Prinzip der vollständigen Induktion, d.h. aus Satz 2.1, dass die Aus-
sage A(n) wahr ist für alle n.

Wir werden jetzt eine ganze Reihe von Sätzen mithilfe von Induktion beweisen. Wir
beginnen mit folgendem Satz, den wir in Zukunft immer mal wieder verwenden werden.

Satz 2.2. Für alle x ∈ R \ {1} und n ∈ N0 gilt:
n∑
k=0

xk =
1− xn+1

1− x
.

Beweis. Es sei x ∈ R \ {1}. Für n ∈ N0 ist

A(n) definiert als folgende Aussage
n∑
k=0

xk =
1− xn+1

1− x
.

Wir müssen zeigen, dass A(n) wahr ist für alle n ≥ 0.
Induktionsanfang. Wir müssen also zeigen, dass die Aussage A(0) wahr ist. Dies können
wir leicht verifizieren, denn es ist

0∑
k=0

xk = x0 = 1 =
1− x
1− x

,

d.h. A(0) ist wahr.
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Induktionsvoraussetzung. Wir nehmen an, dass A(n) für ein n ∈ N0 wahr ist, d.h. wir
nehmen an, dass

n∑
k=0

xk =
1− xn+1

1− x
.

Induktionsschritt. Wir müssen nun zeigen, dass auch A(n+ 1) wahr ist.

Wir müssen also
n+1∑
k=0
xk bestimmen. Die Idee ist nun, diese Summe aufzuspalten, in

die ersten n Summanden und den letzten Summanden. Die Summe der ersten n
Summanden kennen wir schon per Induktionsvoraussetzung.

Wir führen nun folgende Berechnung durch:

n+1∑
k=0

xk =
n∑
k=0

xk + xn+1 =
1− xn+1

1− x
+ xn+1 =

(1− xn+1) + (1− x)xn+1

1− x
=

1− xn+2

1− x
.

↑ ↑ ↑
Verwenden der Induktionsvoraussetzung Zusammenfassen Vereinfachen

Nach Induktion folgt nun, dass A(n) wahr ist für alle n, d.h. wir haben den Satz bewiesen.
�

Satz 2.3. (Satz vom kleinen Gauss) Für alle n ∈ N0 gilt

(1)
n∑
k=1

k =
1

2
n(n+ 1) und (2)

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1).

Beweis (∗). Man kann Aussage (1) problemlos per Induktion beweisen. Ein anderer Ansatz
ist die Aussage mithilfe des “Tricks vom kleinen Gauss” zu zeigen. Dies ist eine Aufgabe
im 2. Präsenzübungsblatt.

Wir wollen im Folgenden nun Aussage (2) beweisen. Für n ∈ N0 sei nun A(n) die Aussage

n∑
k=1

k2 =
1

6
· n(n+ 1)(2n+ 1).

Wir müssen also zeigen, dass A(n) wahr ist für alle n ∈ N0.
Induktionsanfang. Wir können leicht verifizieren, dass die Aussage A(0) richtig ist. In der
Tat ist

0∑
k=1

k2 = 0 =
1

6
· 0 · (0 + 1) · (2 · 0 + 1).

↑
siehe Definition auf Seite 12

Induktionsvoraussetzung. Wir nehmen nun an, dass A(n) wahr ist für ein n ∈ N0, d.h. wir
nehmen an, dass für ein n ∈ N0 gilt:

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1).
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Induktionsschritt. Wir müssen nun zeigen, dass auch A(n+1) wahr ist. Wir verfahren ganz
analog zum Beweis von Satz 2.2, nämlich wir führen folgende Rechnung durch:

folgt aus der Induktionsvoraussetzung
↓n+1∑

k=1

k2 =
n∑
k=1

k2 + (n+ 1)2 =
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2

=
1

6
(n+ 1)(n+ 2)(2(n+ 1) + 1).

↑
folgt durch Ausmultiplizieren auf beiden Seiten und Vergleichen der Terme �

Bemerkung. In Beweisen wird die Induktionsvoraussetzung oft ausgelassen, allerdings emp-
fehle ich diese am Anfang immer noch aufzuführen, weil es im Induktionsschritt hilfreich
ist, diese vor Augen zu haben.

Satz 2.4. (Bernoullische Ungleichung). Es sei x ≥ −1 eine reelle Zahl. Für jedes
n ∈ N0 gilt folgende Ungleichung:

(1 + x)n ≥ 1 + nx.

Beweis. Es sei x ≥ −1. Für n ∈ N0 sei A(n) die Aussage, dass

(1 + x)n ≥ 1 + nx.

Induktionsanfang. Man kann leicht nachrechnen, dass die Aussage A(0) wahr ist.
Induktionsvoraussetzung. Wir nehmen an, dass A(n) für ein n ∈ N0 wahr ist, d.h. wir
nehmen an, dass für ein n ∈ N0 gilt:

(1 + x)n ≥ 1 + nx.

Induktionsschritt. Es gilt

(1 + x)n+1 = (1 + x)n · (1 + x) ≥ (1 + nx)(1 + x) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.

↑ ↑
aus der Induktionsvoraussetzung folgt (1 + x)n ≥ 1 + nx, die Ungleichung folgt denn nx2 ≥ 0
nun aus dem Ordnungsaxiom (O4) und der Voraussetzung, dass 1 + x ≥ 0 �

Das folgende Korollar besagt insbesondere, dass die Potenzen von einer Zahl b > 1
“beliebig groß ” werden können.

Korollar 2.5. Es sei b > 1. Für jedes C ∈ R existiert ein n0 ∈ N, so dass für alle n ≥ n0

gilt bn > C.

Beispiel. Wir wollen die Zahl der Viruserkrankten mit folgendem grob vereinfachten Modell
studieren:

(1) Wir nehmen an, dass es zu Beginn der ersten Woche genau m > 0 Infizierte gibt.
(2) Jeder Infizierte bleibt eine Woche lang krank und ansteckend und ist danach nicht

mehr krank und nicht mehr ansteckend.
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(3) Wir nehmen an, dass jeder Virusinfizierte innerhalb von einer Woche im Durchschnitt
wiederum R Menschen ansteckt. Am Ende der ersten Woche sind also R·m Menschen
krank. Am Ende der zweiten Woche sind dann R2 ·m krank und am Ende der n-ten
Woche sind Rn ·m-Menschen krank.23

(4) Nehmen wir an, dass der Anteil derer, die auf einer Intensivstation behandelt werden
müssen, ε ∈ (0, 1] ist. Mit anderen Worten, in Woche n liegen ε · Rn · m Patienten
auf der Intensivstation.

(5) Es sei J die Anzahl der Behandlungsplätze auf Intensivstation.
(6) Wir nehmen nun an, dass R > 1. Korollar 2.5 besagt dann, dass es eine Woche n0 ∈ N

gibt, so dass Rn > J
ε·m für alle n ≥ n0, d.h. es ist ε · Rn ·m > J für alle n ≥ n0. Mit

anderen Worten, ab der n0-ten Woche sind alle Intensivplätze durchgehend belegt.

Beweis. Es sei b > 1 und es sei C ∈ R.

Wir wollen also insbesondere ein n ∈ N0 finden, so dass die Potenz bn größer als
die gegebene Zahl C wird. Das klingt ein bisschen wie das archimedische Axiom,
allerdings behandelt dies ein Produkt nx und keine Potenz. Andererseits können
wir mithilfe der Bernoullischen Ungleichung eine Potenz durch einen Ausdruck der
Form 1 + nx abschätzen. Die Idee des Beweises ist also, das Korollar mithilfe der
Bernoullischen Ungleichung auf das archimedische Axiom zurück zu führen.

Wir müssen den Ausdruck bn in die Form (1 + x)n bringen. Wir setzen daher x = b− 1.
Es folgt aus Satz 2.4, dass für ein beliebiges n gilt:

bn = (1 + x)n ≥ 1 + nx.

Nachdem x = b− 1 > 0 besagt das archimedischen Axiom, dass es ein n0 ∈ N mit

n0 · x ≥ C

gibt. Fassen wir beides zusammen, dann erhalten wir für n ≥ n0, dass

bn = (1 + x)n ≥ 1 + n · x > n · x ≥ n0 · x ≥ C.
↑ ↑ ↑ ↑

aus b > 1 folgt x > 0, also folgt da 1 > 0 da n ≥ n0 Wahl von n0
die Ungleichung aus der und x > 0

Bernoullischen Ungleichung �

Wir beschließen das Kapitel mit ein paar Definitionen und Aussagen, welche vielleicht
schon aus der Schule bekannt sind.

Definition. Für n0 ∈ N definieren wir
n! :=

n∏
k=1

k gesprochen “n Fakultät”.

Aus der Definition auf Seite 12 folgt, dass 0! := 1. Für 0 ≤ k ≤ n in N0 definieren wir
außerdem den Binomialkoeffizienten(

n
k

)
:= n!

(n−k)! k! gesprochen “k aus n”

23R ist also grob der Reproduktionsfaktor.
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Für k = 0 oder k = n beträgt dieser Ausdruck gerade 1.

Lemma 2.6. Für 0 ≤ k ≤ n gilt(
n+ 1
k

)
=
(
n
k

)
+
(

n
k − 1

)
.

Beweis (∗). Es ist(
n
k

)
+
(

n
k − 1

)
=

n!

(n− k)! k!
+

n!

(n− k + 1)! (k − 1)!

=
(n+ 1− k) n!

(n+ 1− k)(n− k)! k!
+

n! k

(n− k + 1)! (k − 1)!k

=
(n+ 1− k)n!

(n+ 1− k)! k!
+

n! k

(n− k + 1)! k!

= ((n+ 1− k) + k)
n!

(n+ 1− k)! k!
=

(n+ 1)!

(n+ 1− k)! k!
=
(
n+ 1
k

)
.

�

Mithilfe von diesem Lemma können wir jetzt folgenden Satz beweisen.

Satz 2.7. (Binomischer Lehrsatz) Für beliebige a, b ∈ R und n ∈ N0 gilt

(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k.

Beispiel. Der Satz kann als Verallgemeinerung der üblichen binomischen Formel betrachtet
werden. In der Tat besagt der Satz für n = 2, dass

(a+ b)2 =
(

2
0

)
a0b2 +

(
2
1

)
a1b1 +

(
2
2

)
a2b0 = b2 + 2ab+ a2.

Für n = 3 sieht man zudem, dass

(a+ b)3 =
(

3
0

)
a0b3 +

(
3
1

)
a1b2 +

(
3
2

)
a2b3 +

(
3
3

)
a3b0 = b3 + 3ab2 + 3a2b+ a3.

Beweis (∗). Seien a, b ∈ R. Für n ∈ N0 sei A(n) die Aussage:

(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k.

Induktionsanfang. Die Aussage A(0) gilt trivialerweise.24

Induktionsvoraussetzung. Wir nehmen an, dass A(n) wahr ist, d.h. wir nehmen an, dass

(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k.

24Hier “trivial” heißt, dass man es leicht durch Einsetzen zeigen kann. Das Ganze ist so langweilig, dass
man es sich sparen kann, dazu etwas zu schreiben.
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Induktionsschritt. Wir führen folgende Rechnung durch:

(a+b)n+1 = (a+b)(a+b)n = (a+b)·
n∑
k=0

(
n
k

)
akbn−k =

n∑
k=0

(
n
k

)
ak+1bn−k +

n∑
k=0

(
n
k

)
akbn−k+1.

↑ ↑
Induktionsvoraussetzung Distributivgesetz

Wir wenden jetzt den Trick an, dass wir eine Summe wie folgt ganz allgemein umschreiben
können:

n∑
k=0

ck =
n+1∑
k=1

ck−1.

Wir wenden jetzt diesen Trick auf die erste Summe an. Wir rechnen nun wie folgt weiter:

(a+ b)n+1 =
n+1∑
k=1

(
n

k − 1

)
akbn−k+1 +

n∑
k=0

(
n
k

)
akbn−k+1

=
(
n
n

)
an+1b0︸ ︷︷ ︸

k=n+1 Summand

+
n∑
k=1

((
n

k − 1

)
+
(
n
k

))
︸ ︷︷ ︸

hierauf wenden wir Lemma 2.6 an

akbn−k+1 +
(
n
0

)
a0bn+1︸ ︷︷ ︸

k=0 Summand

= an+1 +
n∑
k=1

(
n+ 1
k

)
akbn−k+1 + bn+1 =

n+1∑
k=0

(
n+ 1
k

)
akbn−k+1.

Der Satz folgt nun also per Induktion. �
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3. Folgen und Reihen

Nach der Einführung in das Prinzip des Induktionsbeweises kehren wir jetzt zurück zu
den reellen Zahlen. In diesem Kapitel führen wir “Folgen” und “Reihen” ein und werden
deren “Konvergenzverhalten” studieren. Diese Begriffe werden uns durch die ganze Analysis
begleiten.

3.1. Quantoren. Bevor wir uns den Folgen und Reihen zuwenden ist es sinnvoll noch
schnell eine einfache, aber hilfreiche Notation einzuführen. Wenn man sich die vorherigen
Kapitel noch mal anschaut, dann merkt man nämlich, dass immer wieder Formulierungen
der Form “für alle x ∈ X” und der Form “es existiert ein y ∈ Y ” auftauchen. Nachdem
diese Ausdrücke im Folgenden eine noch viel wichtigere Rolle spielen werden ist es hilfreich
folgende Abkürzungen einzuführen:

∀
x
. . . bedeutet “für alle x gilt . . . ”

∃
x
. . . bedeutet “es gibt ein x, so dass . . . ”.25

Die Symbole ∀ und ∃ nennen wir Quantoren.

Beispiel. Im Folgenden schreiben wir drei der Körperaxiome um in Quantorenschreibweise:

ursprüngliche Formulierung Formulierung mit Quantoren

Axiom (A3) Es existiert ein Element N ∈ K, so
dass für alle x ∈ K gilt: x+N = x

∃
N∈K

∀
x∈K

x+N = x

Axiom (A4) Zu jedem x ∈ K existiert ein
Element y ∈ K, so dass x+ y = N

∀
x∈K
∃
y∈K

x+ y = N

Axiom (N) Für alle x > 0 und y > 0 existiert
ein n ∈ N, so dass n · x > y

∀
x>0,y>0

∃
n∈N

n · x > y

Als weiteres Beispiel erinnern wir uns an folgendes etwas unübersichtliche Korollar.

Korollar. 2.5 Es sei b > 1. Für jedes C ∈ R existiert ein n0 ∈ N, so dass für alle n ≥ n0

gilt bn > C.

Mithilfe von Quantoren können wir das nun wie folgt umschreiben.

Korollar. 2.5 Es sei b > 1. Dann gilt:

∀
C∈R

∃
n0∈N

∀
n≥n0

bn > C.

Wir sehen also, dass man mithilfe von Quantoren Formulierungen abkürzen kann. Was
aber viel wichtiger ist, ist dass bei Quantorenschreibweise die logische Struktur einer Aus-
sage viel offensichtlicher ist.

25Der Ausdruck “es gibt ein x” bedeutet, dass es mindestens ein solches x gibt, es kann aber beliebig
viele geben. Wenn man sagen will, dass die Anzahl solcher x’s gerade eins beträgt, dann sagt man “es gibt
genau ein x”.
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Als letztes Beispiel führen wir noch folgende Definition ein, welche immer wieder einmal
eine Rolle spielen wird.

Definition. Es sei M ⊂ R eine beliebige Teilmenge und f : M → R eine Funktion. Wir
definieren:

f ist beschränkt ⇐⇒ ∃
C∈R
∀

x∈M
|f(x)| ≤ C.

Wenn eine Funktion nicht beschränkt ist, dann sagen wir, dass f unbeschränkt ist.

−C

C

Definitionsbereich M

die Funktion f ist beschränkt

Graph von f : M → R

Abbildung 2. Illustration der Definition einer beschränkten Funktion.

In vielen Fällen müssen wir eine Aussage negieren. Es sei beispielsweise M eine Menge
und für jedes x ∈M sei A(x) eine Aussage, welche wahr oder falsch sein kann. Dann ist

Negation von “für alle x∈M , gilt A(x)” = “es gibt einx∈M , so dassA(x) falsch ist”.

Für eine Funktion f : M → R gilt beispielsweise

Negation von “für allex ∈M ist f(x) ≥ 1” = “es gibt ein x∈M , so dass f(x) < 1︸ ︷︷ ︸
Negation von
f(x) ≥ 1

”

oder in Quantorenschreibweise

Negation von ∀
x∈M

f(x) ≥ 1 = ∃
x∈M

f(x) < 1

Die gleiche Logik funktioniert auch mit den Rollen von ∀ und ∃ vertauscht. In der Tat, es
gilt

Negation von “es gibt einx∈M , so dassA(x) gilt” = “für alle x∈M ist A(x) falsch”.

Für eine Funktion f : M → R gilt beispielsweise

Negation von “es gibt einx∈M mit f(x) = 3” = “für alle x ∈M ist f(x) 6= 3︸ ︷︷ ︸
Negation von

f(x) = 3

”

oder in Quantorenschreibweise

Negation von ∃
x∈M

f(x) = 3 = ∀
x∈M

f(x) 6= 3.

Wir sehen also, dass wir die Negation dadurch erhalten, dass wir ∀ und ∃ vertauschen,
und die jeweilige Aussage A(x) negieren. Dies funktioniert ganz analog, für Verkettungen
von Quantoren. Beispielsweise gilt für eine Funktion f : M → R:

Negation von “f : M → R ist beschränkt” = Negation von ∃
C∈R

∀
x∈M

|f(x)| ≤ C

= ∀
C∈R

∃
x∈M

|f(x)| > C︸ ︷︷ ︸
Negation von

|f(x)| ≤ C

.



31

3.2. Folgen. Jetzt wenden wir uns dem eigentlichen Thema des Kapitels zu.

Definition. Eine Folge von reellen Zahlen (oder kurz “Folge”) ist eine Abbildung

N → R
n 7→ an

Eine solche Folge wird oft auch mit (a1, a2, a3, . . . ), oder mit (an)n∈N oder mit (an)n≥1
oder, noch knapper, mit (an) bezeichnet. 26Die einzelnen Zahlen an werden Folgenglieder
genannt.

Beispiel. Wir betrachten jetzt eine ganze Reihe von Folgen, damit wir ein Gefühl dafür
kriegen, wie Folgen ausschauen können. Wir wollen dabei auch “qualitativ” beschreiben,
wie sich die jeweilige Folge verhält:

Definition der Folge die ersten Folgenglieder qualitatives Verhalten

(a) ( 1
n
)n∈N 1, 1

2
, 1

3
, 1

4
, 1

5
, . . . die Folge geht gegen 0

(b) ( 1
n2 )n∈N 1, 1

4
, 1

9
, 1

16
, 1

25
, . . . die Folge strebt gegen 0

(c) (3)n∈N 3, 3, 3, 3, 3, . . . die Folge ist immer gleich 3

(d) (3 + 2
n2 )n∈N 5, 31

2
, 32

9
, 3 2

16
, 3 2

25
, . . . die Folge nähert sich immer mehr der 3

(e) ((−1)n)n∈N −1, 1, −1, 1, −1, . . . die Folge springt zwischen 1 und−1 hin und her

(f) ( 1
2n

)n∈N
1
2
, 1

4
, 1

8
, 1

16
, 1

32
, . . . die Folge strebt gegen 0

(g) (n3)n∈N 1, 8, 27, 64, 125, 216, . . . die Folge geht ins “Unendliche”

Es gibt aber auch noch kompliziertere Folgen, welche man nicht mit einem einzigen mathe-
matischen Ausdruck definieren kann. Beispielsweise gibt es folgende schöne Folgen:

(h)

{ 1
n
, fallsn gerade

− 1
n2 , sonst

−1, 1
2
,−1

9
, 1
4
,− 1

25
, 1
6
, . . . die Folge strebt gegen 0

(i)

{
1
n
, fallsn prim

5, sonst
5, 1

2
, 1
3
, 5, 1

5
, 5, 1

7
, 5, 5, . . . die Folge ist “zumeist” 5, aber nicht immer

(j)

{
9, falls n ≤ 10
1
n
, sonst

9, . . . , 9, 1
11
, 1
12
, 1
13
, . . . für große n geht die Folge gegen 0

(k) Zahl der Coronafälle am Tag 15. Februar +n ???

Wir sehen also, dass der Fantasie bei der Definition von Folgen keine Grenzen gesetzt sind.

Folgende Definition ist eigentlich nur ein Spezialfall der Definition auf Seite 30.

26Manchmal betrachten wir auch Abbildungen N0 → R, welche wir ebenfalls als Folgen bezeichnen. Die
Notationen ändern sich dann auf die offensichtliche Weise.
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Quelle: https://www.worldometers.info/coronavirus/country/germany/

Abbildung 3. Coronafälle in Deutschland ab dem 15. Februar.

Definition. Es sei (an)n∈N eine Folge von reellen Zahlen. Wir definieren:

(an)n∈N ist beschränkt :⇐⇒ ∃
C∈R
∀
n∈N
|an| ≤ C.

Andernfalls heißt die Folge unbeschränkt.

Beispiel.

(1) Alle Folgen (a),. . . ,(j) mit Ausnahme von (g) sind beschränkt. Betrachten wir bei-
spielsweise die Folge (d), d.h. die Folge an = 3 + 2

n2 . Wir behaupten, dass27 C = 6
die gewünschte Eigenschaft besitzt. In der Tat gilt für alle n ∈ N, dass∣∣3 + 2

n2

∣∣ = 3 + 2
n2 ≤ 3 + 2 = 5 = C.
↑

aus n ≥ 1 folgt n2 ≥ 1 und damit 2
n2 ≤ 2

(2) Die Folge (g), d.h. die Folge (n3)n∈N = 1, 8, 27, 64, 125, . . . , ist unbeschränkt.
(3) Wir hoffen auch, dass die Folge (k) beschränkt bleibt.

Wir wenden uns jetzt einer deutlich interessanteren Definition zu. Wir haben in den
Beispielen gesehen, dass viele der Folgen “gegen einen Wert streben”. Wir wollen nun dieses
“gegen einen Wert streben” mathematisch präzise formulieren. Wir führen dazu folgende
Definition ein. Diese ist eine der wichtigsten Definitionen der Analysis. Sie ist leider auch
zu Anfang eine der am schwersten zu verdauenden Definitionen.

Definition. Es sei (an)n∈N eine Folge von reellen Zahlen.

(1) Es sei a ∈ R. Wir definieren28

(an)n∈N konvergiert gegen
den Grenzwert a

:⇐⇒ lim
n→∞

an = a :⇐⇒ ∀
ε>0
∃
N∈N
∀

n≥N
|an − a| < ε︸ ︷︷ ︸ .

↑
mit anderen Worten, es ist an ∈ (a− ε, a+ ε)

27Wir hätten genauso gut C = 5 oder eine beliebige reelle Zahl ≥ 5 wählen können.
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(2) Wenn (an)n∈N gegen 0 konvergiert, dann sagen wir, dass (an)n∈N eine Nullfolge ist.
(3) Wir sagen die Folge konvergiert, wenn sie gegen ein a ∈ R konvergiert.

Bemerkung. Die Namen (an)n∈N, a, ε, N und n sind völlig irrelevant. Beispielsweise gilt
ganz genauso:

(bv)v∈N konvergiert gegen
den Grenzwert y

:⇐⇒ lim
k→∞

bk = y :⇐⇒ ∀
µ>0
∃

m3∈N
∀

t≥m3

|bt − y| < µ.

Bemerkung. Es sei (an)n∈N eine Folge. Wir können die Definition der Konvergenz noch mal
mit anderen Worten ausdrücken: eine Folge (an)n∈N konvergiert gegen a ∈ R, wenn es zu
jedem ε-Intervall (a− ε, a+ ε) um a ein N ∈ N gibt, so dass ab N alle Folgenglieder in dem
ε-Intervall (a− ε, a+ ε) liegen.

Bemerkung. Im Folgenden stellen wir zwei Möglichkeiten vor mit denen Folgen zu illustriert
werden können. Wir verwenden beide Möglichkeiten um die Konvergenz von Folgen zu
illustrieren.

(1) Wir können uns Folgen als Punkte auf der “Gerade” R vorstellen. Dieser Ansatz wird
in Abbildung 4 gewählt um die Konvergenz von Folgen zu illustrieren.
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Intervall (a− ε, a+ ε)

ab diesem N liegen alle Folgenglieder in dem Intervall (a− ε, a+ ε)

R

Grenzwert a

Folgenglieder an
1 23 45 678

Abbildung 4. Erste Illustration der Definition der Konvergenz von Folgen.

(2) Ganz ähnlich wie in Abbildung 3 können wir uns eine Folge (an)n∈N0 auch mithilfe
von Punkten in R2 vorstellen. In diesem Fall ist die logische Reihenfolge der Folgen-
glieder klar, aber es ist schwieriger die Folgenglieder zu vergleichen. In Abbildung 5
verwenden wir diesen Ansatz um die Konvergenz von Folgen zu illustrieren.

Wir werden Bilder nie verwenden um Aussagen zu beweisen. Aber Bilder können hilfreich
sein um ein Gefühl für Folgen zu erhalten und um Ideen für Beweise zu erarbeiten.

Betrachten wir das vierte Beispiel von Seite 31, d.h. wir betrachten die Folge
(
3 + 2

n2

)
n∈N.

Wir haben den Eindruck, dass die Folge gegen 3 strebt. Wenn unsere Definition von Kon-
vergenz Sinn machen soll, dann muss diese Folgen gegen 3 konvergieren. Wie wir jetzt sehen
werden ist dies in der Tat der Fall.

Behauptung. Es ist

lim
n→∞

(
3 + 2

n2

)
= 3.

28Mit anderen Worten, die Folge konvergiert gegen a ∈ R, falls es zu jedem ε > 0 ein N ∈ N gibt, so
dass für alle n ≥ N gilt |an − a| < ε.
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a

die Folgenglieder anR

(n, an)

Abbildung 5. Zweite Illustration der Definition der Konvergenz von Folgen.

Beweis. Wir müssen also zeigen, dass

∀
ε>0
∃
N∈N

∀
n≥N

∣∣(3 + 2
n2

)
− 3
∣∣︸ ︷︷ ︸

= 2
n2

< ε.

Es sei also ε > 0 eine beliebige reelle Zahl größer Null. Wir müssen ein N ∈ N finden, so
dass für alle n ≥ N gilt 2

n2 < ε.
Nach Satz 1.22 gibt es zu jedem ν > 0 ein N ∈ N, so dass

1

N
< ν.

Wenn wir den Satz auf ν = ε
2

an erhalten wir ein N ∈ N, so dass

1

N
<

ε

2
.

Wir wollen nun zeigen, dass dieses N die richtige Eigenschaft besitzt. Es sei also n ≥ N ,
dann gilt

2

n2
= 2 · 1

n
· 1

n
≤ 2 · 1

n
≤ 2 · 1

N
< 2 · ε

2
= ε.

↑ ↑ ↑
da 1

n ≤ 1 da 1
n ≤

1
N Wahl von N �

Bemerkung. Ein ganz ähnlicher (oder noch einfacherer) Beweis wie in der Behauptung
zeigt, dass

(a) lim
n→∞

1

n
= 0, (b) lim

n→∞

1

n2
= 0 und (c) lim

n→∞
3 = 3.

Viele der weiteren oben genannten Folgen werden wir dann noch in den Übungsblättern 2
und 3 behandeln.

Der Ausdruck der Grenzwert legt natürlich nahe, dass wenn es einen Grenzwert gibt,
dann ist dieser eindeutig. Dies ist in der Tat der Fall, wie der nächste Satz zeigt.

Satz 3.1. (Satz vom eindeutigen Grenzwert) Jede konvergente Folge von reellen Zah-
len konvergiert gegen genau eine reelle Zahl.

In dem Beweis von Satz 3.1 vom eindeutigen Grenzwert verwenden wir folgendes Lemma.
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Lemma 3.2. Es sei z ∈ R. Wenn für alle ε > 0 gilt, dass |z| < ε, dann ist z = 0.

Beweis von Lemma 3.2 (∗). Es sei z ∈ R. Wir müssen also folgende Aussage beweisen:

∀
ε>0
|z| < ε =⇒ z = 0.

Wir verwenden das Prinzip der Kontraposition, d.h. wir verwenden folgende allgemeine
Aussage aus der Logik:

Aussage A =⇒ Aussage B ist äquivalent zu Negation von B =⇒ Negation von A.

In unserem Fall genügt es also zu zeigen:

z 6= 0 =⇒ ∃
ε>0
|z| ≥ ε.

Es sei also z 6= 0. Wir setzen ε := |z|
2
> 0. Dann ist offensichtlich |z| > ε. �

Beweis von Satz 3.1 . Es sei (an)n∈N eine konvergente Folge. Es seien x und y zwei Grenz-
werte der Folge. Wir müssen zeigen, dass x = y. Lemma 3.2 besagt, dass es genügt folgende
Behauptung zu beweisen.

Behauptung. Für jedes µ > 0 gilt |x− y| < µ.

Es sei also µ > 0. Zur Erinnerung, die Tatsache, dass x und y Grenzwert der Folge
(an)n∈N sind bedeutet, dass folgende Aussagen gelten:

(1) ∀
ε>0
∃

Nx∈N
∀

n≥Nx
|an − x| < ε und (2) ∀

ε>0
∃

Ny∈N
∀

n≥Ny
|an − y| < ε.

Es folgt aus (1) und (2), angewandt auf ε = µ
2
, dass

∃
Nx∈N

∀
n≥Nx

|an − x| <
µ

2
und ∃

Ny∈N
∀

n≥Ny
|an − y| <

µ

2
.

Es sei nun n ≥ max{Nx, Ny}.29 Dann gilt

Dreiecksungleichung Definition von ε
↓ ↓

|x− y| = |(x− an)− (y − an)| ≤ |x− an|︸ ︷︷ ︸
<ε, da n≥Nx

+ |y − an|︸ ︷︷ ︸
<ε, da n≥Ny

<
µ

2
+
µ

2
= µ.x

wir führen hier eine Nullergänzung aus, d.h. wir fügen die Terme −an und −(−an) hinzu,
der Vorteil dieser Umformung ist, dass nun an − x und an − y auftauchen �

Satz 3.3. Jede konvergente Folge ist beschränkt.

Beweis. Es sei (an)n∈N eine konvergente Folge. Wir bezeichnen mit a den Grenzwert. Es
gilt also:

(∗) ∀
ε>0
∃
N∈N
∀

n≥N
|an − a| < ε.

29Wir bezeichnen mit max{Na, Nb} das Maximum der beiden Zahlen Na und Nb.
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Wir müssen zeigen, dass die Folge (an)n∈N beschränkt ist, d.h. wir müssen zeigen, dass es
ein C ∈ R gibt, so dass für alle n ∈ N gilt |an| ≤ C.

Jetzt sind schon ein paar subtile erste Schritte im Beweis passiert: Wir haben der
Folge und dem Grenzwert einen Namen gegeben. Damit kann man gleich viel besser
arbeiten. Zudem haben wir noch einmal explizit die Definition von “Konvergenz”
und von “beschränkt” hingeschrieben. Wir müssen also ein C ∈ R mit einer gewissen
Eigenschaft finden. Das einzige, was wir wissen ist, dass es für jedes ε > 0 eine
Aussage gibt. Wir können ja mal schauen, was passiert wenn wir ein beliebiges ε > 0,
z.B. ε = 1, wählen.

Es folgt aus (∗), angewandt auf ε = 1, dass es ein N ∈ N gibt, so dass für alle n ≥ N gilt
|an − a| < 1. Wir setzen nun

C := max{|a1|, . . . , |aN−1|, |a|+ 1}.︸ ︷︷ ︸
Maximum der Zahlen |a1|, . . . , |aN-1|, |a|+ 1

Wir wollen nun zeigen, dass C die gewünschte Eigenschaft besitzt, d.h. wir wollen zeigen,
dass für alle n ∈ N gilt: |an| ≤ C.

(1) Es ist offensichtlich, dass dies wahr ist für n ∈ {1, . . . , N − 1}.
(2) Es sei nun n ≥ N . Dann sehen wir, dass folgende Ungleichung gilt:

|an| = |an − a+ a| ≤ |an − a|+ |a| < 1 + |a| ≤ C.
↑ ↑ ↑ ↑

sogenannte “Nullergänzung” Dreiecksungleichung da n ≥ N Definition von C �
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Folgenglieder an

Abbildung 6. Skizze für den Beweis von Satz 3.3.

Der folgende Satz gibt uns nun einige hilfreiche Rechenregeln für konvergente Folgen.

Satz 3.4. Es seien (an)n∈N und (bn)n∈N konvergente Folgen von reellen Zahlen und es sei
λ ∈ R. Dann gilt:

(1) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

(2) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn

(3) lim
n→∞

λ · an = λ · lim
n→∞

an.

Wenn für alle n ∈ N gilt bn 6= 0 und wenn lim
n→∞

bn 6= 0, dann gilt zudem

(4) lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
.
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Beweis. Es seien (an)n∈N und (bn)n∈N konvergente Folgen von reellen Zahlen.

Es ist eine gute Idee, den Grenzwerten einen Namen zu geben, und die Definition der
Konvergenz der Folgen (an)n∈N und (bn)n∈N noch einmal hinzuschreiben. Nachdem es
am Ende viele ε’s geben wird, ist es auch weise, diese unterschiedlich zu bezeichnen.

Wir schreiben a := lim
n→∞

an und b := lim
n→∞

bn. Es gilt also

(∗) ∀
εa>0

∃
Na∈N

∀
n≥Na

|an − a| < εa und ∀
εb>0

∃
Nb∈N

∀
n≥Nb

|bn − b| < εb.

Wir wenden uns jetzt dem Beweis der vier Aussagen zu.

(1) (∗) Wir müssen also jetzt zeigen, dass lim
n→∞

(an+bn) = a+b. Es sei also ε > 0 gegeben.

Wir müssen zeigen, dass es ein N ∈ N gibt, so dass für alle n ≥ N gilt:

|(an + bn)− (a+ b)| < ε.

Wir müssen also ein N ∈ N finden, ab dem |(an + bn)− (a+ b)| < ε gilt. Aus
(∗) folgt, dass wir |an − a| und |bn − b| “unter Kontrolle” kriegen können. Wir
müssen daher |(an + bn)− (a+ b)| so umschreiben, dass |an − a| und |bn − b|
auftauchen. Wir machen dies durch folgende Ungleichung, welche aus der Drei-
ecksungleichung folgt:

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|.

Wir setzen jetzt εa = ε
2

und εb = ε
2
. Aus (∗) folgt, dass es Na ∈ N und Nb ∈ N gibt,

so dass gilt:

(a) für alle n ≥ Na ist |an − a| <
ε

2
(b) für alle n ≥ Nb ist |bn − b| <

ε

2
.

Wir setzen N = max{Na, Nb}. Wir wollen zeigen, dass dieses N die gewünschte
Eigenschaft besitzt. Es sei also n ≥ N . Dann gilt in der Tat:

|(an + bn)− (a+ b)| = |(an − a)− (b− bn)| ≤ |an − a|+ |bn − b| <
ε

2
+

ε

2
= ε.

↑ ↑
Dreiecksungleichung dies folgt aus (a) und (b), da

n≥N≥Na und n≥N≥Nb
(2) Es sei also ε > 0.

Wir wollen zeigen, dass die Folge (anbn) gegen ab konvergiert. In diesem Fall
müssen wir also |anbn − ab| mithilfe von |an − a| und |bn − b| abschätzen. In
diesem Fall braucht das aber etwas mehr Phantasie als in (1). Um auf die Idee
zu kommen beginnen wir mit einer kleinen Abschätzung.

Für jedes n ∈ N gilt:

|anbn−ab| = |anbn−abn + abn−ab| ≤ |anbn−abn|+ |abn−ab| = |bn|·|an−a|+ |a|·|bn−b|.
↑ ↑

Nullergänzung Dreiecksungleichng
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Wir können |an − a| und |bn − b| “beliebig klein” machen. Aber um zu errei-
chen, dass |anbn−ab| kleiner als ε wird müssen wir auch die Zahlen |bn|, n ∈ N
in den Griff kriegen.

Nach Satz 3.3 existiert ein C ∈ R, so dass |bn| ≤ C für alle n ∈ N. Wir setzen

D := max{C, |a|, 1}.30 Wir setzen nun εa =
ε

2D
und εb =

ε

2D
. Aus (∗) folgt, dass es

Na ∈ N und Nb ∈ N gibt, so dass gilt:

(a) für alle n ≥ Na ist |an − a| <
ε

2D
(b) für alle n ≥ Nb ist |bn − b| <

ε

2D
.

Wir setzen N = max{Na, Nb}. Es sei nun n ≥ N . Dann gilt

obige Abschätzung dies folgt aus (a) und (b), da n≥N≥Na und n≥N≥Nb
↓ ↓

|ab− anbn| ≤ |bn|︸ ︷︷ ︸
≤C≤D

· |an − a|+ |a|︸︷︷︸
≤D

· |bn − b| < D · ε

2D
+D · ε

2D
= ε.

(3) Diese Aussage erhalten wir indem wir (2) auf die konstante Folge bn = λ anwenden.
(4) (∗) Wir nehmen nun also an, dass bn 6= 0 für alle n ∈ N, und dass limn→∞ bn 6= 0. Um

auf eine Beweisidee zu kommen führen wir für beliebiges n ∈ N folgende Abschätzung
durch:∣∣∣an

bn
− a

b

∣∣∣ =
∣∣∣anb− abn

bnb

∣∣∣ =
∣∣∣anb− ab+ ab− abn

bnb

∣∣∣ ≤ ∣∣∣ 1

bn

∣∣∣ · |an − a|+ ∣∣∣ a
bbn

∣∣∣ · |bn − b|.
Nachdem b = limn→∞ bn 6= 0 gibt es ein N ′ ∈ N, so dass |bn| ≥ |b|

2
für alle n ≥ N ′.31

Wir wählen nun ein C ∈ R>0 mit C ≥
∣∣2
b

∣∣ und mit C ≥
∣∣2a
b2

∣∣. Aus (∗) folgt, dass es
Na ∈ N und Nb ∈ N gibt, so dass gilt:

(a) für alle n ≥ Na ist |an − a| <
ε

2C
(b) für alle n ≥ Nb ist |bn − b| <

ε

2C
.

Wir setzen N = max{N ′, Na, Nb}. Es sei nun n ≥ N . Dann gilt

obige Ungleichung da n ≥ N ≥ N ′
↓ ↓∣∣∣an

bn
− a

b

∣∣∣ ≤ ∣∣∣ 1

bn

∣∣∣·|an − a|+ ∣∣∣ a
bbn

∣∣∣·|bn − b| ≤ ∣∣∣2
b

∣∣∣ · |an − a|+ ∣∣∣2a
b2

∣∣∣ · |bn − b|
<
∣∣∣2
b

∣∣∣ · ε

2C
+
∣∣∣2a
b2

∣∣∣ · ε

2C
≤
∣∣∣2
b

∣∣∣ · ε

2
∣∣ 2
b

∣∣ +
∣∣∣2a
b2

∣∣∣ · ε

2
∣∣ 2a
b2

∣∣ ≤ ε

2
+

ε

2
= ε.

↑ ↑
da n ≥ N ≥ Na und n ≥ N ≥ Nb da C ≥

∣∣ 2
b

∣∣ und C ≥
∣∣ 2a
b2

∣∣ �

Der folgende Satz besagt, dass Produkt einer Nullfolge mit einer beschränkten Folge
wiederum eine Nullfolge ist.

Satz 3.5. Es seien (an)n∈N und (an)n∈N zwei reelle Folgen. Es gilt:

lim
n→∞

an = 0 und (an)n∈N beschränkt =⇒ lim
n→∞

an · an = 0.

30Die “1” ist nur Teil der Definition von D um sicherzustellen, dass D 6= 0.
31Wer es so weit in den Beweis geschafft hat, darf sich überlegen, warum es solch ein N ′ gibt.
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Beweis. Wir müssen also zeigen:

∀
ε>0
∃
N∈N
∀

n≥N
|an| < ε und ∃

C∈R
∀
n∈N
|an| ≤ C =⇒ ∀

µ>0
∃

M∈N
∀

n≥M
|an · an| < µ.

Es sei also µ > 0. Nach Voraussetzung existiert ein C ∈ R, so dass für alle n ∈ N gilt
|an| ≤ C. Wenn C = 0, dann ersetzen wir dieses durch C = 1. Nach Voraussetzung
existiert ein N ∈ N, so dass für alle n ≥ N gilt |an| < µ

C
. Für alle n ≥ M := N gilt dann,

dass
|an · an| = |an| · |an| ≤ |an| · C <

µ

C
· C = µ.

↑ ↑
Wahl von C da n ≥ N �

Wir beschließen das Teilkapitel über konvergente Folgen mit zwei Aussagen über den
Zusammenhang von Grenzwerten und Ungleichungen.

Satz 3.6. Es seien (an)n∈N und (bn)n∈N zwei konvergente Folgen von reellen Zahlen. Es
gilt:

∀
n∈N

an ≥ bn =⇒ lim
n→∞

an ≥ lim
n→∞

bn.

Beispiel. Es seien (an)n∈N und (bn)n∈N zwei konvergente Folgen. Wir können in Satz 3.6
nicht einfach “≥” durch “>” ersetzen. Mit anderen Worten, wenn für alle n ∈ N gilt
an>bn, dann gilt nicht notwendigerweise, dass auch lim

n→∞
an> lim

n→∞
bn. Beispielsweise gilt für

alle n ∈ N, dass 1
n
> 0. Aber lim

n→∞
1
n

= 0 = lim
n→∞

0.

Der Beweis von Satz 3.6 ähnelt etwas dem Beweis von Satz 3.1. Auch in diesem Fall
benötigen wir ein einfaches Lemma.

Bemerkung. Die Aussage von Satz 3.6 gilt insbesondere für den Fall, dass (an)n∈N oder
(bn)n∈N eine konstante Folge ist. Es sei also beispielsweise (an)n∈N eine konvergente Folge
und b eine reelle Zahl, so dass für alle n ∈ N gilt an ≥ b. Dann ist auch lim

n→∞
an ≥ b.

Lemma 3.7. Es seien a, b ∈ R. Wenn für alle ε > 0 gilt, dass a > b− ε, dann ist a ≥ b.

Beweis von Lemma 3.7. Es seien a, b ∈ R. Wir müssen also folgende Aussage beweisen:

∀
ε>0

a > b− ε =⇒ a ≥ b.

Wie im Beweis von Lemma 3.2 genügt es nach dem Prinzip der Kontraposition folgende
äquivalente Aussage zu beweisen:

a < b =⇒ ∃
ε>0

a ≤ b− ε.

Es sei also a < b. Wir setzen ε = b−a
2
> 0. Dann ist a ≤ a+ b−a

2
= b− ε. �

Beweis von Satz 3.6. Es seien (an)n∈N und (bn)n∈N zwei konvergente Folgen, so dass für alle
n ∈ N gilt an ≥ bn. Wir schreiben a = lim

n→∞
an und b = lim

n→∞
bn. Wir wollen zeigen, dass

a ≥ b. Nach Lemma 3.7 genügt es folgende Behauptung zu beweisen.



40

Behauptung. Für alle µ > 0 gilt a > b− µ.

Es sei µ > 0. Es folgt aus der Definition von Grenzwerten, angewandt auf ε = µ
2
, dass

(1) ∃
Na∈N

∀
n≥Na

|an − a| <
µ

2︸ ︷︷ ︸
d.h. a ∈ (an–

µ
2
, an + µ

2
)

und (2) ∃
Nb∈N

∀
n≥Nb

|bn − b| <
µ

2︸ ︷︷ ︸
d.h. bn ∈ (b– µ

2
, b+ µ

2
)

.

Es sei nun n = max{Na, Nb}. Dann gilt

a > an −
µ

2
≥ bn −

µ

2
≥

(
b− µ

2

)
− µ

2
= b− µ.

↑ ↑ ↑
folgt aus (1) nach Voraussetzung folgt aus (2) �

Satz 3.8. (Sandwichsatz) Es seien (an)n∈N, (bn)n∈N und (yn)n∈N Folgen von reellen Zah-
len und es sei z ∈ R. Dann gilt:

∀
n∈N

an ≤ yn ≤ bn und lim
n→∞

an = lim
n→∞

bn = z =⇒ lim
n→∞

yn = z.

Beispiel. Wir betrachten die Folge yn = (−1)n · 1
n
. Für alle n ∈ N gilt: − 1

n
≤ (−1)n · 1

n
≤ 1

n
.

Aus der Bemerkung auf Seite 34 und aus Satz 3.4 (3) folgt lim
n→∞

− 1
n

= 0 und lim
n→∞

1
n

= 0.

Es folgt aus dem Sandwichsatz, dass lim
n→∞

(−1)n · 1
n

= 0.

Beweis. Es seien (an)n∈N, (bn)n∈N und (yn)n∈N Folgen von reellen Zahlen, so dass für alle
n ∈ N gilt an ≤ yn ≤ bn. Wir nehmen an, dass (an)n∈N und (bn)n∈N gegen den gleichen
Grenzwert z konvergieren. Es gilt also:

(1) ∀
ε>0
∃

Na∈N
∀

n≥Na
an ∈ (z − ε, z + ε) und (2) ∀

ε>0
∃

Nb∈N
∀

n≥Nb
bn ∈ (z − ε, z + ε)

Wir müssen zeigen, dass lim
n→∞

yn = z, d.h. wir müssen zeigen:

∀
ε>0
∃

M∈N
∀

n≥M
yn ∈ (z − ε, z + ε).

Es sei also ε > 0. Aus (1) und (2) folgt, dass es Na ∈ N gibt, so dass für alle n ≥ Na gilt
an ∈ (z−ε, z+ε) und für alle n ≥ Nb gilt bn ∈ (z−ε, z+ε). Wir setzen M := max{Na, Nb}.
Für alle n ≥ M gilt dann also yn ∈ (an, bn) und an ∈ (z − ε, z + ε) und bn ∈ (z − ε, z + ε).
Also ist auch yn ∈ (z − ε, z + ε). �

3.3. Bestimmte Divergenz.

Definition. Zur Erinnerung, wir sagen, eine Folge von reellen Zahlen (an)n∈N konvergiert,
wenn die Folge einen Grenzwert besitzt, d.h. wenn die Folge (an) gegen ein a ∈ R konver-
giert. Wenn die Folge (an)n∈N nicht konvergiert, dann sagen wir die Folge divergiert.

Beispiel. Es ist nicht weiter schwierig zu zeigen, dass beispielsweise die Folgen n 7→ (−1)n

und n 7→ −1
3
n2 divergieren.

Bei divergenten Folgen wollen wir zwei spezielle Typen von divergenten Folgen besonders
betrachten.
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Definition. Es sei (an)n∈N eine Folge von reellen Zahlen. Wir sagen32

(an) divergiert bestimmt gegen +∞ :⇐⇒ ∀
K∈R

∃
N∈N

∀
n≥N

an > K

und ganz analog definieren wir

(an) divergiert bestimmt gegen −∞ :⇐⇒ ∀
K∈R

∃
N∈N

∀
n≥N

an < K

Im ersten Fall schreiben wir lim
n→∞

an = +∞ und im zweiten Fall schreiben wir lim
n→∞

an = −∞.

Bemerkung. Mit anderen Worten, eine Folge (an)n∈N divergiert bestimmt gegen +∞, wenn
es zu jeder Schranke K ein N ∈ N, so dass ab N alle Folgenglieder größer als K sind. Diese
Formulierung wird in Abbildung 7 illustriert.
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K

R

ab diesem N sind alle Folgenglieder > K

7
Folgenglieder an

1 23 45 6 8

Abbildung 7. Illustration der Definition von bestimmter Divergenz gegen +∞.

Beispiel.

(1) Die divergente Folge n 7→ (−1)n divergiert nicht bestimmt gegen +∞ oder −∞. In
der Tat kann man für K = 1 beziehungsweise K = −1 kein geeignetes N finden.

(2) Die divergente Folge n 7→ −1
3
n2 divergiert bestimmt gegen −∞. Mit anderen Worten,

es ist lim
n→∞

1
3
n2 = −∞. In der Tat: es sei K ∈ R. Wir wählen ein N ∈ N mit N > 3·|K|,

z.B. N = d3 · |K|+ 1e. Dann gilt für alle n ≥ N , dass

−1
3
· n2 ≤ −1

3
·N2 ≤ −1

3
·N < −1

3
· 3 · |K| = −|K| ≤ K.

↑ ↑ ↑ ↑
da n ≥ N da k2≥k für da N>3 · |K| da für jedes x∈R gilt −x≤|x|

jedes k ∈ N

(3) Ganz ähnlich wie in (2) zeigt man, dass für d ∈ N gilt, dass lim
n→∞

nd = +∞.

Satz 3.9. (Los Alamos Satz) Es sei x ∈ R, dann gilt

lim
n→∞

xn =


0, falls |x| < 1,
1, falls x = 1,
divergiert, falls x ≤ −1,
+∞, falls x > 1.

32Manchmal wird “bestimmte Divergenz” auch als “uneigentliche Konvergenz” bezeichnet.
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Beweis.

(a) Der Fall |x| < 1 wird wie Übungsaufgabe 3 (b) in Übungsblatt 2 bewiesen.
(b) Der Fall x = 1 ist offensichtlich, denn in diesem Fall ist die Folge konstant.
(c) Wir überlassen den Beweis als freiwillige Übungsaufgabe.
(d) Wenn x > 1, dann müssen wir also zeigen, dass lim

n→∞
xn = +∞, d.h. wir müssen

zeigen, dass die Folge (xn) bestimmt gegen +∞ divergiert. Aber dies folgt sofort aus
Korollar 2.5. �

Beispiel. Ein Uran 235-Atom zerfällt nach einem Beschuß von einem Neutron in zwei Ato-
me und drei Neutronen und gibt dabei Energie frei. Nehmen wir nun an, dass wir einen
Behälter mit Uran 235 gegeben haben. Die Konstellation sei so, dass von den drei Neu-
tronen, welches ein zerfallendes 235U-Atom freisetzt, im Durchschnitt x ∈ [0, 3] Neutronen
wieder ein 235U-Atom treffen. Nehmen wir an, dass zu Beginn ein 235U-Atom zerfällt. Die
Zahl der zerfallenden 235U-Atome nach n Schritten ist also xn. Für beliebiges x < 1 erhalten
wir die Lage links in Abbildung 8. Für beliebiges x > 1 erhalten wir die Lage rechts in
Abbildung 8.

��

����
�
�
�
� ����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

x ∈ [0, 1)

Neutron

92Kr

von den drei Neutronen treffen
x∈ [0, 3] wiederum 235U Atome

235U

141Ba

x ∈ (1, 3]

Los Alamos 16. Juli 1945

Abbildung 8.

Definition. Wir führen auf der Menge R ∪ {−∞} ∪ {+∞} folgende partielle Addition und
partielle Multiplikation ein:33

+ a ∈ R +∞ −∞
b ∈ R a+ b +∞ −∞
+∞ +∞ +∞ ∗
−∞ −∞ ∗ −∞

und

· a > 0 0 a < 0 +∞ −∞
b > 0 a · b 0 a · b +∞ −∞

0 0 0 0 ∗ ∗
b < 0 a · b 0 a · b −∞ +∞
+∞ +∞ ∗ −∞ +∞ −∞
−∞ −∞ ∗ +∞ −∞ +∞

hierbei bedeutet ∗, dass die Addition beziehungsweise die Multiplikation nicht definiert ist,
d.h. wir haben ∞ + (−∞) und (−∞) +∞ nicht definiert und wir haben auch 0 · (±∞)
nicht definiert.

33Die Addition und die Multiplikation ist dabei definiert, wie man es sich “naiv” denken würde. Wenn
eine Verknüpfung “naiv” nicht klar ist, z.B. −∞+∞, dann ist diese in unserem Falle auch nicht definiert.
Wir behaupten hier in keinsterweise, dass die Körperaxiome erfüllt sind.
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Der folgende Satz ist nun eine Erweiterung von Satz 3.4 (1) und (2).

Satz 3.10. Es seien (an)n∈N und (bn)n∈N Folgen von reellen Zahlen, welche konvergieren
oder welche bestimmt divergieren.34Dann gilt

(1) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn, wenn die Summe “+” auf der rechten Seite
in der obigen Tabelle definiert wurde.

(2) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn, wenn die Multiplikation “·” auf der rechten
Seite in der obigen Tabelle definiert wurde.

Beispiel. Es ist

lim
n→∞

(
−1

3
· n2︸ ︷︷ ︸

divergiert bestimmt

gegen -∞

+ 2 + 7 · 1

n3︸ ︷︷ ︸
konvergiert
gegen 2

)
= −∞ + 2 = −∞.
↑

folgt aus Satz 3.10, da −∞+ 2
in der Tabelle definiert ist

Beweis (∗). Wenn (an)n∈N und (bn)n∈N konvergente Folgen sind, ist dies gerade die Aussage
aus Satz 3.4. Wir beweisen im Folgenden noch (1) für den Fall, dass (an)n∈N eine konvergente
Folge ist, und dass (bn)n∈N bestimmt gegen +∞ divergiert. Alle weiteren Aussagen des
Satzes werden dann ganz ähnlich bewiesen. Diese sind eine freiwillige Übungsaufgabe.

Wir müssen nun also zeigen, dass die Folge (an + bn)n∈N bestimmt gegen +∞ divergiert.
Wir machen folgende Vorbemerkungen:

(a) Satz 3.3 besagt, dass jede konvergente Folge beschränkt ist. Es gibt also insbesondere
ein R ≥ 0, so dass für alle n ∈ N gilt, dass |an| ≤ R.

(b) Da (bn)n∈N bestimmt gegen +∞ divergiert gilt: ∀
C∈R

∃
M∈N

∀
m≥M

bm > C.

Wir müssen nun zeigen, dass die Folge (an + bn)n∈N bestimmt gegen +∞ divergiert, d.h.
wir müssen zeigen, dass

∀
D∈R

∃
L∈N
∀
l≥L

(al + bl) > D.

Es sei also D ∈ R beliebig. Aus (b), angewandt auf C = D + R, folgt nun, dass es ein
M ∈ N gibt, so dass für alle m ≥ M gilt, bm > C = D + R. Wir setzen L := M . Für alle
l ≥ L gilt dann, dass

al + bl ≥ −|al|+ bl ≥ −R + bl > −R +D +R = D.
↑ ↑ ↑

es gilt immer x ≥ −|x| Wahl von R denn l ≥ L = M �

Um den den nächsten Satz formulieren zu können, führen wir folgende Notation ein.

Notation. Für eine Folge (an)n∈N von reellen Zahlen schreiben wir

(1) lim
n→∞

an = 0+, wenn lim
n→∞

an = 0 und wenn alle Folgenglieder an > 0

(2) lim
n→∞

an = 0–, wenn lim
n→∞

an = 0 und wenn alle Folgenglieder an < 0.

34Es ist auch erlaubt, dass eine Folge konvergiert und die andere bestimmt divergiert.
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Der folgende Satz kann als Erweiterung von Satz 3.4 (4) aufgefasst werden. Etwas sug-
gestiv ist die Aussage, dass 1

±∞ = 0 und 1
0±

= ±∞. Wir wollen jedoch in dieser Vorlesung
diese suggestive Notation nicht weiter verwenden.

Satz 3.11. Es sei (an)n∈N eine Folge von reellen Zahlen, so dass für alle n ∈ N gilt an 6= 0.

(1) lim
n→∞

an = +∞ oder lim
n→∞

an = −∞ =⇒ lim
n→∞

1
an

= 0

(2) lim
n→∞

an = 0+ =⇒ lim
n→∞

1
an

= +∞
(3) lim

n→∞
an = 0− =⇒ lim

n→∞
1
an

= −∞.

Beweis (∗). Wir beweisen zuerst Aussage (1) für den Fall lim
n→∞

an = +∞. Wir wollen also

zeigen
∀

K∈R
∃
N∈N

∀
n≥N

an > K =⇒ ∀
ε>0
∃

M∈N
∀

n≥M
| 1
an
− 0| < ε.

Es sei also ε > 0. Nach Voraussetzung existiert ein N ∈ N, so dass für alle n ∈ N gilt
an > K := 1

ε
. Für alle n ≥ N gilt dann aber auch, dass | 1

an
− 0| = | 1

an
| = 1

an
< 1

K
= ε.

Man sieht, diese Aussage beweist sich fast schon mechanisch. Das gilt genauso auch für
die anderen Aussagen. Wir werden deswegen die anderen Aussagen nicht mehr explizit
beweisen. �

Lemma 3.12. Es sei d ∈ Z, dann gilt

lim
n→∞

nd =

{
+∞, wenn d > 0,

1, wenn d = 0,
0, wenn d < 0.

Beweis. Die Aussage für d > 1 wird fast genauso wie der Fall der Folge −1
3
n2 auf Seite 41

behandelt. Der Fall d = 0 ist trivial. Der Fall d < 0 folgt aus dem Fall d > 0 zusammen
mit Satz 3.11 (1). �

Es sei p(n) ein Polynom, also beispielsweise p(n) = 2+3n−7n2 oder p(n) = 5n+11n4. Das
folgende Korollar besagt, dass der Grenzwert lim

n→∞
p(n) durch den höchsten Koeffizienten

des Polynoms bestimmt ist.

Korollar 3.13. Es seien c0, . . . , cd ∈ R mit d ≥ 1 und cd 6= 0. Dann gilt

lim
n→∞

(
c0 + c1 ·n+ c2 ·n2 + · · ·+ cd−1 ·nd−1 + cd ·nd

)
=
{ ∞, wenn cd > 0,
−∞, wenn cd < 0.

Beispiel. Es ist lim
n→∞

(2 + 3n−7n2) = −∞ und lim
n→∞

(5n+11n4) = +∞.

Beweis.

Die Aussage des Korollars klingt so, als sollte man wohl direkt Satz 3.10 (1) an-
wenden. Aber dies ist im Allgemeinen nicht möglich. Beispielsweise divergiert bei
der Folge −3n + 4n2 der erste Summand bestimmt gegen −∞ und der zweite Sum-
mand divergiert bestimmt gegen +∞. Aber die Summe (−∞) +∞ hatten wir nicht
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definiert. Die Idee ist daher, die Folge c0 + c1n + c2n
2 + · · · + cd−1n

d−1 + cdn
d so

umzuschreiben, dass man doch Satz 3.10 anwenden kann. Nachdem man “additiv”
wenig umschreiben kann, werden wir die Folge “multiplikativ” umschreiben und dann
Satz 3.10 (2) anwenden.

Wir führen folgende Berechnung durch:
Ausklammern von nd

↓
lim
n→∞

(
c0 + c1 · n+ c2 · n2 + · · ·+ cd−1 · nd−1 + cd · nd

)
=

= lim
n→∞

nd ·

es folgt aus Satz 3.4 und Lemma 3.12,
dass diese Folge gegen cd konvergiert︷ ︸︸ ︷(

c0
1

nd
+ c1

1

nd−1
+ c2

1

nd−2
+ · · ·+ cd−1

1

n
+ cd

)
= (+∞) · cd =

{ ∞, wenn cd>0,
−∞, wenn cd<0.↑ ↑

nachdem d ≥ 1 folgt aus diese Gleichheit folgt aus Satz 3.10, wir können diesen Satz anwenden,
Lemma 3.12, dass die Folge nd da wir gerade gezeigt hatten, dass ein Faktor bestimmt divergiert
bestimmt gegen +∞ divergiert und der andere Faktor gegen die Zahl cd 6= 0 konvergiert �

Definition. Wir setzen die übliche Ordnung “>” auf R auf die Menge R ∪ {−∞} ∪ {+∞}
fort, indem wir für alle a ∈ R schreiben

+∞ > a > −∞.
Mit dieser Definition gilt nun folgende Verallgemeinerung von Satz 3.6.

Satz 3.14. Es seien (an)n∈N und (bn)n∈N Folgen von reellen Zahlen, welche konvergieren
oder welche bestimmt divergieren. Es gilt:

∀
n∈N

an ≥ bn =⇒ lim
n→∞

an ≥ lim
n→∞

bn.

Beweis (∗). In Satz 3.6 haben wir den Fall betrachtet, dass (an)n∈N und (bn)n∈N konvergente
Folgen sind. Wir müssen nun noch die verschiedenen Spezialfälle untersuchen bei denen
mindestens eine der beiden Folgen bestimmt divergiert.

Es sei beispielsweise (an)n∈N eine konvergente Folge und es sei (bn)n∈N eine Folge, welche
bestimmt divergiert, so dass an ≥ bn für alle n. Es genügt folgende Behauptung zu beweisen.

Behauptung. Es ist lim
n→∞

bn = −∞.

Nachdem (an)n∈N konvergiert, ist die Folge (an)n∈N nach Satz 3.3 beschränkt, d.h. es gibt
ein C ∈ R, so dass für alle n ∈ N gilt: C ≥ |an| ≥ −C. Nachdem an ≥ bn für alle n ∈ N folgt
nun auch, dass C ≥ |an| ≥ an ≥ bn für alle n ∈ N. Insbesondere kann die Folge (bn)n∈N nicht
bestimmt gegen ∞ divergieren. Nachdem die Folge (bn)n∈N nach Voraussetzung bestimmt
gegen ±∞ divergiert bleibt nur noch die Möglichkeit, dass lim

n→∞
bn = −∞. �

Die anderen Spezialfälle des Satzes werden nun ganz analog bewiesen. �

Wir fahren mit folgender harmlosen Definition fort.
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Definition. Es sei (an)n∈N eine Folge (an)n∈N von reellen Zahlen. Wir definieren:

(an)n∈N ist monoton steigend :⇐⇒ für alle n ∈ N gilt an+1≥ an
(an)n∈N ist streng monoton steigend :⇐⇒ für alle n ∈ N gilt an+1>an
(an)n∈N ist monoton fallend :⇐⇒ für alle n ∈ N gilt an+1≤ an
(an)n∈N ist streng monoton fallend :⇐⇒ für alle n ∈ N gilt an+1<an.

Wir sagen (an)n∈N ist monoton, wenn die Folge entweder monoton fallend oder monoton
steigend ist.

Beispiel.

(n2)n∈N = (1, 4, 9, 25, . . . . . . ) ist streng monoton steigend,

( 1
n
)n∈N = (1, 1

2
, 1
3
, . . . ) ist streng monoton fallend,

(2n+(−1)n)n∈N = (1, 5, 5, 7, 7, . . . ) ist monoton steigend aber nicht streng monoton steigend

(4− 1
n2 )n∈N = (3, 33

4
, 38

9
, . . . ) ist streng monoton steigend,

(5)n∈N = (5, 5, 5, . . . ) ist sowohl monoton steigend als auch monoton fallend,

((−1)n)n∈N = (−1, 1,−1, . . . ) ist nicht monoton.

Folgender Satz gibt uns einfaches Kriterium um zu zeigen, dass eine Folge bestimmt
gegen ±∞ divergiert.

Satz 3.15. Es sei (an)n∈N eine Folge von reellen Zahlen. Dann gilt:

(1) (an)n∈N unbeschränkt und monoton steigend =⇒ lim
n→∞

an = +∞,
(2) (an)n∈N unbeschränkt und monoton fallend =⇒ lim

n→∞
an = −∞.

Beweis (∗). Wir beweisen nur die erste Aussage. Die zweite Aussage wird dann ganz ähnlich
bewiesen. Es sei nun also (an)n∈N eine unbeschränkte, monoton steigende Folge. Wir wollen
also zeigen, dass lim

n→∞
an = +∞. Es sei also K ∈ R. Wir müssen zeigen, dass es ein N ∈ N

gibt, so dass für alle n ≥ N gilt an ≥ K.

Behauptung. Es gibt ein N ∈ N mit aN > K.

Da die Folge (an)n∈N nach Voraussetzung unbeschränkt ist existiert ein m ∈ N mit
|am| > K.35 Nachdem die Folge (an)n∈N unbeschränkt ist gibt es zudem auch noch ein
N ∈ N, so dass |aN | > max{|a1|, . . . , |am|}. Wir wollen nun zeigen, dass aN > K. Dies
sehen wir wie folgt:

(a) Da insbesondere |aN | > max{|a1|, . . . , |am|} sehen wir, dass N > m.
(b) Da die Folge monoton steigend ist, erhalten wir aus (a), dass aN > am.
(c) Zudem gilt nach Wahl von N auch, dass |aN | > |am|.
(d) Die Ungleichungen aN > am und |aN | > |am| aus (b) und (c) sind nur erfüllt, wenn

aN > 0.

35Man beachte hierbei den Absolutbetrag, dies ist der Grund, warum wir nicht schon fertig sind.
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Insbesondere gilt also zusammengefasst: aN = |aN | > |am| > K. �
Für alle n ≥ N folgt nun aus der Monotonie der Folge, dass an ≥ aN > K. �

3.4. Reihen. In jedem Körper K macht es Sinn endlich viele Elemente a1, . . . , an zu ad-
dieren, in dem wir iterativ insgesamt n − 1 die Addition verwenden, d.h. wie auf Seite 12
erklärt setzen wir

a1 + · · ·+ an := (. . . ((a1 + a2) + a3) + . . . ) + an.

Es macht aber überhaupt keinen Sinn unendlich viele Elemente a1, a2, . . . eines Körpers zu
addieren. Wir führen in diesem Teilkapitel den Begriff der Reihe ein, welcher unter streng
geregelten Bedingungen die Rolle davon spielt, was man sich naiv unter einer unendlichen
Summe von reellen Zahlen vorstellt. Wir betrachten ein paar Beispiele und beweisen einige
wenige grundlegende Aussage. Reihen spielen im nächsten Kapitel schon mal eine wichtige
Rolle. Später werden wir Reihen noch einmal deutlich ausführlicher behandeln.

Definition. Es sei (an)n∈N0 eine Folge von reellen Zahlen.

(1) Für k ∈ N0 definieren wir

k-te Partialsumme der Folge (an)n∈N0 :=
k∑

n=0

an = a0 + a1 + · · ·+ ak.

(2) Wir definieren36

die Reihe
∑
n≥0

an := die Folge der Partialsummen der Folge (an)n∈N0

= die Folge (a0, a0+a1, a0+a1+a2, . . . ) = die Folge a0
a0+a1
a0+a1+a2
...Für n ∈ N0 nennen wir an das n-te Glied der Reihe.

Beispiel.

(1) Wir betrachten die Folge n 7→ an = n2. Die zugehörige Reihe ist∑
n≥0

n2 = (02, 02+12, 02+12+22, . . . )

Es ist ziemlich klar, dass die Reihe
∑
n≥0
n2 monoton steigend und unbeschränkt ist.

Insbesondere folgt aus Satz 3.15, dass die Reihe
∑
n≥0
n2 bestimmt gegen +∞ divergiert.

(2) Es sei z ∈ R. Wir betrachten die Folge n 7→ zn. Die zugehörige Reihe ist∑
n≥0

zn = (1, 1+z, 1+z+z2, 1+z+z2+z3, . . . )

36Die Reihe
∑
n≥0

an ist also eine Folge. Es macht also Sinn zu sagen, dass die Reihe
∑
n≥0

an beschränkt

ist, konvergiert, divergiert, bestimmt divergiert gegen ±∞ etc.
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Diese Reihe wird als geometrische Reihe bezeichnet. In Satz 3.16 werden wir sehen,

für welche z ∈ R die geometrische Reihe
∑
n≥0
zn konvergiert.

Definition. Es sei (an)n∈N0 eine Folge von reellen Zahlen. Wenn die Reihe
∑
n≥0
an konvergiert,

d.h. wenn die Folge der Partialsummen konvergiert, dann schreiben wir
∞∑
n=0

an := Grenzwert der Reihe
∑
n≥0

an := lim
k→∞

k∑
n=0

an.

Der Grenzwert der Reihe wird oft auch nur als Wert der Reihe bezeichnet. Zudem schreiben
wir auch kurz:

∞∑
n=0

an := ±∞, wenn die Reihe
∑
n≥0

an bestimmt gegen ±∞ divergiert.

Bemerkung. Es sei (an)n≥0 eine Folge von reellen Zahlen. Wir unterscheiden also in der
Notation zwischen folgenden Objekten:

(1)
∑
n≥0
an dies ist die Reihe über die an, d.h. die Folge der Partialsummen,

(2)
∞∑
n=0
an ist der Grenzwert der Folge der Partialsummen, wenn dieser existiert.

In der mathematischen Umgangssprache wird leider allzuoft kein Unterschied zwischen
diesen Begriffen gemacht.

Satz 3.16. (Satz über die geometrische Reihe) Für jedes z ∈ R gilt

∞∑
n=0

zn =


1

1− z
, falls |z| < 1,

+∞, falls z ≥ 1,
divergiert, falls z ≤ −1.

Veranschaulichung. In Abbildung 9 sehen wir eine Zerlegung des Quadrates von Seiten-
länge 1 in Quadrate und Rechtecke mit Flächeninhalt 1

2
, 1
4
, 1
8
, . . . . Dies veranschaulicht die

Tatsache, dass
∞∑
n=0

1

2n+1
=

1

2
·
∞∑
n=0

1

2n
=

1

2
· 1

1− 1
2

= 1.
↑ ↑

streng genommen Satz 3.17 Satz 3.16

Beweis. Wir unterscheiden jetzt drei Fälle.
1. Fall: |z| < 1. In diesem Fall gilt

∞∑
n=0

zn = lim
k→∞

k∑
n=0

zn = lim
k→∞

1− zk+1

1− z
=

lim
k→∞

(1−zk+1)

lim
k→∞

(1−z) =
lim
k→∞

1−z· lim
k→∞

zk

lim
k→∞

(1−z) =
1

1− z
.

↑ ↑ ↑ ↑ ↑
per Definition Satz 2.2 Satz 3.4 Satz 3.4 aus |z|<1 und Satz 3.9

folgt: lim
k→∞

zk+1 =0
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Quadrat mit
Seitenlänge 1

Zerlegung in Quadrate
und Rechtecke

mit Flächeninhalt
1
2
, 1
4
, 1
8
, 1
16
, 1
32
, . . .

1
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1
4

1
81

16

1
32

Abbildung 9. Illustration der geometrischen Reihe.

Der Ehrlichkeit halber muss man sagen, dass die Anwendung von Satz 3.4 etwas voreilig
war, nachdem dieser nur angewendet werden darf, wenn man gezeigt hat, dass sowohl Zähler
als auch Nenner konvergieren. Dies haben wir dann erst gegen Ende des Arguments gezeigt.
2. Fall: z ≥ 1. In diesem Fall gilt

k-te Partialsumme der Reihe
∑
n≥0

zn =
k∑

n=0

zn ≥
k∑

n=0

1 = k + 1.

↑
aus z ≥ 1 folgt zn ≥ 1

Es folgt nun leicht aus Satz 3.15, dass die Folge der Partialsummen bestimmt gegen +∞
divergiert.
3. Fall: z ≤ −1. Wir überlassen es dem gelangweilten Leser zu zeigen, dass die Reihe in
diesem Fall divergiert. �

Wir beschließen das Kapitel mit folgendem nicht besonders überraschendem Satz.

Satz 3.17. Es seien
∑
n≥0
an und

∑
n≥0
bn zwei Reihen, welche konvergieren, oder welche be-

stimmt divergieren. Dann gelten folgende Aussagen:

(1)
∞∑
n=0

(an + bn) =
∞∑
n=0

an +
∞∑
n=0

bn, wenn die Summe “+” auf der
rechten Seite in der Tabelle
auf Seite 42 definiert wurde.

(2) Für λ ∈ R gilt
∞∑
n=0

λ · an = λ ·
∞∑
n=0

an.

(3) Wenn an ≤ bn für alle n ∈ N0, dann gilt
∞∑
n=0

an ≤
∞∑
n=0

bn.

Beweis. Es seien
∑
n≥0
an und

∑
n≥0
bn zwei Reihen, welche konvergieren, oder welche bestimmt

divergieren. Für beliebiges k ∈ N0 bezeichnen wir mit sk =
k∑

n=0
an und tk =

k∑
n=0
bn die

zuhörigen Partialsummen.

(1) Es gilt
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hier wenden wir die üblichen Rechenregeln für endliche Summen an

↓∞∑
n=0

(an + bn) = lim
k→∞

k∑
n=0

(an + bn) = lim
k→∞

(
k∑

n=0
an︸ ︷︷ ︸

=sk

+
k∑

n=0
bn︸ ︷︷ ︸

=tk

)

= lim
k→∞

k∑
n=0

an︸ ︷︷ ︸
=sk

+ lim
k→∞

k∑
n=0

bn︸ ︷︷ ︸
=tk

=
∞∑
n=0

an +
∞∑
n=0

bn.x
nach Satz 3.10 (1), angewandt auf die Folgen (sk)k∈N0

und (tk)k∈N0
,

wenn die rechte Seite definiert ist

(2) Die Aussage folgt sofort aus Satz 3.10 (2), angewandt auf die Folge der Partialsummen
(sk)k∈N0 und auf die konstante Folge (λ)k∈N0 .

(3) Die Aussage folgt sofort aus Satz 3.14, angewandt auf die Folgen der Partialsummen
(sk)k∈N und (tk)k∈N. �
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4. Cauchy-Folgen und das Vollständigkeitsaxiom

Auf Seite 18 hatten wir das Vollständigkeitsaxiom eingeführt, ohne die Begriffe zu er-
klären. Wir werden dies in diesem Kapitel nachholen, und wir werden dann viele verschie-
dene Folgerungen aus dem Vollständigkeitsaxiom formulieren.

4.1. Das Vollständigkeitsaxiom. In diesem Teilkapitel wollen wir endlich das Vollständig-
keitsaxiom von Seite 18 sauber formulieren. Wir verwenden daher in diesem Teilkapitel noch
mal kurzzeitig die etwas allgemeinere Sprache von angeordneten Körper.

Wir beginnen mit folgender wichtigen Definition.

Definition. Es sei K ein angeordneter Körper und es sei Folge (an)n∈N in K.37Wir definieren

(an)n∈N ist eine Cauchy-Folge : ⇐⇒ ∀
ε>0
∃
N∈N

∀
n,m≥N

|an − am| < ε.

Bemerkung. Anschaulich gesprochen ist (an)n∈N eine Cauchy-Folge, wenn sich die Folgen-
glieder gegenseitig “immer näher kommen”.
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ab diesem N unterscheiden sich
die Folgenglieder um weniger als ε =

Illustration der Folge

N mn

RR

Abbildung 10. Zweite Illustration der Definition der Konvergenz von Folgen.

Die Definition von einer Cauchy-Folge ähnelt der Definition einer konvergenten Folge,
und es stellt sich die Frage, was der Zusammenhang zwischen diesen beiden Begriffen ist.
Der folgende Satz gibt uns eine halbe Antwort auf diese Frage.

Satz 4.1. Es sei K ein angeordneter Körper. Jede konvergente Folge38in K ist auch eine
Cauchy-Folge.

Beispiel. Es sei K ein angeordneter Körper. Es sei (an)n∈N eine Folge in K. Satz 4.1 be-
sagt insbesondere, dass wenn (an)n∈N keine Cauchy-Folge ist, dann ist (an)n∈N auch keine
konvergente Folge. Mit dieser Beobachtung ist es nun leicht zu zeigen, wie schon auf Seite
behauptet, dass die Folgen (−1)n divergieren.

Beweis. Es sei (an)n∈N eine konvergente Folge. Wir bezeichnen mit a den Grenzwert. Per
Definition gilt also:

(∗) ∀
ρ>0
∃

M∈N
∀

n≥M
|an − a| < ρ.

37Eine Folge in K ist natürlich eine Abbildung N→ K.
38Die Konvergenz von Folgen in einem angeordneten Körper wird genauso definiert, wie zuvor.
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Wir müssen zeigen, dass die Folge (an)n∈N eine Cauchy-Folge ist. Es sei also ε > 0.

Wir müssen ein N ∈ N finden, so dass für alle n,m ≥ N gilt |an − am| < ε. Wir
verwenden nun folgenden Standardtrick, welcher aus der Dreiecksungleichung folgt:

|an − am| = |(an − a) + (a− am)| ≤ |an − a|+ |am − a|.
Wir setzen ρ = ε

2
. Es folgt aus (∗) dass es ein M ∈ N gibt, so dass für alle m ≥ M gilt

|am − a| < ρ = ε
2
. Wir setzen jetzt N = M . Für alle n,m ≥ N gilt dann in der Tat, dass

|an − am| ≤ |an − a|+ |am − a| <
ε

2
+

ε

2
= ε.

↑ ↑
Dreiecksungleichung, siehe oben denn n,m ≥ N �

Es stellt sich nun noch die Frage, ob auch jede Cauchy-Folge eine konvergente Folge ist.
Der folgende Satz, welchen wir schon in Kapitel 1 formuliert hatten, besagt, dass dies bei
den reellen Zahlen in der Tat der Fall ist.

Satz. 1.20 (Existenz und Eindeutigkeit der reellen Zahlen Es gibt (bis auf einen
eindeutig bestimmten Isomorphismus) genau einen angeordneten Körper, genannt Körper
der reellen Zahlen R, welcher das archimedische Axiom erfüllt und welcher das Vollständig-
keitsaxiom erfüllt:

(V) Jede Cauchy-Folge konvergiert.

Bemerkung. Um keinerlei Missverständnisse aufkommen zu lassen wiederholen wir noch
einmal die Hauptaussage von Satz 1.20:

jede Cauchy-Folge konvergiert im Körper R der reellen Zahlen.

Um die Bedeutung des Vollständigkeitsaxioms besser würdigen zu können benötigen wir
interessante Beispiele von Cauchy-Folgen. Folgender Satz gibt uns erst einmal ein nützliches
Kriterium um zu zeigen, dass eine gegebene Folge eine Cauchy-Folge ist.

Satz 4.2. Es sei K ein angeordneter Körper, welcher das archimedische Axiom erfüllt.
Jede Folge in K, welche monoton und beschränkt ist, ist eine Cauchy-Folge.

Beweis. Es sei (an)n∈N eine Folge, welche monoton ist. Wir betrachten nur den Fall, dass die
Folge monoton steigend ist. Der Fall, dass die Folge monoton fallend ist, wird fast genauso
bewiesen.

Es sei also (an)n∈N eine monoton steigende Folge. Wir müssen beweisen:

(an)n∈N ist beschränkt =⇒ (an)n∈N ist eine Cauchy-Folge.

Nach dem Prinzip der Kontraposition ist diese Aussage äquivalent zur Aussage:

(an)n∈N ist unbeschränkt︸ ︷︷ ︸
Negation von (an)n∈N ist beschränkt

⇐= (an)n∈N ist keine Cauchy-Folge.︸ ︷︷ ︸
Negation von (an)n∈N ist eine Cauchy-Folge

Wir nehmen nun also an, dass (an)n∈N keine Cauchy-Folge ist, d.h. wir nehmen an:

(∗) ∃
ε>0
∀
N∈N

∃
n,m≥N

|an − am | ≥ ε.
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Wir müssen zeigen, dass dies impliziert, dass (an)n∈N unbeschränkt ist. Es sei also C ∈ K
beliebig. Wir müssen zeigen, dass es ein M ∈ N gibt, so dass aM > C.

Behauptung.

(†) Für jedes N ∈ N existiert ein n ≥ N mit an − aN ≥ ε.

Es sei N ∈ N. Aus (∗) folgt, dass es m,n ≥ N mit |an − am| ≥ ε gibt. O.B.d.A.
können wir annehmen, dass n ≥ m. Dann gilt

an − aN ≥ an − am = |an − am| ≥ ε
↑ ↑ ↑

da die Folge monoton steigend und n≥m≥N Wahl von m,n �
Wir verfahren jetzt wie folgt. Wir setzen n0 = 1.

(1) Wir wenden (†) auf N = n0 an und erhalten n1 > n0 mit an1 − an0 ≥ ε.
(2) Wir wenden (†) auf N = n1 an und erhalten n2 > n1 mit an2 − an1 ≥ ε.
(3) Wir wenden (†) auf N = n2 an und erhalten n3 > n2 mit an3 − an2 ≥ ε.
...

Wir erhalten also eine Folge n0, n1, n2, . . . von Indizes, so dass für jedes k ∈ N gilt

ank ≥ ank−1
+ ε ≥ ank−2

+ 2 · ε ≥ . . . ≥ an0 + k · ε.
Es folgt aus dem Archimedischen Axiom, welches wir auf Seite 18 formuliert hatten, dass
es ein k ∈ N gibt mit ank ≥ an0 + k · ε ≥ C gibt. Mit anderen Worten, wir haben gezeigt,
dass die Folge (an)n∈N unbeschränkt ist. �
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Abbildung 11. Illustration für den Beweis von Satz 4.2.

Wir erhalten aus Satz 4.2 folgenden Satz.

Satz 4.3. (Konvergenzsatz für monotone Folgen) Jede Folge, welche monoton und
beschränkt ist, konvergiert in R.

Beweis. Der Satz folgt sofort aus Satz 4.2 und der Tatsache, dass in R jede Cauchy-Folge
konvergiert. �

Bemerkung. Es sei (an)n∈N eine Folge, welche monoton fallend und beschränkt ist. Aus
dem Konvergenzsatz 4.3 folgt, dass der Grenzwert a := lim

n→∞
an existiert. Es folgt leicht aus

Satz 3.6, angewandt auf die Folge (an)n∈N und die konstante Folge (a)n∈N, dass a ≤ an für
alle n ∈ N.
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Das folgende Lemma gibt uns nun ein interessantes Beispiel einer Cauchy-Folge.

Lemma 4.4. Es sei z > 0 eine reelle Zahl. Wir betrachten die Folge (an)n∈N0, welche
gegeben ist durch:

a0 := z und welche iterativ definiert ist durch an+1 =
1

2

(
an+

z

an

)
, für n = 0, 1, 2, . . . .

Diese Folge (an)n∈N hat die folgende Eigenschaften:

(1) Für alle n ∈ N gilt a2n ≥ z.
(2) Die Folge (an)n∈N ist monoton fallend.
(3) Die Folge (an)n∈N ist beschränkt.
(4) Wenn z ∈ Q, dann gilt auch für jedes n ∈ N0, dass an ∈ Q.
(5) Die Folge (an)n∈N ist eine Cauchy-Folge.
(6) Die Folge (an)n∈N konvergiert in R.
(7) Der Grenzwert a := lim

n→∞
an hat die Eigenschaft, dass a2 = z.

Beispiel. Für z = 2 erhalten wir die Folge

a0 = 2, a1 =
1

2
·
(
2 +

2

2

)
=

3

2
, a2 =

1

2
·
(

3

2
+

2
3
2

)
=

17

12
, . . . .

Diese Folge hat also die Eigenschaft, dass die Quadrate der Folgenglieder gegen 2 konver-
gieren. In der Tat ist a22 = 289

144
schon ziemlich nahe an 2 dran.

Beweis.

(1), (2) Diese Aussagen werden in Übungsblatt 3 bewiesen.
(3) Ein einfaches Induktionsargument zeigt, für alle n ∈ N gilt:dass an ≥ 0. Zusammen

mit (2) erhalten wir also, dass für alle n ∈ N gilt: |an| = an ≤ a1. Die Folge ist also
in der Tat beschränkt.

(4) Diese Aussage folgt aus einem einfachen Induktionsargument.
(5) Nach (1) und (3) ist die Folge (an)n∈N monoton fallend und beschränkt. Es folgt nun

aus Satz 4.2, dass (an)n∈N eine Cauchy-Folge ist.
(6) Diese folgt aus (5) und der Vollständigkeit von R. Oder etwas anders formuliert, die

Aussage folgt aus (2) und (3) zusammen mit dem Konvergenzsatz 4.3.
(7) Nach (6) wissen wir, dass die Folge (an)n∈N konvergiert. Wir setzen a := lim

n→∞
an.

Dann gilt

a = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1

2

(
an +

z

an

)
=

1

2

(
lim
n→∞

an +
z

lim
n→∞

an

)
=

1

2

(
a+

z

a

)
.

↑ ↑ ↑
Verschieben der Folgenglieder Definition von an+1 Satz 3.4
ändert den Grenzwert nicht

Wir haben also gezeigt, dass a = 1
2
(a+ z

a
). Aber dies bedeutet gerade, dass a2 = z. �

Wenn wir im vorherigen Lemma beispielsweise mit z = 2 anfangen, dann erhalten wir
also eine Folge (an)n∈N, welche gegen eine reelle Zahl a ∈ R konvergiert, mit a2 = 2. Der
folgende Satz besagt, dass diese Zahl a nicht rational ist.
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Satz 4.5. Es gibt keine rationale Zahl, deren Quadrat 2 ist.

Beweis. Nehmen wir an es gäbe eine rationale Zahl r mit r2 = 2. Dann könnten wir
schreiben r = a

b
, wobei a, b ∈ Z teilerfremd sind. Durch Quadrieren erhalten wir, dass

2b2 = a2. Wir sehen, dass 2 die linke Seite teilt, also muss 2 auch die rechte Seite teilen,
also ist a gerade, d.h. a = 2ã für ein ã ∈ Z. Es folgt also, dass 2b2 = 4ã2. Durch Kürzen
sehen wir, dass b2 = 2ã2. Die rechte Seite ist also gerade, also muss auch die linke Seite
gerade sein, d.h. b muss gerade sein.

Zusammengefasst haben wir gezeigt, dass a und b gerade sind. Dies ist aber ein Wider-
spruch zu der Tatsache, dass a und b teilerfremd sind. �

Korollar 4.6.

(1) Es gibt reelle Zahlen, welche nicht rational sind.
(2) Der Körper Q der rationalen Zahlen ist nicht vollständig.

Beweis. Wir wenden Lemma 4.4 auf z = 2 an. Wir erhalten eine Folge (an)n∈N von ratio-
nalen Zahlen, welche gegen eine reelle Zahl a ∈ R konvergiert, mit a2 = 2.

(1) Es folgt aus Satz 4.5, dass a 6∈ Q. Wir haben also gezeigt, dass a ∈ R \Q liegt.39

(2) Wir hatten gerade angemerkt, dass a der Grenzwert einer Folge von rationalen Zahlen
(an)n∈N ist. Insbesondere ist nach Satz 4.1 die Folge (an)n∈N eine Cauchy-Folge. Da
der Grenzwert nicht in Q liegt, sehen wir, dass die Cauchy-Folge (an)n∈N nicht in Q
konvergiert. Insbesondere ist Q also nicht vollständig. �

Eine reelle Zahl, welche nicht rational ist, heißt irrational. Wir haben gerade in Ko-
rollar 4.6 gesehen, dass es irrationale Zahlen gibt. Wir beschließen das Teilkapitel mit
folgender, bewußt unsauber formulierten Frage.

Frage 4.7. Wieviel mehr reelle Zahlen als rationale Zahlen gibt es?

Wir werden diese Frage später noch präzisieren und eine klare Antwort geben.

4.2. Dezimaldarstellung von reellen Zahlen (∗). 40 In diesem Teilkapitel wollen wir
zeigen, dass jede reelle Zahl eine Dezimaldarstellung besitzt. Dies zeigt dann auch, dass
die reellen Zahlen, wie wir sie in der Vorlesung eingeführt haben, der Schulvorstellung
entsprechen.

Satz 4.8. Es sei d ∈ N mit d > 1 gegeben. Zudem sei (an)n∈N eine Folge, so dass für alle
n ∈ N gilt, dass an ∈ {0, 1, 2, 3, . . . , d− 1}. Dann existiert der Grenzwert

∞∑
n=1

an
dn
.

39Für eine M und eine Teilmenge X schreiben wir M \ X = {p ∈ M | p 6∈ x}. Mit anderen Worten,
M \X ist das Komplement von X in M .

40Auch hier bedeutet das (∗), dass wir den Stoff in der Vorlesung fast nicht behandelt haben. Sie können
das Teilkapitel daher komplett ignorieren.
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Definition. Es sei (an)n∈N eine Folge von natürlichen Zahlen in {0, 1, . . . , d−1}. Wir schrei-
ben

∞∑
n=1

an
dn︸ ︷︷ ︸

existiert nach Satz 4.8

=: 0,a1 a2 a3 . . .

Beweis (∗). Es sei d ∈ N mit d > 1 gegeben. Zudem sei (an)n∈N eine Folge, so dass für
alle n ∈ N gilt, dass an ∈ {0, . . . , d − 1}. Per Definition müssen wir also zeigen, dass die

Folge der Partialsummen sk :=
k∑

n=1

an
dn

konvergiert. Nach dem Konvergenzsatz 4.3 genügt es

zu zeigen, dass diese Folge monoton steigend und beschränkt ist. Wir zeigen dies in den
folgenden beiden Argumenten:

(1) Für alle k ∈ N gilt sk+1 = sk + ak+1

dk+1 ≥ sk, also ist die Folge monoton steigend.
(2) Für jedes n ∈ N gilt

|sk| = sk =
k∑

n=1

an
dn
≤

k∑
n=1

d

dn
=

k∑
n=1

1

dn−1
=

k−1∑
n=0

1

dn
≤

∞∑
n=0

1

dn
=

1

1− 1
d

.
↑ ↑

da an ≤ d Satz 3.16

Wir haben also gezeigt, dass die Folge (sn)n∈N) der Partialsummen beschränkt ist. �

Satz 4.9. Es sei z ∈ [0, 1) gegeben und es sei d ∈ N mit d ≥ 2. Dann gibt es eine Folge
(an)n∈N mit an ∈ {0, 1, 2, 3, . . . , d− 1}, so dass

∞∑
n=1

an
dn

= z, d.h. so dass z = 0, a1 a2 a3 . . .

Bemerkung. Satz 4.9 besagt insbesondere, dass es für jede reelle Zahl z eine monoton
steigende Folge von rationalen Zahlen, nämlich in der Notation des Satzies die Folge der

Partialsummen
k∑

n=1

an
dn

, gibt, welche gegen z konvergiert. Dies impliziert insbesondere, dass

jedes Intervall der Form (a, b) mit a < b unendlich viele rationale Zahlen enthält.

Beweis (∗). Es sei also z ∈ [0, 1) beliebig. Wir definieren eine Folge (an)n∈N iterativ wie
folgt:

a1 := bz · dc, und iterativ definieren wir an :=

⌊(
z −

n−1∑
i=1

ai
di

)
· dn
⌋

für n = 2, 3, . . . .

Es folgt leicht aus der nächsten Behauptung, dass für alle n ∈ N gilt: an ∈ {0, . . . , d− 1}.

Behauptung. Für alle n ∈ N gilt

0 ≤ z −
n∑
i=1

ai
di

<
1

dn
.

Für n ∈ N gilt in der Tat
denn für jedes z ∈ R gilt z − bzc ∈ [0, 1)

↓
z −

n∑
i=1

ai
di

=
1

dn
·
((
z −

n∑
i=1

ai
di

)
· dn
)

=
1

dn
·
((
z −

n−1∑
i=1

ai
dn

)
· dn − ai

)
∈
[
0,

1

dn

)
.
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�
Es folgt nun aus der Behauptung, zusammen mit Satz 3.9 angewandt auf x = 1

d
, und

dem Sandwichsatz 3.8 dass
z −

∞∑
n=1

an
dn

= lim
n→∞

(
z −

n∑
i=1

ai
di

)
= 0.

Dies entspricht aber genau der Aussage, welche wir beweisen wollten. �

Definition. Es sei z∈ [0, 1). Nach Satz 4.9 gibt es eine Folge (an)n∈N mit an∈{0, 1, 2, 3, . . . , 9},
so dass

z =
∞∑
n=1

an
10n

=: 0,a1 a2 a3 . . . .

Wir bezeichnen dies als eine Dezimaldarstellung von z.

Bemerkung. Dezimaldarstellung von reellen Zahlen sind im Allgemeinen nicht eindeutig.
Beispielsweise gilt:

0,0999999 . . . =
∞∑
n=2

9

10n
= 9 ·

∞∑
n=2

(
1

10

)n
= 9 ·

( ∞∑
n=0

(
1

10

)n
− 1− 1

10

)
= 9 ·

(
1

1− 1
10

− 1− 1

10

)
=

1

10
= 0,10000 . . . .

↑
Satz 3.16

Ganz ähnlich kann man viele weitere Beispiele konstruieren. Beispielsweise ist

0, 312400000 . . . = 0, 312399999999 . . ..

Der nächste Satz sagt, dass alle Beispiele von reellen Zahlen mit nicht eindeutiger Dezi-
maldarstellung von dem Typ in der Bemerkung sind.

Satz 4.10. Es seien (an)n∈N und (bn)n∈N zwei verschiedene Folgen, deren Folgenglieder in
{0, 1, 2, . . . , 9} liegen. Es gilt ∞∑

n=1

an
10n

=
∞∑
n=1

bn
10n

,

genau dann, wenn es ein k ∈ N0 und c1, . . . , ck ∈ {0, 1, 2, . . . , 9} gibt, so dass

(a1, a2, . . . ) = (c1, c2, . . . , ck−1, ck, 9, 9, 9, . . . ), und
(b1, b2, . . . ) = (c1, c2, . . . , ck−1, ck + 1, 0, 0, 0, . . . ),

oder die gleiche Aussage gilt, mit den Rollen von (an)n∈N und (bn)n∈N vertauscht.

Beweis (∗). Es seien (an)n∈N und (bn)n∈N zwei verschiedene Folgen, deren Folgenglieder in
{0, 1, 2, . . . , 9} liegen.

Die “wenn”-Richtung des Satzes wird genau wie in der Bemerkung bewiesen. Es genügt
nun also die “genau dann”-Richtung des Satzes zu beweisen. Wir nehmen also an, dass

(∗)
∞∑
n=1

an
10n

=
∞∑
n=1

bn
10n

.

Nachdem die Folgen verschieden sind gibt es ein k ∈ N, so dass ai = bi für i = 1, . . . , k− 1,
aber so, dass ak 6= bk. O.B.d.A. können wir annehmen, dass bk > ak. Wir müssen zeigen,
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dass bk = ak + 1, und dass für alle n ∈ N gilt bk+n = 0 und ak+n = 9. Wir beweisen zuerst
folgende Behauptung:

Behauptung 1. Es gilt folgende Ungleichung:
∞∑
n=1

an+k − bn+k
10n

≥ bk − ak.

Es gilt in der Tat, dass:
∞∑
n=1

an+k − bn+k
10n

=
∞∑
n=1

an+k − bn+k
10n

+ (ak−bk) + (bk−ak) ≥
∞∑
n=0

an+k − bn+k
10n

+ (bk − ak)

= 10k ·
∞∑
n=k

an−bn
10n

+ (bk−ak) = 10k ·
(
∞∑
n=1

an
10n
−
∞∑
n=1

bn
10n

)
+ (bk−ak) = bk−ak

↑
da nach Voraussetzung (∗) gilt �

Es verbleibt nun folgende Behauptung zu beweisen:

Behauptung 2. Es ist bk − ak = 1 und für alle n ≥ 1 gilt: an+k − bn+k = 9.

Die Behauptung folgt aus der Beobachtung, dass gilt:

folgt aus Behauptung 1
↓

1 ≤ bk − ak ≤
∞∑
n=1

an+k − bn+k
10n

≤
∞∑
n=1

9

10n
=

9

10
·
∞∑
n=0

1

10n
=

9

10
· 1

1− 1
10

= 1.

↑ ↑ ↑
da bk>ak die Ungleichheit folgt aus an+k−bn+k∈{−9, . . . , 9} folgt aus Satz 3.16

die Gleichheit gilt zudem nur, wenn
für alle k∈N gilt, dass an+k−bn+k=9

Nachdem links und rechts 1 steht, müssen alle Ungleichungen auch schon Gleichungen
gewesen sein. Also folgt nach der Diskussion, dass bk − ak = 1, und dass an+k − bn+k = 9
für alle k ∈ N. �

Wir beschließen das Kapitel mit folgendem Korollar zu Satz 4.9.

Korollar 4.11. Jede reelle Zahl ist der Grenzwert einer Folge von rationalen Zahlen.

Beweis. Es sei x ∈ R. Wir setzen a0 = bxc. Dann ist x − a0 ∈ [0, 1). Also gibt es nach
Satz 4.9 eine Folge (an)n∈N mit an ∈ {0, 1, 2, 3, . . . , 9}, so dass

x = a0+
∞∑
n=1

an
10n

= lim
k→∞

(
a0 +

k∑
n=1

an
10n︸ ︷︷ ︸

∈Q

)
= Grenzwert der rationalen Folge k 7→ a0+

k∑
n=1

an
10n

.

�

4.3. Injektive, surjektive und bijektive Abbildung. Bevor wir mit der Diskussion von
rationalen und reellen Zahlen fortfahren, führen wir folgende ganz allgemeine Definition ein.

Definition. Es sei f : X → Y eine Abbildung zwischen zwei Mengen.

(1) Wir sagen f ist injektiv, wenn für alle x1 6= x2 ∈ X gilt, dass auch f(x1) 6= f(x2).
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(2) Wir bezeichnen f(X) := {f(x) |x ∈ X} ⊂ X als das Bild von f , oder manchmal
auch als den Wertebereich von f .

(3) Wir sagen f ist surjektiv, wenn f(X) = Y . Mit anderen Worten, f ist surjektiv genau
dann, wenn es zu jedem y ∈ Y ein x ∈ X mit f(x) = y gibt.

(4) Wenn f sowohl surjektiv als auch injektiv ist, dann nennen wir f bijektiv.
In der folgenden Tabelle betrachten wir einige Beispiele von Abbildungen:

a : N → N injektiv surjektiv
n 7→ n

b : N → Z injektiv nicht surjektiv
n 7→ n da −2 6∈ b(N)

c : N → N injektiv nicht surjektiv

n 7→ n2 da 2 6∈ c(N)

d : Z → N0 nicht injektiv nicht surjektiv
n 7→ n2 da d(−1) = d(1) da 2 6∈ d(Z)

e : Z → {x2 |x ∈ N0} nicht injektiv surjektiv
n 7→ n2 da e(−1) = e(1)

f : Z → Z injektiv nicht surjektiv
n 7→ 3 · n+ 7 da 0 6∈ f(Z)

g : Q → Q injektiv surjektiv
n 7→ 3 · n+ 7

h : N → Z injektiv surjektiv

n 7→
{ n

2
, wenn n gerade,

−n−1
2
, wenn n ungerade

4.4. Abzählbare und überabzählbare Mengen.

Definition. Eine nichtleere Menge41A heißt abzählbar, wenn es eine surjektive Abbildung
N → A gibt. Wir sagen zudem, dass die leere Menge auch abzählbar ist. Eine Menge,
welche nicht abzählbar ist, heißt überabzählbar.

Beispiel.

(1) Die Menge N ist abzählbar, denn die Identitätsabbildung N → N ist offensichtlich
surjektiv.

(2) Die Menge Z ist abzählbar, denn wir hatten gerade im vorherigen Teilkapitel explizit
eine surjektive Abbildung h : N→ Z angegeben.

41Die leere Menge ist die Menge, welche kein Element enthält. Eine Menge heißt nichtleer, wenn sie
mindestens ein Element enthält.
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(3) Die Menge {A,B,C, . . . , X, Y, Z} der Buchstaben des Alphabets ist abzählbar. Bei-
spielsweise ist folgende Abbildung surjektiv:

N → {A,B,C, . . . , X, Y, Z}
1 7→ A
...

...
26 7→ Z
n 7→ Z, wenn n ≥ 27

(4) Man kann das vorherige Beispiel verallgemeinern und zeigen, dass jede endliche Men-
ge abzählbar ist.

Satz 4.12. Es sei A eine abzählbare Menge und B eine Teilmenge. Dann ist B auch
abzählbar.

Beweis (∗). Es sei A eine abzählbare Menge und B eine Teilmenge. Wenn B endlich ist,
dann haben wir oben schon gesehen, dass B abzählbar ist. Nehmen wir nun an, dass B
unendlich ist. Wir wählen eine surjektive Abbildung f : N→ A. Wir definieren nun iterativ

n1 := min{n ∈ N | f(n) ∈ B},
und wenn n1, . . . , nk schon definiert sind, dann definieren wir

nk+1 := min{n > nk | f(n) ∈ B}.

Dann ist die folgende Abbildung surjektiv:42

N → B
k 7→ f(nk). �

Wir wollen jetzt zeigen, dass auch die Menge Q der rationalen Zahlen abzählbar ist.

Satz 4.13. Die Menge Q der rationalen Zahlen ist abzählbar.

Beweis. Wir betrachten folgendes quadratisches unendliches Schema:

0 → 1
1
→ −1

1
2
1
→ −2

1
3
1
→ −3

1
. . .

↙ ↗ ↙ ↗ ↙
1
2

−1
2

2
2

−2
2

↓ ↗ ↙ ↗
1
3

−1
3

2
3

. .
.

↙ ↗ ↙
1
4

−1
4

2
4

... . .
.

42Wo haben wir im Beweis verwendet, dass B unendlich ist?
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Es ist klar, dass jede rationale Zahl in diesem Schema auftaucht. Wir definieren nun eine
Abbildung f : N → Q, indem wir k ∈ N das k-te Element in der obigen Aufführung von
Elementen zuordnen. Diese Abbildung ist offensichtlich surjektiv.43 �

Der folgende Satz besagt dass, im Gegensatz zu der Menge Q der rationalen Zahlen, die
Menge R der reellen Zahlen nicht abzählbar ist.

Satz 4.14. Die Menge R aller reellen Zahlen ist überabzählbar.

Beweis. Nach Satz 4.12 genügt es zu zeigen, dass das Interval [0, 1) überabzählbar ist. Wir
müssen also zeigen, dass es keine surjektive Abbildung f : N → [0, 1) gibt. Mit anderen
Worten, wir wollen folgende Aussage beweisen.

Aussage. Für jede Abbildung f : N→ [0, 1) gibt es ein x ∈ [0, 1), welches nicht im Bild von
f liegt.

Es sei also f : N → [0, 1) eine Abbildung. Wir schreiben die Zahlen f(1), f(2), . . . in
Dezimaldarstellung:

f(1) =: 0, a11 a12 a13 . . .
f(2) =: 0, a21 a22 a23 . . .
f(3) =: 0, a31 a32 a33 . . .

...

Wir müssen ein x ∈ [0, 1) finden, welches nicht im Bild von f liegt, d.h. welches von allen
f(n) verschieden ist. Wir betrachten die reelle Zahl

x := 0, c1 c2 c3 . . . wobei jeweils cn :=
{

7, falls ann ∈ {0, . . . , 4}
3, falls ann ∈ {5, . . . , 9}.

Wir haben die Ziffern cn so gewählt, dass diese niemals 0 oder 9 werden. Es folgt aus
Satz 4.10, dass die Dezimaldarstellung von x eindeutig ist. Es genügt nun zeigen, dass x
nicht im Bild von f liegt. Mit anderen Worten, es genügt folgende Behauptung zu beweisen.

Behauptung. Für alle n ∈ N gilt x 6= f(n).

Es sei also n ∈ N. Wir betrachten die Dezimaldarstellungen

x = 0, c1 c2 c3 . . . cn . . . , sowie
f(n) = 0, an1 an2 an3 . . . ann . . .

Nachdem wir cn so gewählt hatten, dass cn 6= ann, unterscheiden sich die Dezimaldarstellun-
gen sich in der n-ten Ziffer. Aber wir hatten oben angemerkt, dass die Dezimaldarstellung
von x eindeutig ist. Es folgt also, dass in der Tat x 6= f(n). �

Bemerkung. Mithilfe von Satz 4.14 kann man auch problemlos zeigen, dass jedes Intervall
der Form [a, b] mit a < b überabzählbar ist. Da die Menge der rationalen Zahlen abzählbar
ist folgt, dass solch ein Intervall überabzählbar viele irrationale Zahlen enthält.

43Dieser Beweis kann natürlich auch deutlich formaler durchgeführt werden, ohne auf Bilder
zurückzugreifen.
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In Frage 4.7 hatten wir uns etwas naiv gefragt, wieviel mehr reelle Zahlen es als rationale
Zahlen gibt. Die Tatsache, dass nach Satz 4.13 die Menge Q der rationalen Zahlen abzählbar
ist, und dass nach Satz 4.14 die Menge R der reellen Zahlen überabzählbar ist, gibt eine
mathematische präzise Antwort auf diese Frage.
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5. Folgerungen aus dem Vollständigkeitsaxiom

5.1. Infimum und Supremum.

Definition. Es sei M eine Teilmenge von R. Wir führen folgende Begriffe ein:

(1) Wir sagen C ∈ R ist eine obere Schranke für M , wenn für alle x ∈M gilt: x ≤ C.
(2) Wenn M eine obere Schranke besitzt, dann nennen wir M nach oben beschränkt.
(3) Wenn es ein m in M gibt, welches eine obere Schranke für M ist, dann bezeichnen

wir
max(M) := m

als das Maximum von M . Insbesondere ist jede Menge mit einem Maximum auch
nach oben beschränkt.

Beispiel. Wir betrachten ein paar Beispiele:

(1) Das Intervall [1,∞) ist nicht nach oben beschränkt, und besitzt daher auch kein
Maximum.

(2) Es sei M = [1, 3]. Dann ist 3 eine obere Schranke, aber auch jede andere Zahl größer
als 3 ist eine obere Schranke. Das Intervall [1, 3] besitzt ein Maximum, nämlich 3.

(3) Es sei M = [1, 3). Dann ist beispielsweise 3 eine obere Schranke, d.h. die Menge ist
nach oben beschränkt. Andererseits besitzt M = [1, 3) kein Maximum. In der Tat,
denn es gibt kein x ∈ [1, 3), welches die Eigenschaft besitzt, dass für alle y ∈ [1, 3)
gilt y ≤ x.

(4) (a) Jede nach oben beschränkte Teilmenge von Z hat ein Maximum.
(b) Es sei nun m ∈ N. Es folgt aus (a), dass jede nach oben beschränkte Teilmenge

von { k
m
| k ∈ Z} = {. . . ,− 2

m
,− 1

m
, 0, 1

m
, 2
m
, . . . } ein Maximum besitzt.
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diese Menge besitzt kein Maximum
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Wir umgehen jetzt das Problem, dass das Maximum einer nach oben beschränkten Menge
nicht notwendigerweise definiert ist, indem wir das Supremum einführen.

Definition. Es sei M ⊂ R eine Teilmenge. Wir sagen s ∈ R ist Supremum sup(M) von M ,
wenn s eine kleinste obere Schranke für M ist. Etwas genauer gesagt bedeutet dass:

(1) s ist eine obere Schranke für M , d.h. für alle x ∈M gilt x ≤ s.
(2) Es gibt keine kleinere obere Schranke als s. Mit anderen Worten, es gilt eine der

folgenden äquivalenten Aussagen:
(a) Für alle y < s gibt es ein x ∈M mit y < x.
(b) Für alle ε > 0 gibt es ein x ∈M mit s− ε < x.

Man beachte, dass aus (2) folgt, dass ein Supremum, wenn es existiert, auch schon eindeutig
bestimmt ist.
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Beispiel.

(1) Wir betrachten noch einmal M = [1, 3). Dann ist x = 3 eine obere Schranke für
[1, 3). Zudem gibt es keine kleinere obere Schranke für [1, 3). Also ist das Supremum
gerade = 3.

(2) Ganz analog zu (1) zeigt man, dass für alle abgeschlossenen, halboffenen oder offenen
Intervalle, welche nach oben beschränkt sind, das Supremum durch “die Zahl rechts”
gegeben ist. Beispielsweise gilt für a < b ∈ R, dass

sup((−∞, b)) = sup([a, b]) = sup((a, b]) = sup([a, b)) = b.

(3) Es folgt leicht aus Satz 1.22, dass sup{1− 1
n
|n ∈ N} = 1.
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Intervall [1, 3)
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Supremum s = 3

obere Schranken

R

Supremum s = 1

obere Schranken

R

s− ε ist keine
obere Schranke

{1− 1
n
|n ∈ N}

y < s ist keine
obere Schranke

Abbildung 12. Die Suprema von [1, 3) und {1− 1
n
|n ∈ N}.

Lemma 5.1. Falls eine Menge M⊂R ein Maximum besitzt, dann gilt: max(M)=sup(M).

Beweis. Es sei M ⊂ R eine Menge, welche ein Maximum besitzt. Wir setzen m := max(M).
Wir müssen zeigen, dass m die Eigenschaften (1) und (2) erfüllt.

(1) Per Definition ist m eine obere Schranke von M .
(2) Es sei y < m. Da m ∈M haben wir auch schon ein x ∈M mit y < x gefunden. �

Wir haben jetzt schon gesehen, dass es Mengen gibt, welche zwar kein Maximum aber
dennoch ein Supremum besitzt. Der folgende Satz besagt nun, dass das kein Zufall ist.

Satz 5.2. (Satz von der Existenz des Supremums) Jede nach oben beschränkte, nicht-
leere Teilmenge von R besitzt ein Supremum.

Beweis. Es sei M ⊂ R eine nach oben beschränkte, nichtleere Teilmenge. Wir müssen
zeigen, dass ein Supremum von M existiert.

Wir hatten gesehen, dass eine nach oben beschränkte, nichtleere Teilmenge von R
nicht notwendigerweise ein Maximum besitzt. Andererseits folgt aus der Diskussi-

on auf Seite 63, dass jede beschränkte, nichtleere Teilmenge von { k
2n
| k ∈ Z} ein

Maximum besitzt. Wir wollen diese Tatsache ausnützen um das Supremum in R als
Grenzwert einer Folge von Zahlen der Form pn

2n
zu konstruieren.
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Es sei n ∈ N0. Wir setzen44

pn := kleinste ganze Zahl, mit der Eigenschaft, dass pn
2n

eine obere Schranke für M ist.

Behauptung. Die Folge
(
pn
2n

)
n∈N0

ist monoton fallend und beschränkt.

Wir beweisen die beiden Aussagen der Behauptung:

(1) Es sei n ∈ N0. Dann gilt in der Tat folgende Ungleichung:

pn+1

2n+1
≤ 2pn

2n+1
=

pn
2n
.

↑
per Definition von pn ist 2pn

2n+1 = pn
2n eine obere Schranke für M ,

die Ungleichung folgt nun aus der Definition von pn+1

(2) Es sei m ∈ M . Aus (1) folgt, dass für jedes n ∈ N0 gilt pn
2n
∈ [m, p0

20
]. Dies impliziert,

dass die Folge beschränkt ist. �
Es folgt nun aus dem Konvergenzsatz 4.3, dass die Folge

(
pn
2n

)
n∈N0

konvergiert. Wir setzen

s := lim
n→∞

pn
2n
.

Wir behaupten, dass s die gewünschten Eigenschaften (1) und (2) des Supremums besitzt.

(1) Es sei x ∈M . Wir müssen zeigen, dass x ≤ s. In der Tat gilt:

x ≤ lim
n→∞

pn
2n

=: s.
↑

für alle n ∈ N0 gilt x ≤ pn
2n , die Ungleichung folgt also aus Satz 3.6

(2) Wir müssen noch zeigen, dass s die kleinste obere Schranke ist. Es sei also y < s.
Wir müssen zeigen, dass y keine obere Schranke für M sein kann, d.h. wir müssen
zeigen, dass es ein x ∈M mit y < x gibt.
(a) Nachdem s− y > 0 folgt aus dem Los Alamos Satz 3.9, dass es ein m ∈ N0 gibt,

so dass 1
2m

< s− y.

(b) Per Definition von pm gibt es ein x ∈M mit x > pm−1
2m

.
(c) Es gilt

x >
pm − 1

2m
=

pm
2m
− 1

2m
≥ s− 1

2m
> y.

↑ ↑ ↑
Wahl von x da (pn2n )n∈N fallend gilt pm

2m ≥s Wahl von m

Wir haben also gezeigt, dass s die Eigenschaften des Supremums erfüllt, d.h. M besitzt ein
Supremum. �

Der folgende Satz gibt uns eine hilfreiche Charakterisierung des Supremums einer nicht-
leeren, nach oben beschränkten Teilmenge von R. Der Satz erlaubt es uns zudem oft Aus-
sagen über Suprema auf Aussagen über Grenzwerte zurückzuführen.

44Hierbei haben wir schon implizit verwendet, dass M nichtleer ist. Denn wäre M die leere Menge, dann
wäre jede Zahl eine obere Schranke, also gäbe es kein kleinstes pn ∈ Z, so dass pn

2n eine obere Schranke ist.
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Abbildung 13. Illustration zum Beweis von Satz 5.2.

Satz 5.3. Es sei M eine Teilmenge von R.

(1) Wenn M nichtleer und nach oben beschränkt ist, dann existiert eine monoton stei-
gende Folge (an)n∈N von Elementen in M , welche gegen sup(M) konvergiert.

(2) Wenn (an)n∈N eine Folge von Elementen in M ist, welche konvergiert, und so dass
lim
n→∞

an eine obere Schranke für M ist, dann ist45sup(M) = lim
n→∞

an.

Beweis (∗). Es sei M eine Teilmenge von R. Wir schreiben s := sup(M).

(1) Wir nehmen an, dass M nichtleere und nach oben beschränkt ist. Wir definieren nun
zuerst geschickt eine Folge (an)n∈N. Wir wählen ein beliebiges a1 ∈ M . Nehmen wir
an, wir haben a1, . . . , an−1 schon gewählt. Nach Voraussetzung ist s− 1

n
keine obere

Schranke für M , also gibt es ein x ∈M mit s− 1
n
< x. Andererseits ist s eine obere

Schranke für M , also gilt x ≤ s. Wir setzen nun an := max{an−1, x}.
Zusammengefasst haben wir also eine monoton steigende Folge (an)n∈N gefunden, so
dass alle Folgenglieder in M liegen, und so dass s − 1

n
< an ≤ s. Es folgt nun aus

dem Sandwichsatz 3.8, dass die Folge (an)n∈N gegen s = sup(M) konvergiert.
(2) Es sei nun (an)n∈N eine Folge von Elementen in M , welche konvergiert, und so dass

a := lim
n→∞

an eine obere Schranke für M ist. Wir müssen zeigen, dass a = sup(M).

Nachdem also a nach Voraussetzung eine obere Schranke für M ist, genügt es zu
zeigen, dass es keine kleinere obere Schranke für M geben kann.

Es sei also y < a. Wir müssen zeigen, dass y keine obere Schranke für M ist. Anders
ausgedrückt, wir müssen zeigen, dass es ein Element in M gibt, welches größer als y
ist. Nachdem lim

n→∞
an = a gibt es insbesondere ein n ∈ N, so dass |an − a| < a − y.

Dann gilt aber, dass an − a ≥ −|an − a| > y − a, d.h. an > y. Wir haben also ein
Element in M gefunden, nämlich an, welches größer als y ist. �
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ana1 a2 a3s=sup(M)s− 1
n an

Abbildung 14. Illustration für den Beweis von Satz 5.3.

45Insbesondere ist die Aussage, dass das Supremum in der Tat existiert.
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Beispiel. Wir betrachten

M := Q ∩ (−2, 3) = {alle rationalen Zahlen im Intervall (−2, 3)}.

Wir wollen zeigen, dass sup(M) = 3. Dies kann man mithilfe der Definition zeigen, oder,
falls diese doch zu verwirrend ist, mithilfe von Satz 5.3:

(1) Wir betrachten die Folge an = 3− 1
n
. Dies ist eine Folge von Zahlen in M .

(2) Der Grenzwert lim
n→∞

an = lim
n→∞

(3− 1
n
) = 3 ist eine obere Schranke für M .

Also gilt nach Satz 5.3, dass sup(M) = 3.

Im Folgenden führen wir nun ganz analog die Begriffe Minimum, untere Schranke, nach
unten beschränkt und Infimum ein:

Definition. Es sei M ⊂ R eine Teilmenge.

(i) Wir sagen C ∈ R ist eine untere Schranke für M , wenn für alle x ∈M gilt: C ≤ x.
(ii) Wenn M eine untere Schranke besitzt, dann nennen wir M nach unten beschränkt.
(iii) Wenn es ein m in M gibt, welches eine untere Schranke für M ist, dann bezeichnen

wir
min(M) := m

als das Minimum von M .
(iv) Wir sagen i ∈ R ist Infimum inf(M) von M , wenn i eine größte untere Schranke für

M ist. Das bedeutet also:
(1) i ist eine untere Schranke für M , d.h. für alle x ∈M gilt i ≤ x.
(2) Es gibt keine größere untere Schranke als s. Mit anderen Worten, es gilt eine der

folgenden äquivalenten Aussagen:
(a) Für alle y > i gibt es ein x ∈M mit x < y.
(b) Für alle ε > 0 gibt es ein x ∈M mit x < s+ ε.
Wenn das Infimum existiert, dann folgt aus (1) und (2) schon, dass es eindeutig
bestimmt ist.

Es gelten dann auch die offensichtlichen Varianten von Lemma 5.1, Satz 5.2 und Satz 5.3.
Der vollständigkeit halber formulieren wir diese drei Aussagen. Der Beweis ist in allen drei
Fällen jeweils fast wort-wörtlich der gleiche wie bei den beiden vorhergehenden Sätzen.

Lemma 5.4. Wenn eine Menge M ⊂ R ein Minimum besitzt, dann gilt min(M) = inf(M).

Satz 5.5. (Satz von der Existenz des Infimums) Jede nach unten beschränkte, nicht-
leere Teilmenge von R besitzt ein Infimimum.

Satz 5.6. Es sei M eine Teilmenge von R.

(1) Wenn M nichtleer und nach unten beschränkt ist, dann existiert eine monoton fal-
lende Folge (an)n∈N von Elementen in M , welche gegen inf(M) konvergiert.

(2) Wenn es eine Folge (an)n∈N von Elementen in M gibt, welche konvergiert, und so
dass lim

n→∞
an eine untere Schranke für M ist, dann ist inf(M) = lim

n→∞
an.
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Beispiel. Wir betrachten

M := Q ∩ (2, 4) = {x ∈ (2, 4) |x ∈ Q}.

Dann ist inf(M) = 2. Dies folgt leicht aus den Definitionen, oder es folgt auch aus Satz 5.6.
In der Tat, betrachten wir die Folge an = 2 + 1

n
, dann liegen alle Folgenglieder in M , und

lim
n→∞

an = lim
n→∞

(2 + 1
n
) = 2 ist eine untere Schranke für M . Also gilt nach Satz 5.6, dass

inf(M) = 2.

Wir werden jetzt die Existenz von Suprema verwenden, um zu zeigen, dass jede nicht-
negative reelle Zahl Wurzeln beliebiger Ordnung besitzt.

Satz 5.7. Es sei y ≥ 0 und n ∈ N. Dann existiert genau ein a ∈ R≥0 mit an = y.

Bemerkung. Den Spezialfall n = 2 von Satz 5.7 hatten wir eigentlich schon in Lemma 4.4
bewiesen. Der neue Beweis ist weniger explizit, aber dafür können wir nun die Aussage für
beliebiges n ∈ N beweisen.

Definition. Es sei y ≥ 0 und n ∈ N. Nach Satz 5.7 gibt es genau genau ein a ∈ R mit a ≥ 0,
so dass an = y. Wir bezeichnen a als die n-te Wurzel von y und bezeichnen es mit n

√
y. Wie

üblich schreiben wir
√
y := 2

√
y.

Beweis der Existenzaussage von Satz 5.7. Es sei y ≥ 0 und n ∈ N. Wir wollen zeigen, dass
es ein a ∈ R≥0 mit an = y gibt. Wir setzen

M := {x ∈ R |xn ≤ y}.

Wir wollen zeigen, dass das Supremum sup(M) von M die gewünschte Eigenschaft besitzt,
d.h. wir wollen zeigen, dass sup(M)n = y. Dazu müssen wir aber erst einmal zeigen, dass
das Supremum von M definiert ist:

Behauptung. Die Menge M ist nichtleer und die Menge M und ist nach oben beschränkt.

Die Menge M enthält x = 0, also ist M nichtleer. Es verbleibt zu zeigen, dass M nach
oben beschränkt ist. Wir unterscheiden die beiden Fälle y ≤ 1 und 1 < y.

(1) Wenn y ≤ 1, dann ist 1 eine obere Schranke von M .
Wir müssen also zeigen: x ∈ M =⇒ x ≤ 1. Mit anderen Worten, wir müssen
zeigen: x > 1 =⇒ x 6∈M .

Es sei also x > 1. Dann gilt xn > 1 ≥ y, d.h. x liegt nicht in M .
(2) Wenn 1 < y, dann ist y eine obere Schranke von M . In der Tat, denn aus x > y folgt

auch, dass xn > yn > y, d.h. x liegt nicht in M . �

Nach Satz 5.2 existiert also das Supremum vom M . Es genügt nun also folgende Behaup-
tung zu beweisen.

Behauptung. Für a := sup(M) gilt an = y.
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Nach Satz 5.3 (1) gibt es eine Folge (ak)k∈N von Zahlen in M mit lim
k→∞

ak = a. Dann gilt

folgt aus Satz 3.4 (2) folgt aus Satz 3.4 (2)
↓ ↓

y ≥ lim
k→∞

ank =
(

lim
k→∞

ak

)n
= an =

(
lim
k→∞

(
a+ 1

k

))n
= lim

k→∞

(
a+ 1

k

)n ≥ y.

↑ ↑
da ak∈M gilt ank≤y, die Ungleichung da a eine obere Schranke für M ist, gilt für alle c > a,
folgt nun aus Satz 3.6 dass cn > y, insbesondere gilt also (a+ 1

k )n > y
die Ungleichung folgt also aus Satz 3.6

Wir haben also gezeigt, dass y ≥ an ≥ y. Also ist an = y. �

y y

Graph der Funktion x 7→ x2

M ak a a+ 1
k

Beweis der Eindeutigkeitsaussage von Satz 5.7. Es sei y ≥ 0 und n ∈ N. Es seien also
a, b ∈ R≥0 und an = bn = x. Wir wollen zeigen, dass a = b. Rein aus Vergnügen geben wir
zwei verschiedene Beweise.

(1) Zuerst führen wir einen Widerspruchsbeweis durch. Nehmen wir also an, dass a 6= b.
O.B.d.A. können wir dann annehmen, dass a > b. Dann gilt aber y = an > bn = y
und dies ist ein Widerspruch.

(2) Es ist oft etwas eleganter, ohne Widerspruchsbeweis auszukommen. Für Feinschme-
cker ist also hier noch ein direkter Beweis, dass a = b. Wir betrachten folgende
Umformung:

0 = y − y = an − bn = (a− b) · (an−1 + abn−2 + a2bn−3 + · · ·+ abn−2 + bn−1).
↑

sieht man durch Ausmultiplizieren der rechten Seite

Einer der beiden Faktoren rechts muss also null sein. Wenn der erste Faktor 0 ist,
dann ist natürlich a = b. Nachdem a, b ≥ 0 kann der zweite Faktor nur 0 sein, wenn
alle Terme = 0 sind. Dies impliziert, dass a = b = 0. �

5.2. Teilfolgen und der Satz von Bolzano-Weierstraß.

Definition. Es sei (an)n∈N eine Folge und es sei n1 < n2 < . . . eine streng monoton steigende
Folge von natürlichen Zahlen. Dann ist

(ank)k∈N = (an1 , an2 , an3 , . . . )

auch eine Folge, welche wir als Teilfolge von (an)n∈N bezeichnen.
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Beispiel. Wir betrachten die Folge

(an)n∈N = (3 + 1
n
)n∈N = (4, 31

2
, 31

3
, 31

4
, 31

5
, 31

6
, 31

7
, 31

8
, 31

9
, . . . )

Wir betrachten nun die Indizes nk = 2k + 1, k ∈ N. Dann ist

(ank)k∈N = (3 + 1
2k+1

)k∈N = ( 31
3
, 31

5
, 31

7
, 31

9
, . . . )

eine Teilfolge der ursprünglichen Folge.

Wir werden öfters bewußt oder unbewußt folgendes Lemma verwenden.

Lemma 5.8. Es sei (an)n∈N eine Folge. Wenn die Folge (an)n∈N konvergiert, dann konver-
giert auch jede Teilfolge von (an)n∈N gegen den gleichen Grenzwert.

Beweis (∗). Es sei (an)n∈N eine Folge mit Grenzwert a. Es sei n1 < n2 < . . . eine streng
monoton steigende Folge von natürlichen Zahlen. Wir müssen zeigen, dass lim

k→∞
ank = a. Es

sei also ε > 0. Es folgt aus lim
n→∞

an = a, dass es ein N ∈ N gibt, so dass |an − a| < ε für

alle n ≥ N . Nachdem n1 < n2 < . . . eine streng monoton steigende Folge von natürlichen
Zahlen ist, gilt für jedes k ∈ N, dass nk ≥ k. Es folgt also, dass für alle k ≥ N gilt, dass
|ank − a| < ε. �

Wir wenden uns jetzt dem Hauptresultat von diesem Teilkapitel zu.

Satz 5.9. (Satz von Bolzano-Weierstraß) Jede beschränkte reelle Folge besitzt eine
Teilfolge, welche in R konvergiert.

Beispiel. Betrachten wir beispielsweise die Folge

an =


7, wenn n ≤ 10,

1 + 1
n
, wenn n > 10 Primzahl,

4− 1
n2 , wenn n > 10 keine Primzahl.

Diese Folge divergiert aber die Folge ist offensichtlich beschränkt. Wir betrachten zuerst
die Teilfolge, welche den geradzahligen Indizes entspricht. D.h. wir betrachten die Teilfolge

(a2, a4, a6, a8, a10, a12, a14, a16, . . . ) = (7, 7, 7, 7, 7, 4− 1
122
, 4− 1

142
, 4− 1

162
, . . . ).

Diese konvergiert offensichtlich gegen 4. Wir können aber auch die Teilfolge betrachten,
welche durch die “Primzahl-Indizes” gegeben ist. D.h. wir betrachten die Teilfolge

(a2, a3, a5, a7, a11, a13, a17, . . . ) = (7, 7, 7, 7, 1 1
11
, 1 1

13
, 1 1

17
, 1 1

19
, . . . )

Diese konvergiert offensichtlich gegen 1. Wir haben in diesem Fall also zwei konvergente
Teilfolgen gefunden, welche gegen zwei verschiedene Grenzwerte konvergieren.

Beweis. Es sei (an)n∈N eine beschränkte Folge. Es existieren also x1 ≤ y1 ∈ R, so dass für
alle n ∈ N gilt an ∈ [x1, y1] .

Behauptung. Es gibt eine Folge von Intervallen [xk, yk], k ≥ 2, so dass für alle k ∈ N gilt:

(1) [xk, yk] ist ein Teilintervall von [xk−1, yk−1] von halber Länge, und
(2) [xk, yk] enthält unendlich viele Folgenglieder.
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Wir betrachten zuerst den Fall k = 2. Es sei z := x1+y1
2

der Mittelpunkt des Intervalls
[x1, y1]. Nachdem [x1, y1] = [x1, z]∪[z, y1] und nachdem [x1, y1] unendlich viele Folgenglieder
enthält gilt:

(a) das Intervall [x1, z] enthält unendlich viele Folgenglieder, oder
(b) das Intervall [z, y1] enthält unendlich viele Folgenglieder.46

Wir betrachten nun das Intervall

[x2, y2] :=

{
[x1, z], falls [x1, z] unendlich viele Folgenglieder enthält,

[z, y1], andernfalls.

Wir definieren jetzt das nächste Intervall [x3, y3] mit dem gleichen Verfahren: Wir wieder-
um zerlegen [x2, y2] wiederum in zwei Hälften. Wir wählen die erste Hälfte, wenn diese
unendlich viele Folgenglieder enthält, ansonsten nehmen wir die zweite Hälfte. Indem wir
dieses Verfahren iterieren, erhalten wir die gewünschte Folge von Intervallen. �

Wir werden jetzt eine Teilfolge (ank)k∈N konstruieren, so dass jedes Folgenglied ank im
Intervall [xk, yk] liegt. Wir definieren diese Teilfolge von (an)n∈N wie folgt: Wir setzen

n1 := 1.

Iterativ definieren wir dann 47

n2 := min{n ∈ N |n > n1 und an ∈ [x2, y2]}
n3 := min{n ∈ N |n > n2 und an ∈ [x3, y3]}
...
nk := min{n ∈ N |n > nk−1 und an ∈ [xk, yk]}
...

Behauptung. Die Teilfolge (ank)k∈N konvergiert.

Aus der Vollständigkeit von R folgt, dass es genügt zu zeigen, dass die Teilfolge (ank)k∈N
eine Cauchy-Folge ist. Zur Erinnerung, per Definition gilt:

(ank)k∈N ist eine Cauchy-Folge ⇐⇒ ∀
ε>0
∃

K∈N
∀

k,l≥K
|ank − anl | < ε.

Es sei also ε > 0. Wir führen folgende Vorüberlegungen durch:

(1) Wir setzen d := y1 − x1, d.h. d ist die Länge vom ersten Intervall [x1, y1]. Nachdem
wir die Länge des Intervalls bei jedem Schritt halbiert haben, folgt, dass die Länge
des Intervalls [xk, yk] gegeben ist durch 1

2k−1 · d.

46Es können auch beide Intervalle unendlich viele Folgenglieder enthalten.
47Der Satz “es sei M eine Teilmenge von N, wir definieren n := min(M)” ist a priori etwas gefährlich,

weil diese Definition nur Sinn macht, wenn M nicht die leere Menge ist. Wenn wir also schreiben, “es sei
n := min(M)”, dann müssen wir immer überprüfen, dass die Menge nichtleer ist. In unserem Fall ist dies
in der Tat der Fall, die Mengen {n ∈ N |n > nk−1 und an ∈ [xk, yk]} sind nichtleer, weil nach Konstruktion
jedes Intervall [xk, yk] unendlich viele Folgenglieder enthält.
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(2) Aus dem Los Alamos Satz 3.9 folgt, dass lim
k→∞

1
2k−1 ·d = 0. Es existiert also insbesondere

ein K ∈ N, so dass 1
2K−1 · d < ε.

Es seien k, l ≥ K gegeben. Dann gilt

|ank − anl | ≤ Länge von [xK , yK ] =
1

2K−1
· d < ε.

↑ ↑ ↑
aus k, l ≥ K folgt, dass nach Konstruktion von [xK , yK ] Wahl von K

ank
, anl

∈ [xK , yK ] �

���� �� ������������ �� ���� ���� �� ���������������� ��������

Folgenglieder an

[x1, y1]

[x3, y3]

[x2, y2]

[x4, y4]

x1 y1z

Abbildung 15. Illustration für den Beweis vom Satz von Bolzano-Weierstraß.
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6. Konvergenz von Reihen

6.1. Erinnerung an Reihen. Wir erinnern im Folgenden noch einmal an den Begriff der
Reihe. Wir werden diesen Begriff in diesem Kapitel ausführlichst behandeln. Es ist dabei
hilfreich den ursprünglich Begriff der Reihe, welchen wir in Teilkapitel 3.4 eingeführt hatten,
etwas zu erweitern.

Definition. Es sei w ∈ N0 und es sei (an)n≥w eine Folge von reellen Zahlen.48

(1) Für k ∈ N0 definieren wir

k-te Partialsumme der Folge (an)n≥w :=
w+k∑
n=w

an = aw + aw+1 + · · ·+ aw+k.

(2) Wir definieren

Reihe
∑
n≥w

an := Folge der Partialsummen der Folge (an)n≥w

= Folge (aw, aw+aw+1, aw+aw+1+aw+2, . . . ) = Folge aw
aw+aw+1

aw+aw+1+aw+2

...
Wir nennen die Zahlen an die Glieder der Reihe.

(3) Wenn die Reihe
∑
n≥w

an konvergiert, d.h. wenn die Folge der Partialsummen konver-

giert, dann schreiben wir
∞∑
n=w

an := Grenzwert der Reihe
∑
n≥w

an := lim
k→∞

w+k∑
n=w

an.

Der Grenzwert der Reihe wird oft auch nur als Wert der Reihe bezeichnet. Zudem
schreiben wir auch kurz:

∞∑
n=w

an := ±∞, wenn die Reihe
∑
n≥w

an bestimmt gegen ±∞ divergiert.

Wir erinnern an folgenden Satz.

Satz. 3.16 Für jedes z ∈ R gilt:49

∞∑
n=0

zn =


1

1− z
, falls |z| < 1,

+∞, falls z ≥ 1,
divergiert, falls z ≤ −1.

Wir erinnern auch noch an folgenden Satz.50

48In Teilkapitel 3.4 hatten wir nur den Fall w = 0 betrachtet.
49Die Reihe

∑
n≥0

xn hatten wir geometrische Reihe genannt.

50Streng genommen hatten wir damals den Satz der Einfachheit halber nur für w = 0 formuliert. Der
allgemeine Fall wird natürlich genauso bewiesen wie der Fall w = 0.
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Satz. 3.17 Es seien
∑
n≥w

an und
∑
n≥w

bn zwei Reihen, welche konvergieren, oder welche be-

stimmt divergieren. Dann gelten folgende Aussagen:

(1)
∞∑
n=w

(an + bn) =
∞∑
n=w

an +
∞∑
n=w

bn, wenn die Summe “+” auf der
rechten Seite in der Tabelle
auf Seite 42 definiert wurde.

(2) Für λ ∈ R gilt
∞∑
n=w

λ · an = λ ·
∞∑
n=w

an.

(3) Wenn an ≤ bn für alle n ∈ N≥w, dann gilt
∞∑
n=w

an ≤
∞∑
n=w

bn.

Mithilfe von Satz 3.17 können wir folgendes Lemma beweisen.

Lemma 6.1. Es seien (an)n≥w und (bn)n≥w zwei Folgen. Wenn sich die Folgen nur in

endlich vielen Folgengliedern unterscheiden, dann konvergiert die Reihe
∑
n≥w

an genau dann,

wenn die Reihe
∑
n≥w

bn konvergiert.

Beispiel. Für n ∈ N0 betrachten wir die Folgen

an :=

{
1010, wenn n ≤ 1524,
2−n, wenn n > 1524

und bn := 2−n.

Die beiden Folgen unterscheiden sich in genau 1525 Gliedern. Es folgt aus Satz 3.16, dass

die Reihe
∑
n≥0
bn =

∑
n≥0

2−n =
∑
n≥0

(1
2
)n konvergiert. Es folgt nun aus Lemma 6.1, dass die etwas

mysteriösere Reihe
∑
n≥0
an ebenfalls konvergiert.

Beweis (∗). Es seien
∑
n≥w

an und
∑
n≥w

bn zwei Reihen, welche sich nur in endlich vielen Rei-

hengliedern unterscheiden. Nachdem die Aussage des Korollars symmetrisch ist, genügt es
folgende Behauptung zu beweisen:

Behauptung. Wenn
∑
n≥w

an konvergiert, dann konvergiert auch
∑
n≥w

bn.

Wir setzen cn := bn− an. Die Folge (cn)n≥w besitzt nach Voraussetzung nur endlich viele

Folgenglieder, welche von 0 verschieden sind. Die Reihe
∑
n≥w

cn ist daher ab einem gewissen

Folgenglied konstant. Insbesondere konvergiert die Reihe
∑
n≥w

cn. Es folgt nun aus Satz 3.17

(1), dass auch die Reihe
∑
n≥w

(an + cn) =
∑
n≥w

bn konvergiert. �

Nachdem wir jetzt Reihen mit “verschiedenen Anfängen” betrachten, wollen wir noch
zeigen, dass der “Anfangspunkt” für die Konvergenz einer Reihe keine Rolle spielt. Genauer
gesagt, wir haben folgendes Lemma.
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Lemma 6.2. Es sei (an)n∈N0 eine Folge von reellen Zahlen und es sei w ∈ N0. Dann gilt∑
n≥0

an konvergiert ⇐⇒
∑
n≥w

an konvergiert.

Im Falle der Konvergenz gilt zudem:
∞∑
n=0

an︸ ︷︷ ︸
Wert der Reihe

=
w−1∑
n=0

an︸ ︷︷ ︸
endliche Summe

+
∞∑
n=w

an.︸ ︷︷ ︸
Wert der Reihe

Beweis. Das Lemma folgt leicht aus den Definitionen. Wir überlassen es daher der Leser-
schaft den Beweis aufzuschreiben. �

6.2. Konvergenzkriterien für Reihen. Im Folgenden wollen wir verschiedene notwendi-
ge und hinreichende Kriterien für die Konvergenz von Reihen kennenlernen. Wir beginnen
mit einem notwendigen Kriterium für die Konvergenz.

Satz 6.3. (Nullfolgen-Kriterium) Wenn eine Reihe
∑
n≥w

an konvergiert, dann bilden die

Reihenglieder an eine Nullfolge.

Beweis. Um die Notation zu vereinfachen betrachten wir nur den Fall w = 0. Es sei also∑
n≥0

an eine konvergente Reihe. Nach Voraussetzung konvergiert die Folge der Partialsummen

sn :=
n∑
k=0

ak wobei n ∈ N0.

Wir wollen zeigen, dass (an)n∈N eine Nullfolge ist, d.h. wir wollen zeigen

∀
ε>0
∃
N∈N
∀

n≥N
|an| < ε.

Es sei also ε > 0.

Wir haben also Informationen über das Verhalten der Partialsummen, brauchen nun
aber Informationen über die an selber. Per Definition ist an = sn− sn−1. Wir müssen
nun also die Differenzen sn − sn−1 kontrollieren. Dies schaffen wir dadurch, dass wir
uns daran entsinnen, dass nach Satz 4.1 die Konvergenz der Folge (sn)n∈N0 bedeutet,
dass diese Folge insbesondere eine Cauchy-Folge ist.

Es folgt aus der Voraussetzung und Satz 4.1, dass die Partialsummen sn =
n∑
k=0
ak eine

Cauchy-Folge bilden. Insbesondere gibt es also ein M ∈ N, so dass:

für alle n,m ≥M gilt |sn − sm| < ε.

Daraus folgt: für alle n ≥ N := M + 1 gilt |an| = |sn − sn−1| < ε.
↑

es ist sn − sn−1 = an, denn alle anderen Terme von sn − sn−1 heben sich weg �
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Satz 6.4. Es sei (an)n≥w eine Folge, so dass für alle n ∈ N≥w gilt: an ≥ 0.

(1) Wenn die Folge der Partialsummen unbeschränkt ist, dann gilt
∞∑
n=w

an = +∞.

(2) Wenn die Folge der Partialsummen beschränkt ist, dann konvergiert die Reihe
∑
n≥w

an.

Beweis. Nachdem alle Folgenglieder an ≥ 0 folgt, dass die Folge der Partialsummen(w+k∑
n=w

an

)
k∈N0

= (aw, aw + aw+1, aw + aw+1 + aw+2, . . . )

monoton steigend ist. Der Satz folgt nun sofort aus Satz 3.15 und dem Konvergenzsatz 4.3.
�

Definition. Wir bezeichnen die Reihe∑
n≥1

1

n
=
(
1, 1 + 1

2
, 1 + 1

2
+ 1

3
, 1 + 1

2
+ 1

3
+ 1

4
, . . . )

als die harmonische Reihe.
Der folgende Satz zeigt unter Anderem, dass die Umkehrung des Nullfolgen-Kriteriums 6.3

nicht gilt.

Satz 6.5. (Divergenz der harmonischen Reihe) Die harmonische Reihe divergiert
bestimmt gegen +∞, d.h.

∞∑
n=1

1

n
= +∞.

Beweis. Nachdem alle Reihenglieder 1
n

positiv sind, genügt es nach Satz 6.4 folgende Be-
hauptung zu beweisen.

Behauptung. Die Folge der Partialsummen sk :=
k∑

n=1

1
n

ist unbeschränkt.

Wir betrachten im Folgenden die Partialsummen, welche zur Zweierpotenz k = 2m

gehören. Wir führen folgende Abschätzung durch:

sk = s2m = 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ . . . + 1

2m−1 + 1
+ · · ·+ 1

2m

≥ 1+ 1

2
+ 1

4
+ 1

4︸ ︷︷ ︸
=2·1

4
=
1
2

+ 1

8
+ 1

8
+ 1

8
+ 1

8︸ ︷︷ ︸
=4·1

8
=
1
2

+ . . . + 1

2m
+ · · ·+ 1

2m︸ ︷︷ ︸
=2m−1· 1

2m
=
1
2

= 1 + m

2
.

Wir sehen also, dass die Partialsummen beliebig groß werden können. Insbesondere ist die
Folge der Partialsummen nicht beschränkt. �

Für einen festen Exponenten d ∈ N betrachten wir die Reihe
∑
n≥1

1
nd

. Wenn d = 1, dann

erhalten wir die harmonische Reihe, welche, wie wir gerade gesehen hatten, divergiert. Der
nächste Satz besagt nun, dass die Reihe konvergiert, sobald der Exponent d ≥ 2 ist.
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Satz 6.6. Für jedes d ∈ N mit d ≥ 2 konvergiert die Reihe
∑
n≥1

1

nd
.

Beweis. Nachdem alle Reihenglieder 1
nd

positiv sind, genügt es nach Satz 6.4 folgende Be-
hauptung zu beweisen.

Behauptung. Die Folge der Partialsummen sk :=
k∑

n=1

1
nd

ist beschränkt.

Es sei also k ∈ N. Wir wählen ein m ∈ N, so dass 2m+1 − 1 ≥ k. Dann gilt 51

0 ≤ sk ≤ s2m+1−1 =
2m+1−1∑
n=1

1

nd

= 1 + 1

2d
+ 1

3d
+ 1

4d
+ 1

5d
+ 1

6d
+ 1

7d
+ . . . + 1

(2m)d
+ · · ·+ 1

(2m+1 − 1)d

≤ 1 + 1

2d
+ 1

2d︸ ︷︷ ︸
=

2
2d

+ 1

4d
+ 1

4d
+ 1

4d
+ 1

4d︸ ︷︷ ︸
=

4
4d

=
22

(22)d

+ . . . + 1

(2m)d
+ · · ·+ 1

(2m)d︸ ︷︷ ︸
=

2m

(2m)d

= 1 + 2

2d
+ (22)

(22)d
+ · · ·+ 2m

(2m)d
=

m∑
i=0

2i

(2i)d
=

m∑
i=0

2i · 2−id =
m∑
i=0

(
2−d+1

)i
=

1− (2−d+1)m+1

1− 2−d+1
≤ 1

1− 2−d+1
.

↑
nach Satz 2.2 angewandt auf x=2−d+1, hierbei verwenden wir, dass aus d>1 folgt, dass 1− 2−d+1 6=0

Wir haben also gezeigt, dass für alle k ∈ N0 gilt: sk ∈ [0, 1
1−2−d+1 ]. Insbesondere haben wir

damit bewiesen, dass die Folge der Partialsummen beschränkt ist. �

Bemerkung. Satz 6.6 besagt also insbesondere, dass die Reihe
∑
n≥1

1
n2 konvergiert, aber der

Satz sagt nichts über den Grenzwert der Reihe aus. Als Appetitanreger wollen wir jetzt
schon mal erwähnen, dass wir ganz am Ende der Vorlesung sehen werden, dass

∞∑
n=1

1

n2
= π2

6
.

Aber um dies zu beweisen, werden wir erst mal π mathematisch präzise einführen müssen.
Dies geschieht in einem späteren Kapitel.

Satz 6.7. (Leibniz-Kriterium) Es sei (an)n≥w eine monoton fallende Folge. Wenn gilt
lim
n→∞

an = 0, dann konvergiert die alternierende52Reihe∑
n≥w

(−1)n · an.

51Das Argument ähnelt auf dem ersten Blick dem Beweis von Satz 6.5, aber in diesem Fall schätzen wir
nach oben ab, während wir im Beweis von Satz 6.5 nach unten abgeschätzt hatten.

52Die Reihe
∑
n≥w

(−1)n · an heißt alternierend, weil die Reihenglieder mit alternierenden Vorzeichen

auftauchen.



78

Beispiel. Es sei (an)n∈N0 eine monoton fallende Folge, so dass lim
n→∞

an = 0. In Abbildung 16

versuchen wir die Partialsummen a0, a0 − a1, a0 − a1 + a2, . . . zu illustrieren.

a0

a0−a1+a2

∞∑
n=0

(−1)n · an0

a0−a1

Abbildung 16. Illustration des Leibniz-Kriteriums.

Beispiel. Es folgt beispielsweise aus dem Leibniz-Kriterium, dass die Reihe∑
n≥1

(−1)n · 1

n

konvergiert. Das Leibniz-Kriterium gibt uns aber keine Aussage über den Grenzwert. Ganz
am Ende der Vorlesung Analysis I werden wir sehen, dass der Grenzwert der Reihe − ln(2)
beträgt. Aber bevor wir diese Aussage beweisen können, müssen wir sowieso erst noch den
natürlichen Logarithmus einführen.

Bemerkung. Es sei (an)n≥w eine monoton fallende Folge, so dass lim
n→∞

an = 0. Es folgt aus

der Bemerkung auf Seite 53, dass für alle n ≥ w gilt an ≥ 0.

Beweis. Um die Notation etwas zu vereinfachen betrachten wir den Fall w = 0. Wie üblich
bezeichnen wir mit

sn :=
n∑
k=0

(−1)k · ak

die n-te Partialsumme der Reihe. Es folgt aus der Vollständigkeit von R, dass es genügt
zu zeigen, dass die Folge (sn)n∈N0 der Partialsummen eine Cauchy-Folge ist. Mit anderen
Worten, wir wollen folgende Aussage beweisen:

(∗) ∀
ε>0
∃
N∈N

∀
n,m≥N

|sn − sm| < ε.

Wir müssen nun also die Differenzen |sn − sm| zielführend abschätzen.

Behauptung. Für n ≥ m ∈ N gilt sn − sm ∈ [−am+1, am+1].

Wir betrachten zuerst den Fall, dass n ungerade und m ungerade sind. In diesem Fall
gilt:

die Vorzeichen erhalten wir aus der Voraussetzung, dass n ungerade und m ungerade
↓

sn − sm =
n∑

i=m+1

(−1)i · ai = am+1 − am+2︸ ︷︷ ︸
≥0,weil monoton fallend

+ . . . + an−1 − an︸ ︷︷ ︸
≥0,weil monoton fallend

≥ 0.
↑

alle anderen Terme der
Partialsummen heben sich weg
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Andererseits gilt
da n ungerade und m ungerade
↓

sn − sm =
n∑

i=m+1

(−1)i · ai = am+1 −am+2 + am+3︸ ︷︷ ︸
≤0,weil monoton fallend

. . . −an−2 + an−1︸ ︷︷ ︸
≤0,weil monoton fallend

− an

≤ am+1 − an ≤ am+1.
↑

nach der Bemerkung vor dem Beweis gilt an ≥ 0

Wir haben also bewiesen, dass in diesem Fall gilt, dass sn − sm ∈ [0, am+1]. Ganz ähnlich
zeigt man auch:

(1) Wenn n gerade und m ungerade, dann ist ebenfalls sn − sm ∈ [0, am+1].
(2) Wenn n beliebige und m gerade, dann ist sn − sm ∈ [−am+1, 0]. �

Mit dieser Behauptung beweist sich die gewünschte Aussage (∗) fast von selbst. In der
Tat, sei ε > 0. Nachdem lim

n→∞
an = 0 existiert ein N ∈ N, so dass |an| < ε für alle n ≥ N .

Es seien nun n,m ≥ N . Nachdem |sn − sm| = |sm − sn| können wir o.B.d.A. annehmen,
dass n ≥ m. Dann gilt

|sn − sm| ≤ |am+1| < ε.
↑ ↑

folgt aus der Behauptung da m+1≥N �

Satz 6.8. (Majoranten-Kriterium) Es seien (an)n≥w und (bn)n≥w zwei Folgen. Dann
gilt

bn ≥ |an| für alle n und
∑
n≥w

bn konvergiert =⇒
∑
n≥w

an konvergiert.

Beispiel. Wir wollen zeigen, dass die Reihe∑
n≥1

1

n2 + 2

konvergiert. Wir setzen an = 1
n2+2

und bn = 1
n2 . Offensichtlich gilt für alle n ∈ N, dass

1
n2 ≥ 1

n2+2
. Satz 6.6 besagt, dass die Reihe

∑
n≥1

1
n2 konvergiert. Es folgt nun also aus dem

Majoranten-Kriterium 6.8, dass auch unsere ursprüngliche Reihe
∑
n≥1

1
n2+2

konvergiert.

Beweis. Um die Notation zu vereinfachen nehmen wir an, dass w = 0. Für n ∈ N0 betrach-
ten wir die Partialsummen

sn :=
n∑
k=0
ak und tn :=

n∑
k=0
bk.

Nachdem eine Reihe konvergiert genau dann, wenn die Partialsummen eine Cauchy-Folge
bilden müssen wir also folgende Aussage beweisen:

bn ≥ |an| für alle n ∈ N0 und ∀
ε>0
∃
N∈N

∀
n,m≥N

|tn−tm| < ε =⇒ ∀
ε>0
∃
N∈N

∀
n,m≥N

|sn−sm| < ε.
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Es sei also ε > 0 gegeben. Nach Voraussetzung existiert ein ein N ∈ N0, so dass für alle
n ≥ m ≥ N gilt |tn − tm| < ε. Dann gilt aber auch für alle n ≥ m ≥ N , dass

|sn − sm| =
∣∣∣ n∑
k=m+1

ak

∣∣∣ ≤
n∑

k=m+1

|ak| ≤
n∑

k=m+1

bk = |tn − tm| < ε.
↑ ↑ ↑ ↑

alle anderen Terme Dreiecksungleichung nach Voraussetzung Wahl von N
heben sich weg �

Korollar 6.9. (Minoranten-Kriterium) Es seien (an)n≥w und (bn)n≥w zwei Folgen.
Dann gilt

|an| ≤ bn für alle n und
∑
n≥w

an divergiert =⇒
∑
n≥w

bn divergiert.

Beispiel.

Da 1√
n
≥ 1

n
für alle n und da

∑
n≥1

1

n
divergiert︸ ︷︷ ︸

dies wissen wir aus Satz 6.5

folgt aus dem Minoranten-Krit.:
∑
n≥1

1√
n

divergiert.

Beweis (∗). Wie wir gleich sehen werden ist das Minoranten-Kriterium eigentlich nur eine
Umformulierung des Majoranten-Kriteriums. Es seien also (an)n≥w und (bn)n≥w zwei Folgen,
so dass für alle n gilt, dass |an| ≤ bn. Das Majoranten-Kriterium besagt:∑

n≥w
bn konvergiert =⇒

∑
n≥w

an konvergiert.

Aus dem Prinzip der Kontraposition erhalten wir folgende Aussage:∑
n≥w

bn divergiert ⇐=
∑
n≥w

an divergiert.

Das ist genau die Aussage, welche wir beweisen wollten. �

6.3. Absolute Konvergenz von Reihen und das Quotienten-Kriterium.

Definition. Eine Reihe
∑
n≥w

an heißt absolut konvergent, wenn die Reihe
∑
n≥w
|an| über die

Absolutbeträge konvergiert.

Beispiel. Wir betrachten die Reihe
∑
n≥1

(−1)n · 1
n
. Es folgt aus dem Leibniz-Kriterium, dass

diese Reihe konvergiert. Aber die Reihe konvergiert nicht absolut, weil wir in Satz 6.5
gesehen hatten, dass die Reihe ∑

n≥1

∣∣(−1)n · 1

n

∣∣ =
∑
n≥1

1

n

divergiert.

Der folgende Satz besagt insbesondere, dass jede absolut konvergente Reihe konvergiert.
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Satz 6.10. Es sei (an)n≥w eine Folge. Wenn die Reihe
∑
n≥w
|an| über die Absolutbeträge

konvergiert, dann konvergiert auch die Reihe
∑
n≥w

an. Zudem gilt dann, dass∣∣∣ ∞∑
n=w

an

∣∣∣ ≤ ∞∑
n=w
|an|.

Beispiel. Wir betrachten die Folge

an :=

{
− 1
n2 , wenn n Primzahl,
1
n2 , wenn n keine Primzahl.

Es folgt aus Satz 6.6 und aus Satz 6.10, dass die Reihe
∑
n≥1
an konvergiert.

Beweis. Es sei
∑
n≥w

an eine Reihe, so dass die Reihe
∑
n≥w
|an| über die Absolutbeträge kon-

vergiert. Wir wenden das Majoranten-Kriterium 6.8 auf bn := |an| an und erhalten daraus

sofort, dass auch die ursprüngliche Reihe
∑
n≥w

an konvergiert. Für die Grenzwerte der Reihen

gilt zudem:∣∣∣ ∞∑
n=w

an

∣∣∣ =
∣∣∣ lim
k→∞

k∑
n=w

an

∣∣∣ = lim
k→∞

∣∣∣ k∑
n=w

an

∣∣∣ ≤ lim
k→∞

k∑
n=w
|an| =

∞∑
n=w
|an|

↑ ↑
ganz allgemein gilt

∣∣ lim
k→∞

xk
∣∣ = lim

k→∞
|xk| Dreiecksungleichung und Satz 3.14 �

Satz 6.11. (Quotienten-Kriterium) Es sei (an)n≥w eine Folge von reellen Zahlen mit
an 6= 0, so dass der Grenzwert

Θ := lim
n→∞

∣∣∣an+1

an

∣∣∣
existiert.

(1) Wenn Θ < 1, dann konvergiert die Reihe
∑
n≥w

an absolut. (Insbesondere konvergiert

dann nach Satz 6.10 auch die Reihe
∑
n≥w

an.)

(2) Wenn Θ > 1, dann divergiert die Reihe
∑
n≥w

an.

Beispiel.

(1) Wir betrachten die Folge an = n+1
5n

. Dann gilt

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

(n+ 2) · 5n

5n+1 · (n+ 1)
= lim

n→∞

n+ 2

5(n+ 1)
=

1

5
.

Es folgt also aus Satz 6.11, dass die Reihe
∑
n≥0

n+ 1

5n
absolut konvergiert und insbeson-

dere auch “ganz normal” konvergiert.



82

(2) Es sei x ∈ (−1, 1) mit x 6= 0. Wir betrachten noch einmal die geometrische Reihe∑
n≥0
xn, d.h. wir betrachten an = xn. Dann ist Θ := lim

n→∞

∣∣an+1

an

∣∣ = lim
n→∞

∣∣xn+1

xn

∣∣ = |x|. Es

folgt also aus Satz 6.11, dass die Reihe
∑
n≥0
xn konvergiert. Diese Aussage hatten wir

natürlich schon in Satz 3.16 bewiesen.
(3) Es sei k ∈ N. Wir betrachten die Reihe

∑
n≥1

1
nk

. In diesem Fall ist

Θ := lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ nk

(n+ 1)k

∣∣∣ = lim
n→∞

1
(1+ 1

n )k
= 1.

Wenn k = 1, dann divergiert die Reihe
∑
n≥1

1
nk

=
∑
n≥1

1
n

nach Satz 6.5. Hingegen wenn

k = 2, dann konvergiert die Reihe
∑
n≥1

1
nk

=
∑
n≥1

1
n2 nach Satz 6.6. Wir sehen also, wenn

Θ = 1, dann kann man keine allgemein gültige Aussage treffen.

Beweis von Satz 6.11 (1). Um die Notation etwas zu vereinfachen betrachten wir nur den
Fall w = 0. Es sei also (an)n∈N0 eine Folge von reellen Zahlen an 6= 0, so dass

Θ = lim
n→∞

∣∣an+1

an

∣∣ < 1.

Wir müssen zeigen, dass die Reihe
∑
n≥0
|an| konvergiert.

Das obige Beispiel der geometrischen Reihe legt nahe, dass unsere jetzige Reihe ei-
ner geometrischen Reihe “ähnelt”. Der Gedanke ist jetzt die Konvergenz unserer
Reihe mithilfe der schon bekannten Konvergenz von geometrischen Reihen und dem
Majoranten-Kriterium zu beweisen.

Nachdem Θ < 1 können wir ein λ ∈ (Θ, 1) wählen. Es folgt aus der Definition von
lim
n→∞
|an+1

an
| = Θ, angewandt auf ε = λ − Θ > 0, dass es ein N ∈ N0 gibt, so dass für

alle n ≥ N gilt:∣∣∣an+1

an

∣∣∣ ∈ (Θ− ε,Θ + ε︸ ︷︷ ︸
=λ

), insbesondere
∣∣∣an+1

an

∣∣∣ ≤ λ, woraus folgt, dass |an+1| ≤ λ · |an|.

Indem wir die letzte Ungleichung mehrmals anwenden erhalten wir für beliebiges n ≥ N
folgende Ungleichung:

(∗) |an| ≤ λ · |an−1| ≤ λ2 · |an−2| ≤ . . . ≤ λn−N · |aN | = λn · λ−N · |aN |︸ ︷︷ ︸
=:C

.

Zusammengefasst haben wir also folgende Aussage bewiesen:

Aussage. Es gibt ein λ ∈ [0, 1), ein C ∈ R und ein N ∈ N0, so dass für alle n ≥ N gilt:
|an| ≤ λn · C.
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Mit dieser Aussage ist es nun ein Leichtes zu beweisen, dass die Reihe
∑
n≥0
|an| konvergiert:

(1) Nachdem λ ∈ [0, 1) folgt aus Satz 3.16 und Lemma 6.2, dass die Reihe
∑
n≥N

λn · C
konvergiert.

(2) Es folgt aus (1) und der Aussage, zusammen mit Majoranten-Kriterium, dass die

Reihe
∑
n≥N
|an| konvergiert.

(3) Es folgt aus (2) und Lemma 6.2, dass die Reihe
∑
n≥0
|an| konvergiert. �

��
��
��
��

�� ���� ������ ������ �� ����

Θ 1

4 N 32

0

1n = 0

Intervall (Θ−ε,Θ+ε)

∣∣∣an+1

an

∣∣∣

λ

Abbildung 17. Abbildung zum Beweis von Satz 6.11.

Beweis von Satz 6.11 (2). Um die Notation etwas zu vereinfachen betrachten wir wiederum
nur den Fall w = 0. Es sei also (an)n∈N0 eine Folge von reellen Zahlen an 6= 0, so dass

Θ = lim
n→∞

∣∣an+1

an

∣∣ > 1.

Wir müssen zeigen, dass die Reihe
∑
n≥0
|an| divergiert. Wir wählen ein λ ∈ (1,Θ). Ganz

analog zum Beweis von (1) sieht man, dass es ein N ∈ N0 gib, so dass für beliebiges n ≥ N
gilt |an| ≥ λn−N · |aN |. Daraus folgt schon, dass die Folge (an)n∈N0 keine Nullfolge ist. Also

folgt aus dem Nullfolgen-Kriterium 6.3, dass die Reihe
∑
n≥w

an divergiert. �

6.4. Umordnung von Reihen. Bevor wir zum eigentlichen Thema dieses Teilkapitels
schreiten wollen wir noch folgende suggestive Notation einführen.

Notation. Für eine konvergente Reihe
∑
n≥1
an schreiben wir

a1 + a2 + a3 + . . . := lim
k→∞

k∑
n=1

an =:
∞∑
n=1

an.

Beispiel. Es ist

1

2
−1

2
+

1

3
−1

3
+

1

4
−1

4
+

1

5
−1

5
+· · · = lim

k→∞
k-te Partialsumme = lim

k→∞

{
1

m+2
, wenn k=2m+1

0, sonst
= 0.

Jetzt wenden wir uns dem eigentlichen Thema des Teilkapitels zu. Es folgt aus dem
Kommutativgesetz, dass es egal ist, in welcher Reihenfolge wir endlich viele reelle Zahlen
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addieren. Beispielsweise gilt

a1 + a2 + a3 = a3 + a1 + a2 = a2 + a3 + a1.

Etwas allgemeiner, wenn a1, . . . , an ∈ R endlich viele reelle Zahlen sind, und wenn zudem
τ : {1, . . . , n} → {1, . . . , n} eine Bijektion ist, dann gilt

a1 + a2 + a3 + · · ·+ an = aτ(1) + aτ(2) + aτ(3) + · · ·+ aτ(n).

Es stellt sich die Frage, ob die “naive” Verallgemeinerung dieser Aussage auf Reihen eben-
falls gilt. Dies führt uns zu folgender Definition.

Definition. Es sei
∑
n≥w

an eine Reihe und es sei τ : N≥w → N≥w eine Bijektion. Wir nennen

die Reihe
∑
n≥w

aτ(n) eine Umordnung von
∑
n≥w

an.

Es stellt sich also die Frage, ob Umordnungen die Konvergenz und den Grenzwert einer
Reihe abändern können. Das folgende Beispiel bejaht diese Frage.

Beispiel. Wir betrachten noch einmal die obige Reihe. Wir hatten gesehen, dass
1

2
− 1

2
+

1

3
− 1

3
+

1

4
− 1

4
+

1

5
− 1

5
+ . . . = 0.

Wir betrachten nun jedoch folgende Umordnung:53

1

2
+

1

3
+

1

4
− 1

2︸ ︷︷ ︸
>0

+
1

5
+

1

6
− 1

3︸ ︷︷ ︸
>0

+
1

7
+

1

8
− 1

4︸ ︷︷ ︸
>0

+ . . .

Wir sehen also, dass alle Partialsummen dieser Reihe ≥ 1
2

sind. Insbesondere wird diese
Reihe definitiv nicht gegen 0 konvergieren. D.h. die umgeordnete Reihe konvergiert nicht
gegen den Grenzwert der ursprünglichen Reihe.

Wir haben also gesehen, dass Umordnungen sehr wohl den Grenzwert abändern können.
Es gilt sogar folgende ganz allgemeine Aussage:

Satz 6.12. (Riemannscher Umordnungssatz) Es sei
∑
n≥w

an eine Reihe welche konver-

giert, aber nicht absolut konvergiert.54

(1) Für jedes x ∈ R existiert eine Umordnung, so dass die umgeordnete Reihe gegen x
konvergiert.

53Wir können die Umordnung auch präzise mithilfe einer Bijektion τ : N→ N angeben. Wir betrachten

τ : N → N

n 7→


1, falls n = 1,
4m+ 3, falls es ein m ∈ N0 mit n = 3m+ 2 gibt,
4m+ 5, falls es ein m ∈ N0 mit n = 3m+ 3 gibt,
2m+ 2, falls es ein m ∈ N0 mit n = 3m+ 4 gibt.

Man kann leicht nachweisen, dass dies ist eine Bijektion ist. Wenn wir die ursprüngliche Reihe mithilfe von
τ umordnen, dann erhalten wir in der Tat die angegebene Reihe.



85

(2) Es gibt Umordnungen, welche bestimmt gegen ±∞ divergieren.

Beispiel. Auf Seite 80 hatten wir gesehen, dass die Reihe
∑
n≥1

(−1)n · 1
n

konvergiert, aber

nicht absolut konvergiert. Der Riemannsche Umordnungssatz impliziert also, dass es zu

jedem x ∈ R ∪ {±∞} eine Bijektion τ : N→ N mit
∞∑
n=1

(−1)τ(n) · 1
τ(n)

= x gibt.

Beweis. Wir werden diesen Satz nicht verwenden, und wir werden ihn daher auch nicht
beweisen. Ein Beweis wird beispielsweise in [He, Satz 32.4] und [Hi, Kapitel 19] gegeben.
Die Beweisidee ist zudem sehr hübsch auf

http://de.wikipedia.org/wiki/Riemannscher_Umordnungssatz

skizziert. Der Beweis kann auch als anspruchsvolle Übungsaufgabe mit dem vorhandenen
Wissensstand durchgeführt werden. �

Wir haben jetzt also gesehen, dass eine Umordnung das Konvergenzverhalten einer nicht
absolut konvergenten Reihe völlig abändern kann. Der folgende Satz besagt nun, dass dieses
Problem nicht auftaucht, wenn wir eine absolut konvergenten Reihe umordnen.

Satz 6.13. (Umordnungssatz) Wenn
∑
n≥w

an eine Reihe ist, welche absolut konvergiert,

dann konvergiert auch jede Umordnung von
∑
n≥w

an absolut gegen denselben Grenzwert.

Beispiel. Auf Seite 81 hatten wir, mithilfe des Quotienten-Kriteriums gezeigt, dass die

Reihe
∑
n≥0

n+ 1

5n
absolut konvergiert. In diesem Fall führt also jede Umordnung zum gleichen

Ergebnis. Dies ist ein Grund, warum absolute Konvergenz von Reihen eine feine Sache ist.

Wir werden diesen Satz im weiteren Verlauf der Vorlesung nicht benötigen. Wir haben
deswegen den Satz in der Vorlesung nicht bewiesen. Der Vollständigkeit halber geben wir
den Beweis im nächsten Teilkapitel.

6.5. Beweis des Umordnungssatzes 6.13 (∗). Wir wollen nun also den Umordnungs-
satz 6.13 beweisen. Im Beweis des Umordungssatzes 6.13 werden wir folgendes Lemma
verwenden.

Lemma 6.14. Es sei
∑
n≥1
an eine konvergente Reihe. Zu jedem ε > 0 gibt es ein N ∈ N, so

dass ∣∣∣ ∞∑
n=N

an

∣∣∣ < ε.

Beweis von Lemma 6.14. Es sei also
∑
n≥1
an eine konvergente Reihe und es sei ε > 0. Wie

üblich bezeichnen wir mit sk =
k∑

n=1
an die k-te Partialsumme der Reihe

∑
n≥1
an. Nachdem die

54Wir hatten gezeigt, dass die Reihe 1
2 −

1
2 + 1

3 −
1
3 + 1

4 −
1
4 + 1

5 −
1
5 + . . . konvergiert. Es folgt zudem

fast sofort aus der Divergenz der harmonischen Reihe, also aus Satz 6.5, dass unsere Reihe nicht absolut
konvergiert.

http://de.wikipedia.org/wiki/Riemannscher_Umordnungssatz
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Reihe konvergiert, folgt aus Satz 4.1, dass die Partialsummen eine Cauchy-Folge bilden.
Insbesondere gibt es ein M ∈ N, so dass für alle k, l ≥ M gilt: |sk − sl| < ε

2
. Insbesondere

gilt für alle k ≥ N := M + 1, dass∣∣∣∣ ∞∑
n=N

an

∣∣∣∣ = lim
k→∞

∣∣∣∣ k∑
n=N

an

∣∣∣∣ = lim
k→∞

< ε
2
, da k,N ≥M︷ ︸︸ ︷
|sk − sN | ≤ ε

2
< ε.

↑
folgt aus Lemma 3.6 �

Wir wenden uns nun dem eigentlich Beweis des Umordnungssatzes zu.

Beweis des Umordnungssatzes 6.13. Um die Notation etwas vereinfachen betrachten wir

nur den Fall w = 1. Es sei
∑
n≥1
an eine Reihe, welche absolut konvergiert und es sei τ : N→ N

eine Bijektion. Wir müssen zeigen, dass

∞∑
n=1

aτ(n) = a :=
∞∑
n=1

an.

Es sei also ε > 0 gegeben. Wir müssen also ein N ∈ N finden, so dass für alle n ≥ N gilt:∣∣∣ n∑
k=1
aτ(k) − a

∣∣∣ < ε

Nach Voraussetzung konvergiert die Reihe
∑
n≥1
|an|. Lemma 6.14 besagt nun, dass es ein

K ∈ N gibt, so dass55 ∞∑
k=K

|ak| <
ε

2
.

Wir müssen im Folgenden also den Betrag
∣∣∣ n∑
k=1
aτ(k) − a

∣∣∣ “klein kriegen”. Nachdem wir

Information über die Partialsummen der Reihe
∑
k≥1
ak besitzen, ist es sinnvoll, diese ins

Spiel zu bringen. Für beliebiges n ∈ N machen wir dazu folgende Abschätzung:∣∣∣ n∑
k=1
aτ(k) − a

∣∣∣ =
∣∣∣ n∑
k=1
aτ(k) −

K−1∑
k=1

ak +
K−1∑
k=1

ak − a
∣∣∣ ≤ ∣∣∣ n∑

k=1
aτ(k) −

K−1∑
k=1

ak

∣∣∣+
∣∣∣a− K−1∑

k=1
ak

∣∣∣
=
∣∣∣ n∑
k=1
aτ(k) −

K−1∑
k=1

ak

∣∣∣+
∣∣∣ ∞∑
k=K

ak

∣∣∣ ≤
∣∣∣ n∑
k=1
aτ(k) −

K−1∑
k=1

ak

∣∣∣+
∞∑
k=K
|ak|

↑ ↑
Lemma 6.2 Satz 6.10

<
∣∣∣ n∑
k=1
aτ(k) −

K−1∑
k=1

ak

∣∣∣+
ε

2
.

Wir müssen also jetzt noch ein N ∈ N finden, so dass für alle n ≥ N der erste Summand
≤ ε

2
ist.

55Dieser Anfang vom Beweis erscheint vielleicht etwas “aus der Luft gegriffen”, aber irgendwann Mal
müssen wir ja die Voraussetzung verwenden, und mit dem ε

2 -Trick sind wir bis jetzt immer wieder gut

gefahren.
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Die Idee ist nun n so groß zu wählen, dass alle Summanden der Summe
K−1∑
k=1

ak auch schon

in der Summe
n∑
k=1
aτ(k) auftreten. Wir führen diese Idee nun aus. Nachdem τ eine Bijektion

ist, existiert ein N ∈ N, so dass 56

(∗) {1, 2, . . . , K − 1} ⊂ {τ(1), τ(2), . . . , τ(N)}.

Dann gilt für alle n ≥ N , dass∣∣∣ n∑
l=1
aτ(l) −

K−1∑
k=1

ak

∣∣∣ =
∣∣∣ ∑
k=1,...,nmit τ(k)≥K

aτ(k)

∣∣∣ ≤ ∑
k=1,...,nmit τ(k)≥K

|aτ(k)| ≤
∞∑
k=K
|ak| <

ε

2↑ ↑ ↑
denn es folgt aus (∗), dass es zu jedem Dreiecksungleichung nach Wahl von K

k∈{1, . . . ,K−1} ein l∈{1, . . . , n} mit τ(l)=k gibt

Zusammengefaßt erhalten wir also, dass für alle n ≥ N gilt:∣∣∣ n∑
k=1
aτ(k) − a

∣∣∣ <
∣∣∣ n∑
k=1
aτ(k) −

K−1∑
k=1

ak

∣∣∣+
ε

2
<

ε

2
+

ε

2
= ε.

↑ ↑
erste Ungleichung zweite Ungleichung

Wir haben damit gezeigt, dass die Umordnung der Reihe
∑
n≥1
an auch gegen a :=

∞∑
n=1
an

konvergiert.

Es verbleibt zu zeigen, dass die Reihe
∑
n≥1
an auch absolut konvergiert. Aber dies folgt aus

dem obigen Beweis, wenn wir die Reihe
∑
n≥1
|an| anstatt der Reihe

∑
n≥1
an betrachten. �

6.6. Das Cauchy-Produkt für absolut konvergente Reihen. Für endliche Summen
gilt, wie wir in Satz 1.11 bewiesen hatten, folgendes Distributivgesetz:( k∑

p=0
ap

)
·
( l∑
q=0
bq

)
=

k∑
p=0

l∑
q=0
ap · bq,

denn jedes Produkt ap · bq taucht sowohl auf linken als auch auf der rechten Seite genau
einmal auf. Man kann sich nun fragen, ob eine ähnliche Aussage für Reihen gilt. Es seien

beispielsweise
∑
p≥0
ap und

∑
q≥0
bq konvergente Reihen. Gilt dann notwendigerweise, dass( ∞∑
p=0
ap

)
·
( ∞∑
q=0
bq

)
=

∞∑
n=0

n∑
k=0
ak · bn−k︸ ︷︷ ︸

endliche Summe

?

Auf den ersten Blick erscheint das ziemlich logisch, denn auf der rechten Seite taucht jedes
Produkt ap · bq auch genau einmal auf.

56Wir können beispielsweise N = max{τ−1(1), . . . , τ−1(K − 1)} wählen.
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a0 · b1 a2 · b1 a3 · b1 . . .a1 · b1

a0 · b2

a0 · b3
a2 · b2 a3 · b2 . . .

a2 · b3 a3 · b3 . . .

a1 · b2

a1 · b3

a0 · b0 a2 · b0 a3 · b0 . . .a1 · b0

die Summe der Terme ist
n∑
k=0

ak · bn−k mit n = 3

In Übungsblatt 6 werden wir sehen, dass die Antwort im Allgemeinen jedoch nein ist.

Genauer gesagt, wir werden sehen, dass es konvergente Reihen
∑
p≥0
ap und

∑
q≥0
bq gibt, so dass( ∞∑

p=0
ap

)
·
( ∞∑
q=0
bq

)
6=

∞∑
n=0

n∑
k=0

ak · bn−k.

In der Tat gibt es Reihen, so dass die Reihe auf der rechten Seite noch nicht einmal kon-
vergiert.

Der folgende Satz besagt nun, dass dieses Problem nicht auftreten kann, wenn die beiden
ursprünglichen Reihen absolut konvergieren.

Satz 6.15. (Cauchy-Produktformel) Es seien
∑
p≥0
ap und

∑
q≥0
bq Reihen, welche absolut

konvergieren. Dann gilt ( ∞∑
p=0
ap

)
·
( ∞∑
q=0
bq

)
=

∞∑
n=0

n∑
k=0
ak · bn−k.

6.7. Beweis der Cauchy-Produktformel (∗). Im Beweis von Satz 6.15 werden wir fol-
gendes einfaches Lemma benötigen.

Lemma 6.16. Wenn
(an)n∈N0 = (a0, a1, a2, a3, . . . )

eine konvergente Folge ist, dann konvergiert auch die Folge(
abn

2
c
)
n∈N0

= (a0, a0, a1, a1, a2, a2, . . . )

gegen die gleiche reelle Zahl.

Beweis (∗). Wir setzen a = lim
n→∞

an. Wir müssen zeigen, dass lim
n→∞

abn
2
c = a. Es sei also

ε > 0. Dann existiert nach Voraussetzung ein N ∈ N, so dass |an − a| < ε für alle n ≥ N .
Dann gilt aber auch für alle n ≥ 2N , dass |abn

2
c − a| < ε. �

Beweis von Satz 6.15. Für n ∈ N0 schreiben wir

Qn := {(p, q) ∈ N0 × N0 | p ≤ n und q ≤ n}, sowie
Dn := {(p, q) ∈ N0 × N0 | p+ q ≤ n}.

Anders ausgedrückt, die Menge Qn beschreibt das “Quadrat” in N0×N0 mit den Eckpunk-
ten (0, 0), (0, n), (n, 0) und (n, n), und die Menge Dn beschreibt das “Dreieck” in N0 × N0

mit den Eckpunkten (0, 0), (0, n) und (n, 0). Für jedes n gilt, dass Qbn
2
c ⊂ Dn ⊂ Qn.
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Es seien nun
∑
p≥0
ap und

∑
q≥0
bq absolut konvergente Reihen. Dann gilt:

(a)
( ∞∑
p=0
ap

)( ∞∑
q=0
bq

)
= lim

n→∞

( n∑
p=0
ap

)( n∑
q=0
bq

)
= lim

n→∞

∑
(p,q)∈Qn

apbq, und
↑ ↑

Satz 3.4 Distributivgesetz

↓ ↓
(b)

( ∞∑
p=0
|ap|
)( ∞∑

q=0
|bq|
)

= lim
n→∞

( n∑
p=0
|ap|
)( n∑

q=0
|bq|
)

= lim
n→∞

∑
(p,q)∈Qn

|apbq|.

Zudem ist

(c)
∞∑
d=0
·

d∑
k=0
akbd−k = lim

n→∞

n∑
d=0

d∑
k=0
akbd−k = lim

n→∞

∑
(p,q)∈Dn

apbq.

Nach (a) und (c) genügt es folgende Behauptung zu beweisen.

Behauptung.
lim
n→∞

∣∣∣ ∑
(p,q)∈Qn

apbq −
∑

(p,q)∈Dn

apbq

∣∣∣ = 0.

Wir führen folgende Abschätzung durch:

denn Dn ⊂ Qn Dreiecksungleichung
↓ ↓

lim
n→∞

∣∣∣ ∑
(p,q)∈Qn

apbq −
∑

(p,q)∈Dn

apbq

∣∣∣ = lim
n→∞

∣∣∣ ∑
(p,q)∈Qn\Dn

apbq

∣∣∣ ≤ lim
n→∞

∑
(p,q)∈Qn\Dn

|apbq|

≤ lim
n→∞

∑
(p,q)∈Qn\Qbn

2
c

|apbq| = lim
n→∞

( ∑
(p,q)∈Qn

|apbq| −
∑

(p,q)∈Qbn
2
c

|apbq|
)

=: ∗
↑

nachdem Qn \Dn ⊂ Qn \Qbn2 c

Um die Notation zu vereinfachen, setzen wir
cn :=

∑
(p,q)∈Qn

|apbq|.

In (b) hatten wir gesehen, dass die Folge (cn)n∈N0 konvergiert. Mit dieser Notation können
wir jetzt die obige Abschätzung weiterführen:

∗ = lim
n→∞

(
cn − cbn

2
c

)
= lim

n→∞
cn − lim

n→∞
cbn

2
c = 0.
↑

nach Lemma 6.16 �

6.8. Die Exponentialreihe. In diesem Kapitel führen wir die Exponentialreihe ein, wel-
che zusammen mit der geometrischen Reihe eine der wichtigsten Reihen überhaupt ist.

Satz 6.17. Für jedes x ∈ R konvergiert die Exponentialreihe
∑
n≥0

xn

n!
absolut.

Beweis. Es sei x ∈ R beliebig. Wir schreiben an := xn

n!
. Dann gilt

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ xn+1 · n!

xn · (n+ 1)!

∣∣∣ = lim
n→∞

|x|
n+ 1

= |x| · lim
n→∞

1

n+ 1
= 0.

↑
folgt aus Satz 3.4 (3), angewandt auf λ = |x|



90

Es folgt aus dieser Berechnung und dem Quotienten-Kriterium, d.h. aus Satz 6.11, dass die

Exponentialreihe
∑
n≥0
an =

∑
n≥0

xn

n!
absolut konvergiert. �

Definition. Für x ∈ R schreiben wir

exp(x) :=
∞∑
n=0

xn

n!
= lim

k→∞

k∑
n=0

xn

n!
= lim

k→∞

(
1 + x + x2

2
+ x3

3!
+ . . . + xk

k!

)
↑ ↑ ↑
n=0 n=1 n=2

Wir definieren zudem die
Eulersche Zahl e := exp(1).

Eine Computerberechnung zeigt, dass e ≈ 2.7182818284590 . . . .57

Definition. Wir bezeichnen die Abbildung

R → R
x 7→ exp(x) als die Exponentialfunktion.

Der folgende Satz beinhaltet die wohl wichtigste Eigenschaft der Exponentialfunktion.

Theorem 6.18. (Funktionalgleichung der Exponentialfunktion) Für alle x, y ∈ R
gilt

exp(x+ y) = exp(x) · exp(y).

Beweis. Es seien also x, y ∈ R gegeben. Dann gilt

exp(x)·exp(y) =
( ∞∑
p=0

xp

p!

)
·
( ∞∑
q=0

yq

q!

)
=

∞∑
n=0

n∑
k=0

xk

k!
· y

n−k

(n−k)!
=

∞∑
n=0

n∑
k=0

1

n!
· n!

k!·(n−k)!
·xk ·yn−k

↑
nach der Cauchy-Produktformel 6.15, diese können wir
anwenden, da die Exponentialreihe absolut konvergiert

=
∞∑
n=0

1

n!
·
n∑
k=0

(
n
k

)
·xk ·yn−k =

∞∑
n=0

1

n!
· (x+ y)n = exp(x+ y).

↑ ↑
nach Definition von

( n
k

)
=

n!

k! · (n− k)!
nach Satz 2.7

�

Wir beschließen das Kapitel mit ein paar grundlegenden Eigenschaften der Exponential-
funktion.

57Die ersten 50 Stellen der Eulerschen Zahl sind

e ≈ 2.71828182845904523536028747135266249775724709369995

Hierbei ist bei den Stellen kein “System” zu erkennen. Das legt den Schluß nahe, dass e wohl keine rationale
Zahl ist. Dies ist in der Tat der Fall, der Beweis dazu ist sogar relativ einfach:

http://de.wikipedia.org/wiki/Beweis der Irrationalität der eulerschen Zahl

Es gilt allerdings auch noch eine deutlich stärkere Aussage: die Eulersche Zahl e ist transzendental, d.h. e
kann nicht die Nullstelle von einem Polynom mit rationalen Koeffizienten sein. Diese Aussage wurde erst
1873 von Hermite bewiesen, also 150 Jahre nachdem die Eulersche Zahl eingeführt wurde.
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Satz 6.19. Die Exponentialfunktion hat folgende Eigenschaften:

(1) Es ist exp(0) = 1.
(2) Für alle x ∈ R gilt exp(−x) = 1

exp(x)
.

(3) Für alle x > 0 gilt exp(x) ∈ (1,∞) und für alle x < 0 gilt exp(x) ∈ (0, 1).
(4) Für jedes n ∈ Z gilt exp(n) = en.

Beweis.

(1) Wir berechnen

exp(0) =
∞∑
n=0

0n

n!
= lim

k→∞

(
1 + 0 + 02

2
+ 03

3!
+ · · ·+ 0k

k!︸ ︷︷ ︸
=1

)
= 1.

(2) Für x ∈ R gilt:

exp(−x) · exp(x) = exp(−x+ x) = exp(0) = 1, also ist exp(−x) =
1

exp(x)
.

↑ ↑
Theorem 6.18 siehe (1)

(3) Es sei zuerst x > 0. Dann gilt

exp(x) =
∞∑
n=0

xn

n!
= 1 + x+

∞∑
n=2

xn

n!
= 1 + x+ lim

k→∞

k∑
n=2

xn

n!
≥ 1 + x > 1.

↑
folgt aus Satz 3.6, da x > 0.

Es sei nun x < 0. Wir hatten gerade bewiesen, dass exp(−x) ∈ (1,∞). Es folgt aus
(2), dass exp(x) = 1

exp(−x) ∈ (0, 1).

(4) Der Fall n = 0 folgt aus (1). Für n ∈ N gilt:

Theorem 6.18 Definition von e
↓ ↓

exp(n) = exp(1 + · · ·+ 1︸ ︷︷ ︸
n−Mal

) = exp(1) · · · · · exp(1)︸ ︷︷ ︸
n−Mal

= e · · · · · e︸ ︷︷ ︸
n−Mal

= en.

Es sei nun n < 0. Wir hatten gerade bewiesen, dass exp(−n) = e−n. Es folgt aus (2),
dass exp(n) = 1

exp(−n) = 1
e−n

= en. �

Wir beschließen das Kapitel mit der Illustration des Graphen der Exponentialfunktion
in Abbildung 6.8.

1

1

2

3

4

2−1−2

Graph der Exponentialfunktion x 7→ exp(x)
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7. Stetige Funktionen

7.1. Beispiele von Funktionen. Wir hatten uns bislang ausführlich mit Folgen und Rei-
hen beschäftigt aber jetzt wenden wir uns endlich dem eigentlichen Ziel der Analysis zu,
nämlich dem Studium von Funktionen.

Definition. Eine Funktion ist eine Abbildung f : D → R, wobei D eine Teilmenge von R
ist. Wir nennen D den Definitionsbereich von f . Zudem bezeichnen wir

Graph(f) := {(x, f(x)) ∈ R2 |x ∈ D}
als den Graphen von f .

Im Folgenden betrachten wir mehrere Beispiele von Funktionen und deren dazugehörige
Graphen. Wie bei Folgen sehen wir dabei, dass der Phantasie bei der Definition von Funk-
tion keine Grenzen gesetzt sind.

��
��
��
��

−1

1

2

1 2−1−2
−1

−2

a : R → R
x 7→ x2

b : R → R
x 7→ x

c : [−1, 2) → R
x 7→ 1

1

2

1 2−1−2
−1

−2
1

1

2

3

4

2−2

1

2

1 2

−1−2

−1

−2

1

2

1 2−1−2
−1

−2
1

1

2

3

4

2−1−2
d : R \ {0} → R

x 7→ 1
x

e : R → R
x 7→ |x|

f : R → R

x 7→
{
−x, wenn x≤0,
x2, wenn x>0

Wir können aus dem gegebenen Schatz von Funktionen noch viele weitere konstruieren,
indem wir beispielsweise Funktionen addieren, multiplizieren oder verknüpfen.

7.2. Definition von Stetigkeit und erste Eigenschaften. Wir führen nun einer der
grundlegendsten und wichtigsten Begriffe der Analysis ein.



93

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1
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1 2

−1−2

−1

−2

1

1 2−1−2
−1

−2

Graph der Dirichlet-Funktion

1

2

1 2−1−2
−1

−2

h : Z → R
x 7→ x

i : R → R

x 7→
{

1, wenn x ∈ Q,
−1, wenn x 6∈ Q

g : R → R

x 7→

−1, wenn x<0,
0, wenn x=0,
1, wenn x>0
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j : R → R
x 7→ exp(x)

k : R → R
x 7→ bxc

l : R → R

x 7→
{

1
x
, wenn x 6= 0,

0, wenn x = 0

1

2

1 2−1−2
−1

−2

1

1

2

3

4

2−1−2

1

2

1 2

−1−2

−1

−2

Definition. Es sei f : D → R eine Funktion und x0 ∈ D. Wir definieren

f ist stetig im Punkt x0 :⇐⇒ ∀
ε>0
∃
δ>0

∀
x ∈ D mit
|x− x0| < δ

|f(x)− f(x0)| < ε.

Wir sagen f : D → R ist stetig, wenn f in jedem Punkt des Definitionsbereichs stetig ist.

Bemerkung. Wenn man Intervalle den Absolutbeträgen bevorzugt, dann kann man die
Definition von Stetigkeit wie folgt umschreiben:

f ist stetig im Punkt x0 :⇐⇒ ∀
ε>0
∃
δ>0

∀
x ∈ D mit

x ∈ (x0−δ, x0+δ)

f(x) ∈ (f(x0)−ε, f(x0)+ε).

Das folgende Lemma zeigt, dass affin lineare Funktionen stetig sind.
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�
�
�
�

es gibt kein δ > 0, so dass
die Funktionswerte von (x0 − δ, x0 + δ)
im Intervall (f(x0)−ε, f(x0)+ε) liegen

die Funktionswerte von (x0 − δ, x0 + δ)
liegen im Intervall (f(x0)−ε, f(x0)+ε)

f ist nicht stetig in x0

Graph von f

x0

f ist stetig in x0

Graph von f

x0

Intervall (f(x0)−ε, f(x0)+ε)

f(x0)

Intervall (f(x0)−ε, f(x0)+ε)

f(x0)

Lemma 7.1. Für jedes beliebige m ∈ R und b ∈ R ist die affin lineare Funktion

R → R
x 7→ m · x+ b stetig

x0

Graph der Funktion x 7→ m · x+ b

f(x0)

Beweis. Es sei x0 ∈ R. Wir müssen zeigen, dass die Funktion stetig im Punkt x0 ist. Es sei
also ε > 0.

(1) Wenn m 6= 0, dann setzen wir δ := ε
|m| . Dann gilt:

|x− x0| < δ =⇒ 1

|m|
· |

=f(x)︷ ︸︸ ︷
(m·x+ b)−

=f(x0)︷ ︸︸ ︷
(m·x0 + b)| < δ =⇒ |f(x)− f(x0)| < |m| · δ = ε.

(2) Wenn m = 0, dann gilt für alle x ∈ R, dass |f(x)− f(x0)| = 0 < ε. Also erfüllt jedes
δ > 0, z.B. δ = 1, die gewünschte Bedingung. �

Notation. Wenn f : D → X irgendeine Abbildung ist, und wenn C ⊂ D eine Teilmenge ist,
dann bezeichnet man mit f |C die Einschränkung von f auf den Definitionsbereich C. D.h.
f |C bezeichnet die Abbildung

f |C : C → X
c 7→ f(c).

Wir illustrieren diese Definition in Abbildung 18.

Das folgende Lemma besagt, dass die Einschränkung einer stetigen Funktion auf eine
Teilmenge wiederum stetig ist.
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Graph einer Funktion f : D → R

D C

Graph der Funktion f |C : C → R

Abbildung 18.

Lemma 7.2. Es sei D ⊂ R eine Teilmenge und es sei f : D → R eine stetige Funktion.
Dann ist für jede Teilmenge C ⊂ D die Einschränkung f |C : C → R ebenfalls stetig.

Beweis (∗). Es sei D ⊂ R eine Teilmenge, es sei f : D → R eine stetige Funktion und es
sei C ⊂ D. Es sei x0 ∈ C und ε > 0. Dann gibt es nach Voraussetzung ein δ > 0, so dass
|f(x)− f(x0)| < ε für alle x ∈ (x0 − δ, x0 + δ) ∩D. Dann gilt diese Ungleichung natürlich
auch für alle x ∈ (x0 − δ, x0 + δ) ∩ C. Wir haben also gezeigt, dass die Funktion f |C im
Punkt x0 stetig ist. �

Beispiel. Es folgt aus Lemma 7.1 und aus Lemma 7.2, dass die Funktionen

[−1, 2) → R
x 7→ 1

und
Z → R
x 7→ x

deren Graphen wir auf den Seiten 92 und 215 skizziert hatten, stetig sind.

Satz 7.3. Es sei f : [a, b] → R eine stetige Funktion und es sei g : [b, c] → R eine stetige
Funktion mit f(b) = g(b). Dann ist die Funktion

h : [a, c] → R

x 7→
{
f(x), wenn x ∈ [a, b],
g(x), wenn x ∈ (b, c]

stetig. Die gleiche Aussage gilt auch, wenn f und g auf Intervallen der Form (a, b] oder
(−∞, b] beziehungsweise [b, c) oder [b,∞) definiert sind.

Beweis. Der Satz wird in Übungsblatt 6 bewiesen. �

Graph von g : [b, c]→RGraph von f : [a, b]→R Graph von h : [a, c]→R

a b cb cba

Abbildung 19. Illustration von Satz 7.3.
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Beispiel. Wir betrachten die Betragsfunktion

h : R → R

x 7→ |x| =
{ −x, falls x ≤ 0

x, falls x > 0.

Es folgt Lemma 7.1 und aus Lemma 7.2, dass die Funktionen

f : (−∞, 0] → R
x → −x und

f : [0,∞) → R
x → x

stetig sind. Also folgt aus Lemma 7.3, dass die Betragsfunktion h stetig ist.

����

Graph der Betragsfunktion x 7→ |x|

An dieser Stelle wäre es jetzt logisch die Summe und das Produkt von stetigen Funk-
tionen zu betrachten. Wir diskutieren aber zuerst den Zusammenhang von Stetigkeit und
Grenzwerten von Folgen, weil uns dann unsere vorherigen Ergebnisse zu Grenzwerten bei
der Diskussion von Stetigkeit das leben deutlich erleichtern werden.

7.3. Stetigkeit von Funktionen und Grenzwerte von Folgen. Der folgende Satz
verbindet den neuen Begriff der Stetigkeit mit dem vertrauten Begriff des Grenzwertes
einer Folge von reellen Zahlen.

Satz 7.4. Es sei f : D → R eine Funktion und es sei x0 ∈ D. Dann gilt:

f ist stetig
im Punkt x0

⇐⇒
für jede Folge (an)n∈N in D mit lim

n→∞
an = x0,

gilt, dass dann auch lim
n→∞

f(an) = f(x0).

die Werte f(an)
Graph der Funktion f : D → R

Folge anx0

f(x0)

Abbildung 20. Illustration von Satz 7.4.

Bemerkung. Es sei f : D → R eine Funktion und es sei (an)n∈N eine konvergente Folge
in D ist, welche gegen einen Punkt in D konvergiert. Dann besagt die “⇒”-Richtung von
Satz 7.4, dass gilt:

f ist stetig im Grenzwert lim
n→∞

an =⇒ lim
n→∞

f(an) = f
(

lim
n→∞

an

)
.
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Etwas salopp gesagt gilt also: eine Funktion ist genau dann stetig, wenn wir Grenzwert und
Funktion vertauschen können.

Beispiel. Manchmal können Satz 7.4, auch verwenden um zu zeigen, dass eine gegebene
Funktion nicht stetig ist. Betrachten wir beispielsweise die Funktion

f : R → R

x 7→
{
x− 2, wenn x ≤ 3,
x− 1, wenn x > 3,

und die Folge 3 + 1
n
, welche in Abbildung 21 skizziert sind. Dann gilt

lim
n→∞

f
(
3 + 1

n︸ ︷︷ ︸
>3

)
= lim

n→∞

(
2 + 1

n

)
= 2 6= 1 = f(3) = f

(
lim
n→∞

(
3 + 1

n

))
.

Es folgt also aus dem Prinzip der Kontraposition und der obigen Bemerkung, dass die
Funktion f im Grenzwert lim

n→∞
(3 + 1

n
) = 3 nicht stetig ist.

��

die Folge 3 + 1
n

Graph von f

3

die Folge f(3 + 1
n
)

f(3)

Abbildung 21.

Wir beweisen die “⇒”-Richtung und die “⇐”-Richtung von Satz 7.4 getrennt.

Beweis der “⇒”-Richtung von Satz 7.4. Für eine beliebige Folge (an)n∈N in D müssen wir
beweisen:

f stetig in x0 und lim
n→∞

an = x0 =⇒ lim
n→∞

f(an) = f(x0).

Mit anderen Worten, wir müssen beweisen:

∀
ε>0
∃
δ>0

∀
x∈D mit
|x−x0|<δ

|f(x)−f(x0)|<ε und ∀
µ>0
∃
N∈N
∀

n≥N
|an−x0|<µ ⇒ ∀

ε>0
∃
N∈N
∀

n≥N
|f(an)−f(x0)| < ε.

Es sei also ε > 0. Nachdem f im Punkt x0 stetig ist, existiert ein δ > 0, so dass für alle
x ∈ D gilt

|x− x0| < δ
(1)

=⇒ |f(x)− f(x0)| < ε.

Wir wenden die Definition von lim
n→∞

an = x0 auf µ = δ an. Es gibt also ein N ∈ N, so dass

n ≥ N
(2)

=⇒ |an − x0| < δ.
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Dann gilt aber auch, dass

n ≥ N
(2)

=⇒ |an − x0| < δ
(1)

=⇒ |f(an)− f(x0)| < ε. �

Beweis der “⇐”-Richtung von Satz 7.4. Wir wollen also folgende Behauptung beweisen.

f ist stetig im Punkt x0︷ ︸︸ ︷
∀
ε>0
∃
δ>0

∀
x ∈ D mit
|x−x0|<δ

|f(x)−f(x0)| < ε ⇐= ∀
Folge an in D
mit lim an=x0

lim
n→∞

f(an) = f(x0).

Aus Kontraposition folgt, dass es genügt folgende Behauptung zu beweisen:

Behauptung.

∃
ε>0
∀
δ>0

∃
x ∈ D mit
|x−x0|<δ

|f(x)−f(x0)| ≥ ε =⇒ ∃
Folge an in D
mit lim an=x0

f(an) konvergiert
nicht gegen f(x0).

Wir wählen also ein ε > 0 mit der links genannten Eigenschaft. Für jedes n ∈ N existiert
dann also ein an ∈ D mit folgenden Eigenschaften:

(i) |an − x0| < 1
n

und (ii) |f(an)− f(x0)| ≥ ε.

Dann folgt leicht aus (i) und der Definition von Konvergenz von Folgen, dass lim
n→∞

an = x0,

und aus (ii), dass die Folge (f(an))n∈N nicht gegen f(x0) konvergiert. �

7.4. Eigenschaften von stetigen Funktionen. Der folgende Satz besagt insbesondere,
dass die Summe und das Produkt von stetigen Funktionen wiederum stetig ist.

Satz 7.5. Es seien f, g : D → R Funktionen, welche im Punkt x0 ∈ D stetig sind. Zudem
sei λ ∈ R. Dann sind die Funktionen

f + g : D → R
x 7→ f(x) + g(x)

f · g : D → R
x 7→ f(x) · g(x)

λ · f : D → R
x 7→ λ · f(x)

ebenfalls stetig im Punkt x0. Wenn g(x) 6= 0 für alle x ∈ D, dann ist auch die Funktion
f
g

: D → R
x 7→ f(x)

g(x)
stetig im Punkt x0.

Beweis.

Wenn man die Definition und Aussagen mal verdaut hat, dann sieht man, dass der
Satz eigentlich sofort aus Satz 3.4 und Satz 7.4 folgt.

Wir zeigen im Folgenden, dass die Funktion f + g im Punkt x0 stetig ist. Nach Satz 7.4
genügt es folgende Behauptung zu beweisen.

Behauptung. Für jede Folge (an)n∈N inD mit lim
n→∞

an = x0 gilt: lim
n→∞

(f + g)(an) = (f + g)(x0).
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Es sei also (an)n∈N eine Folge in D mit lim
n→∞

an = x0. Dann gilt

Definition der Funktion f + g Satz 3.4 (1)
↓ ↓

lim
n→∞

(f + g)(an) = lim
n→∞

(f(an) + g(an)) = lim
n→∞

f(an) + lim
n→∞

g(an)

= f(x0) + g(x0) = (f + g)(x0).
↑ ↑

folgt aus Satz 7.4, da f und g stetig Definition der Funktion f + g

Alle anderen Aussagen werden ganz analog auf Satz 3.4 zurückgeführt. �

Definition. Es seien a0, . . . , an ∈ R mit an 6= 0 gegeben. Wir nennen

f : R → R
x 7→ a0 + a1x+ a2x

2 + · · ·+ anx
n

eine Polynomfunktion von Grad n. Es seien p, q : R → R zwei Polynomfunktionen. Dann
heißt

f : {x ∈ R | q(x) 6= 0} → R
x 7→ p(x)

q(x)

eine rationale Funktion.

Beispiel. Beispielsweise ist

R → R
x 7→ −3x3 +

√
2x4 + 2

3
x5

bzw.
R \ {±

√
2} → R
x 7→ x3 + 7x+ 2

x2 − 2

eine Polynomfunktion bzw. eine rationale Funktion.

Satz 7.6. Polynomfunktionen und rationale Funktionen sind stetig.

Beweis. Es folgt aus Lemma 7.1 und Satz 7.5, dass die Funktionen x 7→ xn = x · . . . x
und Linearkombinationen von solchen Funktionen stetig sind. Dies bedeutet gerade, dass
Polynomfunktionen stetig. Aus Satz 7.5 folgt nun auch, dass rationale Funktionen stetig
sind. �

Der folgende Satz besagt insbesondere, dass die Verknüpfung von stetigen Funktionen
wiederum stetig ist.

Satz 7.7. Es seien f : D → R und g : E → R zwei Funktionen, so dass f(D) ⊂ E. Wenn
f im Punkt x0 stetig ist und wenn g im Punkt f(x0) stetig ist, dann ist die Funktion58

g ◦ f : D → R
x 7→ g(f(x)︸ ︷︷ ︸

∈E

) stetig im Punkt x0.

58Es folgt aus der Voraussetzung, dass f(D) ⊂ E, dass die Verknüpfung g(f(x)) überhaupt definiert ist.
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Beispiel. Wir betrachten die Funktionen 59 f(x) = x2 − 2 und g(x) = |x|. Es folgt aus
Satz 7.7, dass die Verknüpfung (g ◦ f)(x) = |x2 − 2| stetig ist.

Beweis. Wir müssen zeigen, dass die Funktion g ◦ f : D → R im Punkt x0 stetig ist. Wir
verwenden dazu Stetigkeitskriterium aus Satz 7.4. Es sei also (an)n∈N eine Folge in D mit
lim
n→∞

an = x0. Wir müssen folgende Behauptung beweisen:

Behauptung. Es ist (g ◦ f)(x0) = lim
n→∞

(g ◦ f)(an).

Es gilt:

(g◦f)(x0) = g(f(x0)) = g
(
f
(

lim
n→∞

an
))

= g
(

lim
n→∞

f(an)
)

= lim
n→∞

g(f(an)) = lim
n→∞

(g◦f)(an).
↑ ↑

folgt aus Satz 7.4 und der folgt aus Satz 7.4 und der
Voraussetzung, dass f im Punkt Voraussetzung, dass g im Punkt
x0 = lim

n→∞
an stetig ist f(x0) = lim

n→∞
f(an) stetig ist �

7.5. Stetigkeit der Exponentialfunktion. Die Abbildung des Graphen der Exponenti-
alfunktion auf Seite 215 legt natürlich nahe, dass die Exponentialfunktion stetig ist. Dies
ist in der Tat der Fall, wie wir jetzt beweisen werden.

Satz 7.8. Die Exponentialfunktion exp: R→ R ist stetig.

Beweis (∗). Wir wollen zuerst zeigen, dass die Funktion exp im Punkt 0 stetig ist. Dazu
benötigen wir folgende Abschätzung.

Behauptung. Für alle |x| < 1
2

gilt | exp(x)− 1| ≤ 2 · |x|.

Es sei also |x| < 1
2
. Dann gilt Lemma 6.2 Satz 3.17 Umparametrisierung m=n−1

↓ ↓ ↓
| exp(x)− 1| =

∣∣∣ ∞∑
n=0

xn

n!
− 1
∣∣∣ =

∣∣∣ ∞∑
n=1

xn

n!

∣∣∣ = |x| ·
∣∣∣ ∞∑
n=1

xn−1

n!

∣∣∣ = |x| ·
∣∣∣ ∞∑
m=0

xm

(m+ 1)!

∣∣∣
≤ |x| ·

∞∑
m=0

|x|m

(m+ 1)!
≤ |x| ·

∞∑
m=0

1

2m
= |x| · 1

1− 1
2

= 2 · |x|.
↑ ↑ ↑

Satz 6.10 folgt aus Satz 3.17 folgt aus Satz 3.16, da geometrische Reihe
da |x| < 1

2 und n! ≥ 1 �
Wir wenden uns nun wieder dem Beweis der Stetigkeit von exp im Punkt 0 zu. Es sei

also ε > 0. Wir setzen δ = min{ ε
2
, 1
2
}. Für alle |x| < δ gilt dann

| exp(x)− exp(0)| = | exp(x)− 1| ≤ 2 · |x| < 2 · ε
2

= ε.
↑ ↑

folgt aus der Behauptung, da |x| < δ ≤ 1
2 da |x| < δ ≤ ε

2

59Bei einer Funktion muss man immer angeben, was der Definitionsbereich sein soll. Beispielsweise sind
die Funktionen R → R

x 7→ x2
und

[0, 1] → R
x 7→ x2

verschieden, nachdem diese Funktionen verschiedene Definitionsbereiche besitzen. Wenn wir nun schreiben,
“f(x) = x2 − 2”, oder “f(x) = 1

x”, oder “f(x) = x
2−|x|”, ohne eine Angabe vom Definitionsbereich, dann

ist der Definitionsbereich die Menge aller Punkte in R, für die die rechte Seite definiert ist.
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Wir müssen noch zeigen, dass exp in jedem beliebigen Punkt stetig ist. Es sei also x0 ∈ R.
Für x ∈ R gilt nach der Funktionalgleichung 6.18, dass exp(x) = exp(x − x0) · exp(x0).
Daraus folgt, dass wir die folgende Gleichheit von Funktionen haben:

(x 7→ exp(x)) = (z 7→ z · exp(x0))︸ ︷︷ ︸
=:h(z), stetig

nach Lemma 7.1

◦ (y 7→ exp(y))︸ ︷︷ ︸
=: g(y), stetig in 0
wie gerade bewiesen

◦ (x 7→ x− x0)︸ ︷︷ ︸
=: f(x), stetig

nach Lemma 7.1

.

Wir hatten gerade bewiesen, dass die mittlere Funktion im Punkt 0 stetig ist. Nachdem f
in x0 stetig ist, nachdem g in f(x0) = 0 stetig ist, und nachdem h in g(f(x0)) = exp(0) = 1
stetig ist folgt nun aus Satz 7.7, dass die Verknüpfung der Funktionen rechts im Punkt x0
stetig ist. Aber das galt es zu beweisen. �

7.6. Grenzwerte von Funktionen.

Definition. Im Folgenden sei f : D → R eine Funktion und es sei x0 ∈ R.

(1) Nehmen wir an, es gibt ein η>0, so dass (x0−η, x0) ⊂ D. 60Für a∈R schreiben wir
61

lim
x↗x0

f(x) = a :⇐⇒ ∀
ε>0
∃
δ>0

∀
x ∈ D mit

x ∈ (x0−δ, x0)

|f(x)− a| < ε

und wir nennen lim
x↗x0

f(x) den linksseitigen Grenzwert von f am Punkt x0.
62

Graph der Funktion f

Intervall (x0−δ, x0)

a

x0

Intervall (a−ε, a+ε)

Abbildung 22. Illustration der Definition des linksseitigen Grenzwertes.

Definition.

(2) Ganz analog, wenn es ein η > 0 gibt, so dass (x0, x0 + η) ⊂ D, dann schreiben wir 63

lim
x↘x0

f(x) = a :⇐⇒ ∀
ε>0
∃
δ>0

∀
x ∈ D mit

x ∈ (x0, x0+δ)

|f(x)− a| < ε

60Die Aussage, dass es ein η > 0 gibt mit (x0 − η, x0) ⊂ D bedeutet, dass die Funktion f “links” von
x0 definiert ist. Diese Bedingung führt dazu, dass der Grenzwert, wenn dieser denn existiert, eindeutig
bestimmt ist. Der Beweis der Eindeutigkeit ist ähnlich dem Beweis von Satz 3.1.

61Die Notation x↗ x0 soll suggestieren, dass x “von unten” gegen x0 strebt.
62Der linksseitige Grenzwert von f am Punkt x0 wird manchmal auch mit lim

x→x−0
f(x) bezeichnet.
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und wir nennen lim
x↘x0

f(x) den rechtsseitigen Grenzwert von f am Punkt x0.

(3) Wenn sowohl lim
x↗x0

f(x) als auch lim
x↘x0

f(x) definiert sind, und wenn die Grenzwerte

übereinstimmen, dann schreiben wir

lim
x→x0

f(x) := lim
x↗x0

f(x) = lim
x↘x0

f(x)

und wir nennen lim
x→x0

f(x) den Grenzwert am Punkt x0.

Beispiel. In der folgenden Abbildung zeigen wir den Graph zweier Funktionen und wir geben
verschiedene links- und rechtsseitige Grenzwerte an. Man beachte, dass für Grenzwerte an
einem Punkt x0 die Funktion am Punkt x0 gar nicht definiert sein muss. Wenn die Funktion
doch am Punkt x0 definiert ist, dann sind zudem die Funktionswerte am Punkt x0 völlig
irrelevant.

��
��
��
��

�
�
�
�

und f(a) = 2

lim
x↗a

f(x)=1

lim
x↗d

g(x) existiert nicht

lim
x↘a

f(x)=2

Graph von g

a
lim
x↗c

f(x)=2
lim
x↘c

f(x) ist

nicht definiert

c

Graph von f

und f(b) = 1

d e lim
x→e

g(x) = g(e)

b

lim
x→b

f(x) = 2

1

2

Beispiel. Wir betrachten die Funktionen

f : R \ {0} → R
x 7→ exp(x)− 1

x

g : R \ {0} → R
x 7→ exp(x)2 − 1

|x|

h : R \ {0} → R
x 7→ exp(x)− 1− x

x2
.

Es stellt sich nun die Frage, ob die Grenzwerte lim
x→0

f(x), lim
x→0

g(x) und lim
x→0

h(x) existieren,

und wenn ja, ob wir die Grenzwerte bestimmen können. “Per Hand” ist das zumindest
jeweils eine undankbare Aufgabe. Später werden wir eine elegante Methode kennenlernen
um diese Fragen zu beantworten.

63Die Notation x↘ x0 soll suggestieren, dass x “von oben” gegen x0 strebt.
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Satz 7.9. Es sei f : D → R eine Funktion. Zudem sei x0 ∈ D ein Punkt, so dass es ein
η > 0 mit (x0 − η, x0 + η) ⊂ D gibt. Dann gilt

f ist stetig im Punkt x0 ⇐⇒ lim
x→x0

f(x) = f(x0).

Beweis. Die Aussage folgt eigentlich sofort aus den Definitionen. Desto mehr man hin-
schreibt, desto verwirrender wird die Lage. Wir schreiben deswegen keine Details auf. �

Beispiel. Wir betrachten die Funktion

f : R → R

x 7→
{
x2 + 7, wenn x < 3,
5− x, wenn x ≥ 3.

Dann gilt lim
x↗3

f(x) = lim
x↗3

(x2 + 7) = 32 + 7 = 16.
↑ ↑

denn die Funktionen f und x 7→ x2+7 dies folgt aus Satz 7.9, denn die Funktion
stimmen für x < 3 überein x 7→ x2+7 ist stetig in x = 3

Wir führen nun noch einige weitere unterhaltsame Definitionen ein.

Definition. Es sei f : D → R eine Funktion. Zudem sei x0 ∈ D ein Punkt, so dass es ein
η > 0 mit (x0 − η, x0) ⊂ D gibt. Wir schreiben64

lim
x↗x0

f(x) = +∞ :⇐⇒ ∀
C∈R
∃
δ>0

∀
x ∈ D mit

x ∈ (x0−δ, x0)

f(x) > C,

sowie lim
x↗x0

f(x) = −∞ :⇐⇒ ∀
C∈R
∃
δ>0

∀
x ∈ D mit

x ∈ (x0−δ, x0)

f(x) < C.

Ganz analog definieren wir auch lim
x↘x0

f(x) = +∞ und lim
x↘x0

f(x) = −∞.

lim
x↗x0

f(x) = +∞

Graph von f

Intervall (x0−δ, x0)

C

x0

Der folgende Satz, welcher eng mit Satz 7.4 verwandt ist, erlaubt es Grenzwerte für
Funktionen auf die uns vertrauten Grenzwerte von Folgen zurück zu führen.

64Die Definition ist inspiriert von der Definition von bestimmter Konvergenz von Folgen, siehe Seite 41.
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Satz 7.10. Es sei f : D → R eine Funktion. Zudem sei x0 ∈ D ein Punkt, so dass es ein
η > 0 mit (x0 − η, x0) ⊂ D gibt. Für jedes C ∈ R ∪ {±∞} gilt:

lim
x↗x0

f(x) = C ⇐⇒
für jede Folge (an)n∈N in D ∩ (−∞, x0),
mit lim

n→∞
an = x0 gilt, dass lim

n→∞
f(an) = C.

Die analogen Aussagen gelten auch für lim
x↘x0

f(x).

Beweis. Der Beweis ist ganz analog zum Beweis von Satz 7.4. Wir überlassen es der Leser-
schaft die Details auszuführen. �

Für Grenzwerte von Funktionen gelten nun die gleichen Aussagen wie für Grenzwerte
von Folgen:

Satz 7.11. Es seien f : D → R und g : D → R zwei Funktionen. Es sei x0 ∈ R. Wir
nehmen an, dass es ein η > 0 gibt, so dass (x0 − η, x0) ⊂ D. Wenn lim

x↗x0
f(x) ∈ R ∪ {±∞}

und lim
x↗x0

g(x) ∈ R ∪ {±∞} definiert sind, dann gilt

(1) lim
x↗x0

(f(x) + g(x)) = lim
x↗x0

f(x) + lim
x↗x0

g(x)

(2) lim
x↗x0

(f(x) · g(x)) = lim
x↗x0

f(x) · lim
x↗x0

g(x),

wenn die Addition und Multiplikation auf der jeweiligen rechten Seite in den Tabellen auf
Seite 42 definiert ist. Die gleichen Aussagen gelten analog auch für den rechtsseitigen Grenz-
wert lim

x↘x0
und für den Grenzwert lim

x→x0
.

Beweis. Der Satz folgt sofort aus der Kombination von Satz 7.4 mit Satz 3.4 und Satz 3.10.
�

Bemerkung. Es gelten auch die offensichtlichen Analogien von Satz 3.4 (4), Satz 3.11 sowie
Satz 3.14. Die Beweise sind dabei ganz ähnlich den ursprünglichen Beweisen.

Wir führen nun die letzten Definitionen von diesem Kapitel ein.

Definition. Es sei f : D → R eine Funktion. Wenn es ein x0 gibt, so dass (x0,∞) ⊂ D,
dann schreiben wir für a ∈ R, dass

lim
x→∞

f(x) = a :⇐⇒ ∀
ε>0
∃
X∈R

∀
x ∈ D mit
x ≥ X

|f(x)− a| < ε.

Wir bezeichnen lim
x→∞

f(x) als den Grenzwert von f für x gegen +∞. Zudem definieren wir:

lim
x→∞

f(x) = +∞ :⇐⇒ ∀
C∈R

∃
X∈R

∀
x ∈ D mit
x ≥ X

f(x) > C.

Ganz analog definieren wir auch lim
x→∞

f(x) = −∞, sowie die Grenzwerte lim
x→−∞

f(x).

Der folgende Satz ist das wenig überraschende Analogon zu Satz 7.10.
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Graph von f

lim
x→∞

f(x) = a lim
x→∞

f(x) = +∞

Graph von f

X X

a−ε

a+ε
Ca

Satz 7.12. Es sei f : D → R eine Funktion, so dass es ein x0 gibt mit (x0,∞) ⊂ D. Für
jedes C ∈ R ∪ {±∞} gilt:

lim
x→∞

f(x) = C ⇐⇒
für jede Folge (an)n∈N in D,

mit lim
n→∞

an =∞ gilt, dass lim
n→∞

f(an) = C.

Die analogen Aussagen gelten auch für lim
x→−∞

f(x).

Beweis. Der Beweis ist ganz analog zum Beweis von Satz 7.4. Auch dieses mal überlesen
wir es der Leserschaft die Details auszuführen. �

Wir beschließen das Teilkapitel mit folgendem Lemma, welches ganz ähnlich wie Korol-
lar 3.13 bewiesen wird.

Lemma 7.13. Es seien c0, . . . , cd ∈ R mit d ≥ 1 und cd 6= 0. Dann gilt

lim
x→∞

(
c0 + c1 · x+ c2 · x2 + · · ·+ cd−1 · xd−1 + cd · xd

)
=
{ ∞, wenn cd > 0,
−∞, wenn cd < 0.

7.7. Gleichmäßige Stetigkeit. Im Folgenden ist es hilfreich verschiedene Typen von In-
tervallen zu unterscheiden.

Definition. Es seien a, b ∈ R.

(1) Ein Intervall vom Typ [a, b], [a,∞) oder (−∞, a] heißt abgeschlossen.
(2) Ein Intervall vom Typ (a, b), (a,∞) oder (−∞, a) heißt offen.
(3) Ein kompaktes Intervall ist ein beschränktes und abgeschlossenes Intervall, das heißt,

ein Intervall vom Typ [a, b].

In diesem Teilkapitel zeigen wir, dass Funktionen auf kompakten Intervallen gleichmäßig
stetig sind. Die Definition von “gleichmäßig stetig” ist auf den ersten, und oft auch auf den
zweiten Blick, verwirrend. Dieses Ergebnis über die gleichmäßige Stetigkeit wird aber im
späteren Verlauf der Vorlesung noch eine wichtige Rolle spielen.

Wir erinnern an die Definition Stetigkeit. Es sei f : D → R eine Funktion. Dann gilt:

f ist stetig :⇐⇒ ∀
x0∈D

∀
ε>0
∃
δ>0

∀
x ∈ D mit
|x− x0| < δ

|f(x)− f(x0)| < ε.
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In Abbildung 23 betrachten wir den Graphen der Funktion f(x) = 1
x

mit x ∈ (0,∞) und

wir betrachten den Fall ε = 1
2
. Wir sehen, dass es für x0 = a möglich ist ein deutlich

größeres δ zu finden als für x0 = b.

für x0 = a kann man für ε = 1
2

ein “großes” δ finden
für x0 = b kann man für ε = 1

2
nur ein “kleines” δ finden

Graph von x 7→ 1
x

das Intervall
(f(a)− 1

2 , f(a)+ 1
2)

a

das Intervall
(f(b)− 1

2 , f(b)+ 1
2)

b

Abbildung 23.

Es wäre nun eigentlich praktisch, wenn man für gegebenes ε > 0 ein δ > 0 finden könnte,
welches für alle x0 ∈ D funktioniert. Dies führt uns zu folgender Definition:

Definition. Es f : D → R eine Funktion. Wir definieren:

f gleichmäßig stetig :⇐⇒ ∀
ε>0
∃
δ>0
∀

x0∈D
∀

x ∈ D mit
|x− x0| < δ

|f(x)− f(x0)| < ε.

Etwas vereinfacht ausgedrückt, eine Funktion f ist gleichmäßig stetig, wenn “es zu jedem
ε > 0 ein δ > 0 gibt, welches für alle x0 passt”.

Beispiel. Wir betrachten die Funktionen

f : (0, 1] → R
x 7→ 1

x
,

und
g : [0,∞) → R

x 7→
√
x.

Es ist eine schöne Übungsaufgabe zu zeigen, dass die stetige Funktion f : (0, 1]→ R nicht
gleichmäßig stetig ist und es ist eine genauso schöne Aufgabe zu zeigen, dass g : [0,∞)→ R
gleichmäßig stetig ist.

Während also stetige Funktionen auf (halb-) offenen Intervallen nicht gleichmäßig stetig
sein müssen, ist die Lage für stetige Funktionen auf kompakten Intervallen viel zufrieden-
stellender:

Satz 7.14. Jede stetige Funktionen, welche auf einem kompakten Intervall definiert ist, ist
auch gleichmäßig stetig.

Beweis. Es sei f : [a, b]→ R eine stetige Funktion. Wir wollen zeigen, dass f auch gleichmäßig
stetig. Wir werden den Satz mit einem Widerspruchsbeweis beweisen. Nehmen wir also an,
dass f nicht gleichmäßig stetig ist. Dies bedeutet, dass

∃
µ>0
∀
δ>0
∃

y∈[a,b]
∃

x ∈ [a, b] mit
|x− y| < δ

|f(x)− f(y)| ≥ µ.
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Sei also solch ein µ > 0 gewählt.

Die Idee ist nun die Formulierung der Stetigkeit über Folgen, siehe Satz 7.4 ins Spiel
zu bringen. Dazu brauchen wir eine konvergente Folge in [a, b]. Eine Folge erhalten
wir erst einmal dadurch, dass wir die obige Aussage auf δ = 1

n
, n ∈ N anwenden.

Diese Folge muss nicht notwendigerweise konvergieren. Aber mithilfe des Satzes 5.9
von Bolzano–Weierstraß erhalten wir eine konvergente Teilfolge. Das reicht für unsere
Zwecke.

Für jedes n ∈ N wenden wir die Aussage auf δ = 1
n

an und erhalten also xn, yn ∈ [a, b], so
dass gilt:

(a) |xn − yn| < 1

n
und (b) |f(xn)− f(yn)| ≥ µ.

Die Folge (xn)n∈N ist beschränkt (weil sie in [a, b] liegt), insbesondere existiert nach dem
Satz 5.9 von Bolzano–Weierstraß eine Teilfolge (xnk)k∈N, welche konvergiert. Wir setzen
c := lim

k→∞
xnk .

Behauptung. Es gilt auch lim
k→∞

ynk = c.

Nach (a) gilt für alle n ∈ N, dass |xn − yn| < 1
n
. Insbesondere gilt für alle k ∈ N, dass

xnk− 1
nk

< ynk < xnk + 1
nk

. Nachdem die linke und die rechte Folge gegen c konvergieren,
folgt aus dem Sandwichsatz 3.8, dass auch die mittlere Folge ynk gegen c konvergiert. �

Also gilt: folgt aus Satz 7.4, da f stetig
↓

lim
k→∞

f(xnk)− f(ynk)︸ ︷︷ ︸
| . . . | ≥ µ nach (b)

= f
(

lim
k→∞

xnk
)
− f

(
lim
k→∞

ynk
)

= f(c)− f(c) = 0.

Dies ist aber nun ein Widerspruch, denn zum einen gilt nach (b) für alle k ∈ N, dass
|f(xnk)−f(ynk)| ≥ µ, zum anderen wurde gerade gezeigt, dass die Folge gegen 0 konvergiert.

�

y2y1 x3 x2x1

Graph der stetigen Funktion f : [a, b]→ R

y3 ba

Abbildung 24. Skizze für den Beweis von Satz 7.14.
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8. Der Zwischenwertsatz

Wir beginnen das Kapitel mit folgendem Satz.

Satz 8.1. (Beschränktheitssatz) Jede stetige Funktion auf einem kompakten Intervallen
ist beschränkt. Mit anderen Worten, wenn f : [a, b] → R eine stetige Funktion ist, dann
existiert ein C ∈ R, so dass für alle x ∈ [a, b] gilt: |f(x)| ≤ C.

Beispiel. Die Aussage des Satzes gilt nicht, wenn wir stetige Funktionen auf nicht-kompakten
Intervallen betrachten. Beispielsweise ist die Funktion

f : (0, 1] → R
x 7→ 1

x
stetig und unbeschränkt.

Beweis. Es sei f : [a, b] → R eine stetige Funktion. Wir führen einen Widerspruchsbeweis
durch, d.h. wir nehmen an, dass es kein solches C gibt. Mit anderen Worten wir nehmen
an, dass gilt:

(∗) Für alle C ∈ R existiert ein x ∈ [a, b] mit |f(x)| > C.

Wie im Beweis von Satz 7.14 wollen wir wieder die Formulierung der Stetigkeit über
Folgen, siehe Satz 7.4 ins Spiel zu bringen. Dazu brauchen wir eine konvergente Folge
in [a, b]. Eine Folge erhalten wir erst einmal dadurch, dass wir (∗) auf C = n, n ∈ N
anwenden. Die Folge xn ∈ [a, b], welche wir erhalten, muss nicht notwendigerweise
konvergieren. Aber mithilfe des Satzes 5.9 von Bolzano–Weierstraß erhalten wir eine
konvergente Teilfolge. Das reicht mal wieder für unsere Zwecke.

Aus (∗) folgt, dass es zu jedem n ∈ N ein xn ∈ [a, b] gibt, so dass |f(xn)| > n. Die Folge
(xn)n∈N von reellen Zahlen ist beschränkt, also existiert nach dem Satz 5.9 von Bolzano–
Weierstraß eine Teilfolge (xnk)k∈N, welche konvergiert. Wir setzen x := lim

k→∞
xnk . Nachdem

a ≤ xnk ≤ b folgt aus Satz 3.6, dass auch a ≤ x ≤ b, das heißt x ∈ [a, b]. Insbesondere sehen
wir also, dass x = lim

k→∞
xnk im Definitionsbereich der Funktion f liegt. Wir sehen nun, dass

gilt:
+∞ = lim

k→∞
|f(xnk)| =

∣∣f( lim
k→∞

xnk
)∣∣ = |f(x)|.

↑ ↑
folgt aus |f(xnk

)|>nk≥k folgt aus Satz 7.4, da f stetig, und daher auch |f | stetig ist

Wir haben also einen Widerspruch erhalten. �

��

x6x7 x4x3xx2 x1 ba

Graph von x 7→ |f(x)|

x5

f(x)

Abbildung 25. Skizze für den Beweis des Beschränktheitssatzes 8.1.
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Definition. Es sei D ⊂ R und es sei f : D → R eine Funktion. Wir sagen:

(1) f besitzt ein Minimum, wenn es ein x0 ∈ D gibt, so dass f(x0) ≤ f(x) für alle x ∈ D
(2) f besitzt ein Maximum, wenn es ein x1 ∈ D gibt, so dass f(x1) ≥ f(x) für alle x ∈ D.

Beispiel. In der Abbildung sehen wir eine stetige Funktion auf einem kompakten Intervall
[a, b]. Diese besitzt ein Minimum und ein Maximum. Wir sehen zudem eine stetige Funktion
auf dem offenen Intervall (1, 2), welche weder ein Minimum noch ein Maximum besitzt.

�
�
�
�

�
�
�

�
�
�

a b = x1x0

f(x1)

f(x0)

jede stetige Funktion f : [a, b]→R besitzt
ein Maximum und ein Minimum

1 2

diese stetige Funktion f : (1, 2)→R besitzt
weder ein Maximum noch ein Minimum

Satz 8.2. (Satz über die Existenz von Maximum und Minimum) Jede stetige Funk-
tion auf einem nichtleeren kompakten Intervall besitzt ein Maximum und ein Minimum.

Bemerkung. Satz 8.2 über die Existenz von Maximum und Minimum macht eine stärkere
Aussage, als der Beschränktheitssatz 8.1. Wir haben den Beschränktheitssatz 8.1 zuerst
formuliert und bewiesen, weil wir diesen im Beweis von Satz 8.2 verwenden werden.

Beweis. Es sei also f : [a, b] → R eine stetige Funktion auf dem kompakten Intervall [a, b]
mit a ≤ b. Wir müssen zeigen, dass es x0, x1 ∈ [a, b] gibt, so dass für alle x ∈ [a, b]:

f(x0) ≤ f(x) ≤ f(x1)

Wir zeigen zuerst die Existenz von x1. Es folgt aus Satz 8.1, dass die Menge f([a, b])
beschränkt ist. Zudem ist die Menge nichtleer. Also existiert nach Satz 5.2 das Supremum
y1 := sup(f([a, b])). Es folgt nun aus Satz 5.3 (1), dass es eine Folge (zn)n∈N in f([a, b]) gibt,
welche gegen y1 konvergiert. Für jedes n ∈ N wählen wir jetzt ein c ∈ [a, b] mit f(cn) = zn.

Nachdem die Folge (cn)n∈N beschränkt ist, existiert nach dem Satz 5.9 von Bolzano–
Weierstraß eine Teilfolge (cnk)k∈N, welche konvergiert. Wir setzen x1 := lim

k→∞
cnk . Wie im

Beweis von Satz 8.1 sehen wir, dass x1 ∈ [a, b]. Zudem gilt:

folgt aus Satz 7.4, da f stetig Lemma 5.8
↓ ↓

f(x1) = f
(

lim
k→∞

cnk
)

= lim
k→∞

f(cnk) = lim
k→∞

znk = lim
n→∞

zn = y1 := sup(f([a, b])).

Nachdem das Supremum sup(f([a, b])), per Definition, insbesondere eine obere Schranke
für f([a, b]) ist, folgt nun, dass f(x1) ≥ f(x) für alle x ∈ [a, b].

Ganz analog zeigt man auch die Existenz von x0. �
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a

y1 = sup(f([a, b]))

b

z1

z2

z3

c1 c2c3 c4

Graph der stetigen
Funktion f : [a, b]→ R

Abbildung 26. Skizze für den Beweis von Satz 8.2.

Der folgende Satz besagt insbesondere, dass eine stetige Funktion f auf einem kompakten
Intervall [a, b] jeden Wert zwischen f(a) und f(b) als Funktionswert annimmt.

Satz 8.3. (Zwischenwertsatz) Es sei f : I → R eine stetige Funktion auf einem In-
tervall I. Für jede Zahl y0 zwischen zwei Funktionswerten f(a) und f(b) existiert ein x0
zwischen a und b, so dass f(x0) = y0.

65

a x0 b

wenn f : I → R stetig ist, dann gibt
es zu jedem y0 zwischen f(a) und f(b)
ein x0 ∈ [a, b] mit f(x0) = y0.

f(b)

f(a)

y0

Intervall I

Abbildung 27. Veranschaulichung der Aussage des Zwischenwertsatzes.

Beispiel. Wir betrachten die Funktion

f : R → R
x 7→ x2 − 2.

Dann gilt f(0) < 0 und f(3) > 0. Der Zwischenwertsatz also, dass es ein x ∈ [0, 3] mit
x2 − 2 = 0 gibt. Ganz analog kann man mithilfe des Zwischenwertsatzes zeigen, dass jedes
c ≥ 0 eine Quadratwurzel besitzt.

Beweis. Es sei f : I → R eine stetige Funktion auf einem Intervall I. Es seien a < b
zwei Punkte in dem Intervall I. Wir betrachten nur den Fall, dass f(a) ≤ f(b), der Fall

65Wir sagen eine Zahl r ∈ R liegt zwischen s und t, wenn Folgendes gilt:

(1) falls s ≤ t, dann ist r ∈ [s, t],
(2) falls t ≤ s, dann ist r ∈ [t, s].
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f(a) > f(b) wird fast genauso bewiesen. Es sei nun y0 ∈ [f(a), f(b)]. Wir müssen zeigen,
dass es ein x0 ∈ [a, b] mit f(x0) = y0 gibt.

Wie wir gerade gesehen hatten, impliziert der Zwischenwertsatz, dass es Quadratwur-
zeln von nicht-negativen Zahlen gibt. Wir hatten die Existenz von Quadratwurzeln
davor schon in Satz 5.7 bewiesen. Wie wir gleich sehen werden ist der Beweis des Zwi-
schenwertsatzes fast identisch zu dem Beweis von Satz 5.7. Wir müssen hauptsächlich
die Funktion x 7→ xn durch unsere Funktion f ersetzen.

Wir setzen
M := {x ∈ [a, b] | f(x) ≤ y0}.

Nachdem f(a) ≤ y0 folgt, dass a ∈ M . Die Menge M ist also nichtleer. Die Menge ist
zudem offensichtlich durch b nach oben beschränkt. Es folgt also aus Satz 5.2, dass M
ein Supremum besitzt. Nach dem sup(M) ∈ [a, b] genügt es nun folgende Behauptung zu
beweisen.

Behauptung. Für x0 := sup(M) gilt f(x0) = y0.

Wir studieren f(x0) indem wir x0 als Grenzwert von zwei Folgen schreiben:

(1) Nach Satz 5.3 (1) gibt es eine Folge (an)n∈N von Zahlen in M mit lim
n→∞

an = x0.

(2) Für n ∈ N setzen wir bn = min{x0 + 1
n
, b}.

Dann gilt folgt aus Satz 7.4, da f stetig folgt aus Satz 7.4, da f stetig
↓ ↓

y0 ≥ lim
n→∞

f(an) = f
(

lim
n→∞

an
)

= f(x0) = f
(

lim
n→∞

bn
)

= lim
n→∞

f(bn) ≥ y0.

↑ ↑
da an ∈M gilt f(an) ≤ y0, die da x0 eine obere Schranke für M ist,
Ungleichung folgt nun aus Satz 3.6 gilt für alle c ∈ (x0, b], dass f(c) > y0,

zudem gilt nach Voraussetzung, dass f(b) ≥ y0,
insbesondere gilt also f(bn) ≥ y0,

die Ungleichung folgt nun wieder aus Satz 3.6

Wir haben also gezeigt, dass y0 ≥ f(x0) ≥ y0. Also ist f(x0) = y0. �
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M = {x ∈ [a, b] | f(x) ≤ y0}

b

y0

f(a)

f(b)

x0a

f(b)

f(a)

y0

b a an bn

Abbildung 28. Skizze zum Beweis des Zwischenwertsatzes.

In Übungsblatt 7 werden wir mithilfe des Zwischenwertsatzes folgenden Satz beweisen.
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Satz 8.4. Jede Polynomfunktion

R → R
x 7→ a0 + a1 · x+ · · ·+ ak · xk

von ungeradem Grad besitzt eine Nullstelle.

Beispiel. Der gerade formulierte Satz 8.4 impliziert also beispielsweise, dass die Polynom-
funktion f(x) = 3−x2+7x3−2x4−2x5+3x7 eine Nullstelle besitzt. Der Satz macht aber kei-
ne Aussage ob oder wie man die Nullstellen berechnen kann. In der Algebravorlesung wird
bewiesen, dass es für Polynomfunktionen von Grad ≥ 5 keine allgemeine Lösungsformel
geben kann.

Wir beschließen das kurze Kapitel mit folgendem Satz, welchen wir in Übungsblatt 7
beweisen werden.

Satz 8.5. (Satz des moralischen Dilemmas) Jede stetige Funktion f : I → R auf einem
Intervall I, welche nur Werte in Z annimmt, ist konstant.

4

1

ba

f : [a, b]→Z nicht konstant, also nicht stetig

a b

1

4

f : [a, b]→Z stetig, also konstant

Abbildung 29.

Beispiel. In den Anwendungen ist folgende zu Satz 8.5 äquivalente Formulierung oft wich-
tiger: wenn eine Funktion f : [a, b]→ Z nicht konstant ist, dann kann sie nicht stetig sein.
Funktionen f : [a, b] → Z, welche nicht konstant sind gibt es in der Tat überall. Hier sind
ein paar etwas salopp formulierte Beispiele:

Coronafunktion : [0, 1000] → N0

Inzidenzwert von Stadt 7→ Anzahl der Menschen, welche sich treffen dürfen

Bestrafungsfunktion : [0, 1000000] → N0

Wert von gestohlenem Gut 7→ Anzahl der Monate im Gefängnis

Notenfunktion : [0, 100] → {1, 2, 3, 4, 5, 6}
Punkte in Klausur → Note in Klausur

Rechtefunktion : [0, 100] → N0

Lebensalter → Anzahl der Führerscheine, welche man machen darf

In allen Fällen ist die Funktion nicht-konstant, damit nach Satz 8.5 nicht-stetig und damit
letztendlich ungerecht.
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9. Umkehrfunktionen

9.1. (Streng) monotone Funktionen.

Definition. Es sei D ⊂ R und es sei f : D → R eine Funktion.

(1) f heißt monoton steigend, wenn für x1, x2∈D gilt: x1 < x2 ⇒ f(x1)≤ f(x2),
(2) f heißt streng monoton steigend, wenn für x1, x2∈D gilt: x1 < x2 ⇒ f(x1)<f(x2),
(3) f heißt monoton fallend, wenn für x1, x2∈D gilt: x1 < x2 ⇒ f(x1)≥ f(x2),
(4) f heißt streng monoton fallend, wenn für x1, x2∈D gilt: x1 < x2 ⇒ f(x1)>f(x2).

eine monoton
steigende Funktion

eine streng monoton
fallende Funktion

eine streng monoton
steigende Funktion

x1 x2
x1

x2x1
x2

Abbildung 30.

Lemma 9.1.

(1) Die Exponentialfunktion exp: R→ R ist streng monoton steigend.
(2) Es sei k ∈ N. Die Funktionen

(a)
[0,∞) → R

x 7→ xk
und (b)

R → R
x 7→ x2k+1 sind streng monoton steigend.

Zudem ist die Funktion
(c)

(0,∞) → R
x 7→ 1

xk
streng monoton fallend.

�
�
�

�
�
�

1

1

2

3

4

2−1−2 −1 2

4

1

2

1 2−1−2
−1

−2

3

2

1

1

2

exp(x)
1

2

−1

1
x

3

1

x3

x2

Beweis (∗).

(1) Es seien also x1, x2 ∈ R mit x1 > x2. Dann gilt

exp(x1) = exp(x2 + (x1 − x2)) = exp(x2) · exp(x1 − x2) > exp(x2).
↑ ↑

Funktionalgleichung, siehe Theorem 6.18 es ist x1 > x2, also x1 − x2 > 0, also folgt
aus Satz 6.19 (3), dass exp(x1 − x2) > 1



114

(2) Die Aussagen folgen leicht aus den Ordnungsaxiomen und Satz 1.17 (2) und (3). Das
Austüfteln der Details führt zu mehr Verwirrung als Erkenntnis, und wir beenden
damit auch schon wieder den Beweis. �

Mithilfe des folgenden Lemmas können wir für monotone Funktionen in vielen Fällen
den Wertebereich ohne großen Aufwand bestimmen.

Lemma 9.2. Es sei f : D → R eine stetige, monoton steigende Funktion.

(1) Wenn [a, b] ⊂ D ein kompaktes Intervall ist, dann ist f([a, b]) = [f(a), f(b)].
(2) Wenn (a, b) ⊂ D ein offenes Intervall ist, wobei −∞ ≤ a < b ≤ ∞, dann ist6667

f
(
(a, b)

)
=
(

lim
x↘a

f(x) , lim
x↗b

f(x)
)
.

Zudem gelten die offensichtlichen Abänderungen für Intervalle vom Typ (a, b], [a, b),
(−∞, b] sowie [a,∞).

Wenn f monoton fallend ist, dann gelten die gleichen Aussagen, allerdings mit den Grenzen
der Intervalle vertauscht.

Graph von f

Graph von f

das Intervall [a,∞)aba

f(a)

lim
x↘a

f(x)

lim
x→∞

f(x)

f(b)

Abbildung 31. Illustration von Lemma 9.2.

Beispiel. Wir betrachten die monoton fallende Funktion

f : (0,∞) → R
x 7→ 1

x
.

Dann gilt: f([1,∞)) =
(

lim
x→∞

f(x) , f(1)
]

=
(

lim
x→∞

1
x
, 1
]

= (0, 1].
↑

folgt aus Lemma 9.2, da f streng monoton fallend, werden die Grenzen allerdings vertauscht

Beweis. Es sei f : D → R eine monoton steigende Funktion.

(1) Es sei [a, b]⊂D ein kompaktes Intervall. Wir sollen zeigen, dass f([a, b])=[f(a), f(b)].
In diesem Fall haben wir also zwei Mengen X und Y gegeben, und wir wollen
zeigen, dass X = Y . Es genügt zu zeigen, dass X ⊂ Y und X ⊃ Y . Wenn man
nun zeigen will, dass X ⊂ Y , dann muss man zeigen, dass jedes x ∈ X auch in
Y enthalten ist.

66Hierbei interpretieren wir natürlich lim
x↘−∞

f(x) als lim
x→−∞

f(x) und ganz analog lim
x↗∞

f(x) als lim
x→∞

f(x).

67Wie in Satz 3.15 und Satz 4.3 kann man zeigen, dass die “Grenzwerte” in R ∪ {±∞} existieren.
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(⊂) Wir zeigen zuerst, dass f([a, b]) ⊂ [f(a), f(b)]. Dies folgt aus folgender Beob-
achtung:

x ∈ [a, b] =⇒ a ≤ x ≤ b =⇒ f(a) ≤ f(x) ≤ f(b) =⇒ f(x) ∈ [f(a), f(b)].
↑

denn f ist monoton steigend

(⊃) Wir zeigen nun, dass f([a, b]) ⊃ [f(a), f(b)]. Es sei also y ∈ [f(a), f(b)]. Der
Zwischenwertsatz 8.3 besagt, dass es ein x ∈ [a, b] mit f(x) = y gibt. Also ist
y ∈ f([a, b]).

(2) (∗) Es sei beispielsweise [a,∞) ⊂ D ein halb-offenes, unbeschränktes Intervall mit
der Eigenschaft, dass lim

x→∞
f(x) =∞. Dann gilt

f ([a,∞)) = f
( ⋃
n∈Z

[a, n]
)

=
⋃
n∈Z

f([a, n]) =
⋃
n∈Z

[f(a), f(n)] = [f(a),∞).
↑ ↑ ↑

allgemein gilt für eine beliebige nach dem ersten Fall da f monoton steigend
Abbildung g, dass g(X∪Y )=g(X)∪g(Y ) und da lim

x→∞
f(x) = +∞

Die anderen Aussagen werden ganz analog bewiesen. �

9.2. Die Definition von Umkehrfunktionen. Wir erinnern an folgende Definition von
Seite 58.

Definition. Eine Abbildung f : X → Y zwischen zwei Mengen heißt injektiv, wenn für alle
x1 6= x2 ∈ X gilt, dass auch f(x1) 6= f(x2).

Beispiel. Es folgt eigentlich sofort aus den Definitionen, dass jede streng monotone Funktion
f : D → R injektiv ist. Man sieht das auch gut in Abbildung 30.

Definition. Es sei f : D → R eine injektive Funktion. Dann existiert zu jedem a ∈ f(D)
genau ein b ∈ D mit der Eigenschaft f(b) = a. Dieses b wird mit f−1(a) bezeichnet und die
Funktion68

f−1 : f(D) → R
a 7→ f−1(a) = das einzige b ∈ D mit f(b) = a

heißt die Umkehrfunktion von f . Insbesondere gilt für a ∈ f(D) und b ∈ D:

(∗) f−1(a) = b ⇐⇒ f(b) = a.

Lemma 9.3. Es sei f : D → R eine injektive Funktion.

(1) für alle x ∈ D gilt: f−1(f(x)) = x,
(2) für alle y ∈ f(D) gilt: f(f−1(y)) = y.

Beweis.

(1) Es sei x ∈ D. Es folgt aus (∗), angewandt auf a = f(x) und b = x, dass f−1(f(x)) = x.

68Die Umkehrfunktion f−1 besitzt den Wertebereich D, wir könnten also auch etwas genauer schreiben
f−1 : f(D)→ D anstatt f−1 : f(D)→ R.
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���� Graph einer injektiven Funktion f : D → R

a

Definitionsbereich D

f(D)

f−1(a) := b

Abbildung 32.

(2) Es sei y ∈ f(D). Es folgt nun aus (∗), angewandt auf a = y und b = f−1(y), dass
f(f−1(y)) = y. �

Lemma 9.4. Es sei f : D → R eine injektive Funktion. Dann gilt:

Graph(f−1) = Spiegelbild von Graph(f) bezüglich der x = y–Diagonale.

Graph der Umkehrfunktion
f−1 : f(D)→ R Graph der Funktion

f : D → R

x = y–Diagonale

D

Abbildung 33. Illustration von Lemma 9.4.

Beweis (∗). Zur Erinnerung: Der Graph einer Funktion g : E → R ist definiert als

Graph(g) := {(x, g(x)) ∈ R2 |x ∈ E}.

Wir wenden uns nun dem eigentlichen Beweis des Lemmas zu. Es sei (x, y) ∈ R2. Dann gilt

(x, y) ∈ Graph(f−1) ⇐⇒ y = f−1(x) ⇐⇒ f(y) = x ⇐⇒ (y, x) ∈ Graph(f).
↑ ↑

nach (∗) denn (y, x) = (y, f(y)).

Wir sehen also, dass wir den Graphen von f−1 aus dem Graphen von f durch Vertauschen
der x- und der y-Koordinate erhalten. Anders ausgedrückt, wir erhalten den Graphen der
Umkehrfunktion f−1, indem wir den Graphen von f an der x = y–Diagonale spiegeln. �

Im weiteren Verlauf der Vorlesung werden wir mehrmals folgendes Lemma verwenden.

Lemma 9.5. Wenn f : D → R streng monoton steigend (bzw. fallend) ist, dann ist die
Umkehrfunktion f−1 : f(D)→ R ebenfalls streng monoton steigend (bzw. fallend).

Beweis (∗). Wir betrachten zuerst den Fall, dass f : D → R streng monoton steigend ist.
Wir wollen zeigen, dass dann auch f−1 : f(D) → R streng monoton steigend ist. Für
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y1, y2 ∈ f(D) gilt dann:

y1 < y2 ⇐⇒ f(f−1(y1)) < f(f−1(y2)) ⇐⇒ f−1(y1) < f−1(y2).
↑ ↑

aus Lemma 9.3 folgt f(f−1(yi)) = yi da f streng monoton steigend

Wir haben also gezeigt, dass f−1 : f(D) → R streng monoton steigend ist. Der Fall, dass
f : D → R streng monoton fallend ist, wird ganz analog bewiesen. �

9.3. Stetigkeit von Umkehrfunktionen. Es stellt sich also nun folgende Frage: wenn
f : D → R injektiv ist, und wenn f stetig ist, folgt dann, dass die Umkehrfunktion f−1

ebenfalls stetig ist? Das folgende Beispiel zeigt, dass die Antwort im Allgemeinen Nein ist.

Beispiel. In Abbildung sehen wir den Graphen einer Funktion f : [0, 1] ∪ (2, 3] → R,
welche sowohl stetig als auch injektiv ist. Wir sehen zudem den Graph der Umkehrfunktion
f−1 : [0, 2]→ R. Die Umkehrfunktion ist im Punkt x0 = 1 jedoch nicht stetig.
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die Funktion f ist stetig
und injektiv

32

die Umkehrfunktion f−1

ist im Punkt x0 = 1 nicht stetig

1

2

1

2 3

Graph(f)

2

1 Graph(f−1)

1

Wir sehen also, dass die Umkehrfunktion im Allgemeinen nicht stetig ist, aber wir sehen
auch, dass zumindest in dem obigen Beispiel die Nicht-Stetigkeit von f−1 an der “Zerissen-
heit” des Definitionsbereiches von f liegt. Wir werden deswegen im Folgenden Funktionen
betrachten, welche auf einem Intervall definiert sind.

Satz 9.6. (Satz von der Stetigkeit der Umkehrfunktion) Wenn f : I → R eine streng
monotone Funktion, welche auf einem Intervall I definiert ist,69 dann ist die Umkehrfunk-
tion f−1 : f(I)→ R stetig.

Beweis. Wir betrachten zuerst den Fall, dass I = R, und dass f : I → R eine streng
monoton steigende Funktion ist. Es sei also y0 ∈ f(R). Wir wollen zeigen, dass f−1 stetig
im Punkt y0 ist. Wir setzen x0 := f−1(y0). Wir wollen also zeigen, dass

∀
ε>0
∃
δ>0

∀
y∈(y0−δ,y0+δ)

f−1(y) ∈ (x0 − ε, x0 + ε).

69Wir setzen hier also nicht voraus, dass f stetig ist. Dies ist kein Fehler. Wenn f streng monoton ist,
dann ist die Umkehrfunktion stetig, selbst wenn f selber nicht stetig ist. Es ist vielleicht hilfreich mal
explizit den Graphen von solchen Funktionen aufzuzeichnen.
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Es sei nun ε > 0. Nachdem f streng monoton steigend ist, folgt, dass

f(x0 − ε) < y0 = f(x0) < f(x0 + ε).

Wir wählen nun ein δ > 0, so dass 70

(y0 − δ, y0 + δ) ⊂ (f(x0 − ε), f(x0 + ε)).

Dann gilt für y ∈ R, dass

y ∈ (y0−δ, y0+δ) ⇒ y0 − δ < y < y0 + δ
⇒ f(x0−ε) < y < f(x0+ε) ⇒ f−1(f(x0−ε)) < f−1(y) < f−1(f(x0+ε))
↑ ↑

Wahl von δ aus Lemma 9.5 folgt, dass f−1 streng monoton steigend ist

⇒ x0−ε < f−1(y) < x0+ε ⇒ f−1(y) ∈ (x0−ε, x0+ε).
↑

folgt aus Lemma 9.3

Wir müssen nun noch die Fälle betrachten, dass I ein beliebiges Intervall ist, oder dass

f−1(y0−δ)

y0 − δ

y0 + δ

f−1(y0)+ε

x0 = f−1(y0)

y0

f−1(y0)−εx0−ε x0+ε

f(x0 − ε)

f(x0 + ε)

f−1(y0)

y0

f−1(y0+δ)

Graph der Funktion f

Abbildung 34. Skizze für den Beweis von Satz 9.6.

f streng monoton fallend ist. Diese Fälle werden ganz ähnlich bewiesen und sind eine
freiwillige Übungsaufgabe. �

9.4. Die Wurzelfunktionen. Es sei k ∈ N. Nach Lemma 9.1 ist die Funktion

f : [0,∞) → R
x 7→ xk

streng monoton steigend und wir hatten in Satz 7.6 gesehen, dass diese Funktion stetig ist.
Zudem gilt

folgt aus Lemma 9.2, da f streng monoton steigend Lemma 7.13
↓ ↓

f([0,∞)) =
[
f(0), lim

x→∞
f(x)

)
=
[
0, lim

x→∞
xk
)

= [0,∞).

Die zugehörige Umkehrfunktion

70Beispielsweise könnten wir δ := min{f(x0 + ε)− y0, y0 − f(x0 − ε)} setzen.
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[0,∞) → R
x 7→ f−1(x) = k

√
x

↑
folgt aus der Definition von k

√
x auf Seite 68

heißt die k-te Wurzelfunktion. Es folgt aus Satz 9.6, dass die Umkehrfunktion stetig ist.

2

1

x = y–Diagonale

2

3

1 3 4

f−1 : [0,∞) → R
x 7→

√
x

Graph der Umkehrfunktion

f : [0,∞) → R
x 7→ x2

Graph der Funktion

Abbildung 35.

9.5. Die Logarithmusfunktionen. Wir fassen zuerst die wichtigsten Eigenschaften der
Exponentialfunktion zusammen.

Satz 9.7. Die Exponentialfunktion exp: R → R

x 7→ exp(x) =
∞∑
n=0

xn

n!
besitzt folgende Eigenschaften:

(1) exp(0) = 1,
(2) exp(1) =: e ist die Eulersche Zahl, es gilt e ≈ 2.718281828 . . . ,
(3) Für alle x, y ∈ R gilt exp(x+ y) = exp(x) · exp(y) (Funktionalgleichung).
(4) Für alle x ∈ R gilt exp(−x) = 1

exp(x)
.

(5) Für alle n ∈ Z gilt exp(n) = en.
(6) Für alle x ∈ (−∞, 0) gilt exp(x) ∈ (0, 1) und für alle x ∈ (0,∞) gilt exp(x) ∈ (1,∞).
(7) Die Exponentialfunktion ist streng monoton steigend.
(8) Die Exponentialfunktion ist stetig.
(9) Es ist lim

x→∞
exp(x) = +∞ und lim

x→−∞
exp(x) = 0.

(10) exp(R) = (0,∞).

Beweis.

(1)-(8) Die ersten acht Aussagen haben wir in Theorem 6.18, Satz 6.19, Satz 7.8 und
Lemma 9.1 bewiesen.

(9) (a) Es folgt aus (5), dass die Funktionswerte der Exponentialfunktion nach oben
unbeschränkt sind. Es folgt nun aus der strengen Monotonie der Exponential-
funktion, ganz ähnlich wie in Satz 3.15, dass lim

x→∞
exp(x) = +∞.

(b) Diese Aussage folgt (9a), der Eigenschaft (4) und dem Analogon zu Satz 3.11.
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(10) Es ist folgt aus Lemma 9.2, da exp monoton steigend folgt aus (9)
↓ ↓

exp(R) = exp((−∞,∞)) =
(

lim
x→−∞

exp(x), lim
x→∞

exp(x)
)

= (0,∞). �

Definition. Die Umkehrfunktion der Exponentialfunktion exp wird die Logarithmusfunktion
ln : (0,∞)→ R genannt.

2

1

1 2

x = y–Diagonale

−3 −2 −1

3

3

Graph der Exponentialfunktion
exp: R → R

x 7→ exp(x)

ln : (0,∞) → R
x 7→ ln(x)

Graph der Logarithmusfunktion

4

Satz 9.8. Die Logarithmusfunktion ln : (0,∞) → R
x 7→ ln(x)

hat folgende Eigenschaften:

(0) Für alle x ∈ R gilt ln(exp(x)) = x und für alle x ∈ (0,∞) gilt exp(ln(x)) = x.
(1) ln(1) = 0.
(2) ln(e) = 1.
(3) Für alle x, y ∈ (0,∞) gilt ln(x · y) = ln(x) + ln(y) (Funktionalgleichung).
(4) Für alle x ∈ (0,∞) gilt ln( 1

x
) = − ln(x).

(5) Für alle n ∈ N gilt ln(en) = n.
(6) Für alle x ∈ (0, 1) ist ln(x) ∈ (−∞, 0) und für alle x ∈ (1,∞) ist ln(x) ∈ (0,∞).
(7) Die Logarithmusfunktion ist streng monoton steigend.
(8) Die Logarithmusfunktion ist stetig.
(9) Es ist lim

x→∞
ln(x) = +∞ und lim

x↘0
ln(x) = −∞.

Beweis.

(0) Diese Aussage folgt aus Lemma 9.3.
(1) Es ist ln(1) = ln(exp(0)) = 0.
(2) Es ist ln(e) = ln(exp(1)) = 1.
(3) Es seien also x, y ∈ (0,∞). Dann gilt

ln(x·y) = ln(exp(ln(x))·exp(ln(y))) = ln(exp(ln(x) + ln(y))) = ln(x) + ln(y).
↑ ↑ ↑

folgt aus (0) folgt aus Satz 9.7 (3) folgt aus (0)
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(4) Es sei x ∈ (0,∞). Dann gilt

0 = ln(1) = ln(x · 1
x
) = ln(x) + ln( 1

x
), also ist ln( 1

x
) = − ln(x).

↑ ↑
folgt aus (1) folgt aus (3)

(5) Es sei n ∈ N. Es ist ln(en) = ln(exp(n)) = n.
(6) Die Aussage folgt sofort aus Satz 9.7 (6).
(7) Nachdem die Exponentialfunktion streng monoton steigend ist, folgt aus Lemma 9.5,

dass die Logarithmusfunktion ebenfalls streng monoton steigend ist.
(8) Nachdem die Exponentionalfunktion streng monoton steigend und auf dem Intervall

R = (−∞,∞) definiert ist, folgt aus Satz 9.6, dass die Logarithmusfunktion stetig
ist.

(9) (a) Es folgt aus (5), dass für beliebiges C ∈ R gilt: ln(exp(C)) = C. Dies impliziert,
dass die Logarithmusfunktion ln nach oben unbeschränkt ist. Nachdem die Lo-
garithmusfunktion zudem streng monoton steigend ist, folgt, ganz ähnlich wie in
Satz 3.15, dass lim

x→∞
ln(x) = +∞.

(b) Es ist lim
x↘0

ln(x) = lim
x→∞

ln( 1
x
) = lim

x→∞
− ln(x) = − lim

x→∞
ln(x) = −∞.

↑ ↑ ↑
die Aussage gilt für alle Funktionen folgt aus (4) Aussage (9a)
und folgt leicht aus den Definitionen �

9.6. Potenzen von reellen Zahlen. Es sei a ∈ R und n ∈ N0. Auf Seite 13 hatten wir
definiert:

an := a · · · · · a︸ ︷︷ ︸
n−Mal

, sowie a0 := 1 und für a 6= 0 hatten wir definiert a−n := 1

an
.

Wir wollen nun den Bereich der möglichen Exponenten erweitern. Es sei beispielsweise
s = p

q
, mit p ∈ Z und q ∈ N, eine rationale Zahl, dann können wir für a ∈ (0,∞) folgende

Definition einführen:

as := a
p
q := ( q

√
a)p, wobei die q-te Wurzel q

√
x für x ≥ 0 auf Seite 68 definiert wurde.

Für a = 2 wird der Graph der Funktion Q → R, x 7→ 2x in Abbildung 36 skizziert.
Der Graph legt nahe, dass man diese Funktion auch als eine stetige Funktion auf ganz R
fortsetzen kann. Mit anderen Worten, es sollte möglich sein ax für jeden Exponenten
x ∈ R “vernünftig” definieren zu können. Wir führen dies nun mit folgender, vielleicht
überraschenden Definition durch.

Graph der Funktion

Q → R
x 7→ 2x

Abbildung 36.
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Definition. Es sei a ∈ (0,∞) und x ∈ R. Wir definieren

ax := exp(x · ln(a)).

Beispiel.

(1) Nachdem ln(e) = 1 gilt für alle x ∈ R, dass ex = exp(x).
(2) Wir haben jetzt also Potenzen ax für beliebige a ∈ (0,∞) und x ∈ R definiert.

Beispielsweise haben wir jetzt definiert, was (2 +
√

2)−e+
√
3 sein soll.

Der folgende Satz besagt nun, dass die Definition von “a hoch x” alle Eigenschaften
erfüllt, die man erwarten würde. Der Satz kann insbesondere als Verallgemeinerung von
Satz 1.12 aufgefasst werden.

Satz 9.9. (Potenzregeln)

(1) Es seien a, b ∈ (0,∞) und x, y ∈ R, zudem sei n ∈ N0. Dann gilt:

(a) a0 = 1,
(b) ax · ay = ax+y

(c) a−x = 1
ax

(d) (ax)y = axy

(e) ax · bx = (ab)x

(f) an = a · · · · · a︸ ︷︷ ︸
n-Mal

.

(2) Für a ∈ (0,∞) und s = p
q

mit p ∈ Z und q ∈ N gilt as = ( q
√
a)p.

(3) Für jedes a ∈ (0,∞) ist die Funktion

R → R
a 7→ ax stetig.

Bemerkung. Es folgt aus Satz 9.9 (2), dass die zwei Definitionen von Potenzen as mit
rationalem Exponenten s ∈ Q übereinstimmen.

Beweis. Es seien also a, b ∈ (0,∞) und x, y ∈ R.

(1) (a) Es ist a0 = exp(ln(a) · 0) = exp(0) = 1.
(b) Es ist

per Definition Funktionalgleichung
↓ ↓

ax · ay = exp(x · ln a) · exp(y · ln a) = exp(x · ln a+ y · ln a)
= exp((x+ y) · ln a) = ax+y.

↑
per Definition

(c)-(e) Diese drei Aussagen folgen ebenfalls leicht aus den Definitionen und den Eigen-
schaften der Exponentialfunktion und der Logarithmusfunktion. Diese Aussagen
werden im 8. Übungsblatt bewiesen.

(f) Es ist

an = a1+···+1 =

n-Mal︷ ︸︸ ︷
a · · · · · a.

↑
folgt aus (b)
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(2) Es seien a ∈ (0,∞) und s = p
q

mit p ∈ Z und q ∈ N. Dann gilt

(a
p
q )q = a

p
q
·q = ap = (( q

√
a)q)p.

↑ ↑
folgt aus (1d) Definition von q

√
a

Da x 7→ xp auf [0,∞) injektiv ist, folgt, dass a
p
q = ( q

√
a)p.

(3) Es sei a ∈ (0,∞). Wir sollen zeigen, dass die Funktion

R → R
x 7→ ax = exp(x · ln(a))

stetig ist. Diese Funktion ist die Verknüpfung der stetigen Funktionen x 7→ x · ln(a)
und71 y 7→ exp(y) ist. Nach Satz 7.7 ist auch die Verknüpfung dieser beiden Funktio-
nen, d.h. die Funktion x 7→ ax = exp(x · ln(a)), stetig. �

Graph der Funktion

R → R
x 7→ (1

2
)x

Graph der Funktion

R → R
x 7→ 2x

71Nach Satz 7.8 wissen wir, dass die Exponentialfunktion stetig ist.
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10. Die komplexen Zahlen

10.1. Der Körper der komplexen Zahlen.

Definition. Wir bezeichnen mit C := {a+ b i | a, b ∈ R}
↑

genannt imaginäre Einheit

die Menge aller formalen Summen a + b i, wobei i ein festgewähltes Symbol ist, welches
die imaginäre Einheit genannt wird. Wir nennen C die Menge der komplexen Zahlen. Für
a ∈ R schreiben wir hierbei a+ 0i = a und 0 + a i = a i. Wir können komplexe Zahlen wie
folgt addieren

(x+ y i) + (x′ + y′ i) := (x+ x′) + (y + y′) i, wobei x, y, x′, y′ ∈ R,
und wie folgt mit einer reellen Zahl λ multiplizieren

λ · (x+ y i) := λx+ λy i, wobei x, y, λ ∈ R.
Man kann nun leicht überprüfen, dass C mit dieser Addition und dieser Skalarmultplikation
ein 2-dimensionaler reeller Vektorraum ist.

Bemerkung. Es folgt eigentlich sofort aus den Definition, dass die Abbildung

R2 7→ C
(x, y) 7→ x+ y i

ein Isomorphismus von reellen Vektorräumen ist. Wir stellen uns deswegen die komplexen
Zahlen bildlich auch als die 2-dimensionale Ebene vor.
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−2i

− i

i
321

−3

−1

−2i

− i

i
321

−2

−1− 2i

i = 0 + 1 · i

R

a

b

R

R i

2 + 3
2

i

R i

a+ b
5
2

= 5
2

+ 0i

Abbildung 37. Graphische Darstellung von komplexen Zahlen und deren Addition.

Der folgende Satz besagt nun, dass man auf den komplexen Zahlen eine Multiplikation
einführen kann, so dass alle Körperaxiome erfüllt sind.

Satz 10.1. Die Menge C der komplexen Zahlen mit

Addition (x+ y i) + (x′ + y′ i) := (x+ x′) + (y + y′) i, wobei x, y, x′, y′∈R,
Multiplikation (x+ y i) · (x′ + y′ i) := (xx′ − yy′) + (xy′ + x′y) i, wobei x, y, x′, y′∈R,

ist ein Körper.

Bemerkung.
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(1) Salopp gesprochen ist die Multiplikation

(x+ y i) · (x′ + y′ i) = (xx′ − yy′) + (xy′ + x′y) i

gegeben durch “naives” Ausmultiplizieren und indem wir i2 = −1 setzen.
(2) Die Addition von komplexen Zahlen entspricht der üblichen Addition in R2. Die

Multiplikation von komplexen Zahlen erscheint hingegen sehr unintuitiv. Im nächsten
Kapitel werden wir eine geometrische Interpretation der Multiplikation nachliefern.

Beweis. Wir müssen also jetzt zeigen, dass alle Körperaxiome erfüllt sind.

(A1)-(A4) Elementares Nachrechnen zeigt, dass die Additionsaxiome (A1) bis (A4) mit dem
additiv neutralen Element 0 = 0 + 0i erfüllt sind.

(M1) Das Assoziativgesetz zeigt man durch explizites Nachrechnen.
(M2) Die Definition der Multiplikation ist symmetrisch in x+ y i und x′ + y′ i, also ist die

Multiplikation kommutativ.
(M3) Für alle x+ y i ∈ C gilt

(x+ y i) · 1 = (x+ y i)(1 + 0i) = x+ y i,

d.h. 1 = 1 + 0i ist ein multiplikativ neutrales Element.
(M4) Es sei also x+ y i ∈ C \ {0}. Dann ist

(x+ y i) · 1

x2 + y2
(x− y i) =

1

x2 + y2
(x+ y i)(x− y i) =

1

x2 + y2
(x2 + y2) = 1.

Anders ausgedrückt, es ist
(x+ y i)−1 =

1

x2 + y2
· (x− y i) =

x

x2 + y2
− y

x2 + y2
i.

(D) Das Distributivgesetz zeigt man ebenfalls durch explizites Nachrechnen. �

Definition. Für eine reelle Zahl a ≥ 0 schreiben wir manchmal
√
−a :=

√
a · i.

Dann gilt in der Tat, dass
√
−a2 = (

√
a · i)2 =

√
a
2 · i2 = a · (−1) = −a.

Folgendes Lemma beweist man leicht durch explizites Nachrechnen.

Lemma 10.2. (Mitternachtsformel) Es sei p(x) = ax2 + bx + c ein Polynom, wobei
a, b, c ∈ R und a 6= 0. Die komplexen Zahlen

z± :=
−b±

√
b2 − 4ac

2a
∈ C

haben die Eigenschaft, dass p(z±) = 0.

Es gibt auch Lösungsformeln für Polynome von Grad 3 und 4. In der Algebravorlesung
wird jedoch bewiesen, dass es keine Lösungsformel für Polynome von Grad ≥ 5 geben
kann. Desto überraschender ist dann vielleicht folgender Satz, welchen wir in Analysis III
beweisen werden.



126

Satz 10.3. (Fundamentalsatz der Algebra) Es sei p(x) = a0 + a1x + · · · + akx
k ein

beliebiges Polynom mit komplexen Koeffizienten, wobei k ≥ 1 und ak 6= 0. Dann existiert
ein z ∈ C mit p(z) = 0.

Bemerkung. Es sei w ∈ C beliebig. Dann besagt der Fundamentalsatz der Algebra, dass
das Polynom x2 − w eine komplexe Nullstelle besitzt. D.h. es gibt ein z ∈ C mit z2 = w.
Anders ausgedrückt, jede komplexe Zahl besitzt eine Wurzel. In Übungsblatt 8 werden wir
der Frage nachgehen, was die Wurzel(n) aus i sind.

Definition. Für z = x+ y i ∈ C mit x, y ∈ R heißt

Re(z) := Re(x+ y i) := x der Realteil von z = x+ y i,
Im(z) := Im(x+ y i) := y der Imaginärteil von z = x+ y i,

z := x+ y i := x− y i die zu z = x+ y i konjugiert komplexe Zahl .

Die geometrische Bedeutung dieser Definitionen wird in Abbildung 10.1 skizziert.
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der Imaginärteil Im(z)
ist die y-Koordinate von z der Betrag |z| ist der

Abstand zum Ursprung

der Realteil Re(z) ist die
x-Koordinate von z

z = x+ y i

die konjugiert komplexe Zahl z = x− y i ist
das Spiegelbild von z bezüglich der x-Achse

Lemma 10.4. Es seien w, z ∈ C. Dann gilt:

(1) Re(z) = 1
2
(z + z)

(2) Im(z) = 1
2i

(z − z)
und

(a) w + z = w + z

(b) w · z = w · z.
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RR

R i
R i

z

z

z

z z + z = 2 Re(z) z − z = 2 Im(z) i

Beweis (∗). Alle diese Aussagen können durch elementares Nachrechnen bewiesen werden.
Es seien also w = u+ v i und z = x+ y i komplexe Zahlen. Dann gilt in der Tat

(1) Re(z) = x = 1
2
(x+ y i + x− y i) = 1

2

(
x+ y i + x+ y i

)
= 1

2
(z + z)

(2) Im(z) = y =
1

2i
(x+ y i − x+ y i) =

1

2i

(
x+ y i − (x+ y i)

)
= 1

2i
(z − z)
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und es gilt

(a) w + z = u+ x+ (v + y) i = u+ x− v i − y i = w + z

(b) w·z = ux− vy + (uy + vx) i = ux− vy − (uy + vx) i = (u− v i)(x− y i) = w·z.
Wir haben damit alle Aussagen bewiesen. �

Definition. Es sei z = x + y i eine komplexe Zahl. Wir bezeichnen |z| :=
√
x2 + y2 als den

Betrag von z.

Beispiel. Der Betrag |z| :=
√
x2 + y2 einer komplexen Zahl z = x + y i ist also gerade der

euklidische Abstand von z = x + y i zum Ursprung. Es folgt beispielsweise, dass für r > 0
die Menge {w ∈ C | |w − z| ≤ r} gerade die abgeschlossene Scheibe mit Mittelpunkt z und
Radius r ist.
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|z| =
√
x2 + y2 ist der euklidische Abstand

von z = x+ y i zum Ursprung

z
z = x+ y i

{w ∈ C | |w − z| ≤ 2}

y

x

Lemma 10.5. Es seien w, z ∈ C. Dann gilt:

(1) |z| ≥ 0 und es gilt: |z| = 0 ⇐⇒ z = 0,
(2) |z| =

√
z · z, insbesondere ist |z|2 = z · z,

(3) |z| = |z|,
(4) |w · z| = |w| · |z|,
(5) |z| ≥ |Re(z)| und |z| ≥ | Im(z)|,
(6) |w + z| ≤ |w|+ |z| (Dreiecksungleichung).

Zudem gilt für z 6= 0 folgende Gleichheit:

(7) z−1 =
1

|z|2
· z

�
�
�

�
�
�

����

��
��
��
��

����

z

w
w + z

die Dreiecksungleichung besagt, dass
|w + z| ≤ |w|+ |z|

Beweis (∗). Alle diese Aussagen können zumeist durch elementares Nachrechnen bewiesen
werden. Es seien also w = u+ v i und z = x+ y i komplexe Zahlen.

(1) Es ist |z| =
√
x2 + y2 ≥ 0. Wenn z = 0, dann ist natürlich |z| = 0. Umgekehrt, wenn

|z| = 0, dann ist auch x2 + y2 = 0, d.h. x = 0 und y = 0.
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(2) Es ist
√
z · z =

√
(x+ y i)(x− y i) =

√
x2 + y2 = |z|.

(3) Es ist |z| = |x− y i| =
√
x2 + (−y)2 =

√
x2 + y2 = |x+ y i| = |z|.

(4) Es gilt: |w · z| =
√
wz · wz =

√
w · w · z · z =

√
ww ·

√
zz = |w| · |z|.

↑ ↑ ↑
folgt aus (2) Lemma 10.4 (b) folgt aus (2)

(5) Es ist |z| =
√
x2 + y2 ≥

√
x2 = |x| = |Re(z)|. Die zweite Ungleichung wird ganz

analog bewiesen.
(6) Es ist

folgt aus (2) Lemma 10.4 (1)
↓ ↓

|w + z|2 = (w + z) · (w + z) = ww + wz + zw + zz = |w|2 + 2 Re(wz) + |z|2
≤ |w|2 + 2|wz|+ |z|2 = |w|2 + 2|w| · |z|+ |z|2 = (|w|+ |z|)2.
↑ ↑

folgt aus (5) folgt aus (3) und (4)

(7) Es ist
z · 1

|z|2
z =

1

zz
· zz = 1, also ist z−1 =

1

|z|2
z.

↑
folgt aus (2) �

Bemerkung. Wir haben in diesem Teilkapitel insbesondere gezeigt, dass C ein Körper ist.
Es stellt sich die Frage, ob man eine Relation “>” auf C definieren kann, so dass C ein
angeordneter Körper ist. Dies ist allerdings nicht möglich. In der Tat, denn in einem ange-
ordneten Körper K gilt nach Satz 1.14, dass a2 > 0 für alle a ∈ K \ {0}. Dies impliziert,
dass 1 = 1 · 1 > 0. Aus (O3) folgt dann, dass 0 > −1. Aber in C gilt i2 = −1, welches nach
Satz 1.14 positiv sein müsste, wenn C ein angeordneter Körper wäre.

10.2. Folgen komplexer Zahlen. Wir werden in diesem Kapitel sehen, dass wir ohne
größere Probleme die meisten bisherigen Definitionen und Sätze von reellen Folgen und
Reihen auf Folgen und Reihen von komplexen Zahlen übertragen können.

Wir beginnen mit der Definition der Konvergenz von einer Folge von komplexen Zahlen,
welche im Prinzip die gleiche ist, wie die Definition, welche wir auf Seite 32 für Folgen
reeller Zahlen gegeben hatten.

Definition. Es sei (zn)n∈N eine Folge von komplexen Zahlen. Für z ∈ C definieren wir 72

lim
n→∞

zn = z :⇐⇒ ∀
ε>0
∃
N∈N

∀
n≥N
|zn − z| < ε.
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Illustration von lim
n→∞

zn = z

z

z1
z2

z3

z4z5

z6 {w ∈ C | |w − z| < ε}

72Hierbei ist ε eine positive reelle Zahl und |zn − z| bedeutet den Betrag der komplexen Zahl zn − z



129

Für die Konvergenz von Folgen komplexer Zahlen gelten fast die gleichen Aussagen wie in
Satz 3.1, Satz 3.3 und Satz 3.4, mit fast wort-wörtlich den gleichen Beweisen. Insbesondere
gilt:

(1) Wenn eine Folge komplexer Zahlen konvergiert, dann ist der Grenzwert eindeutig
bestimmt.

(2) Eine Folge (zn)n∈N komplexer Zahlen, welche konvergiert, ist auch beschränkt, d.h.
es gibt ein C ∈ R, so dass |zn| ≤ C für alle n ∈ N.

Es seien (an)n∈N und (bn)n∈N konvergente Folgen komplexer Zahlen. Dann gilt zudem

(3) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

(4) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn,

(5) für λ∈C gilt lim
n→∞

λ · an = λ · lim
n→∞

an,

(6) wenn für alle n ∈ N gilt bn 6= 0, und wenn lim
n→∞

bn 6= 0, dann gilt

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
.

(7) Als neue Regel erhalten wir noch die Gleichheit

lim
n→∞

an = lim
n→∞

an,

welche man problemlos elementar beweisen kann.

Der folgende Satz besagt nun, dass man die Konvergenz von Folgen komplexer Zahlen
auf die Konvergenz der Real- und Imaginärteile zurückführen kann.

Satz 10.6. Es sei (zn)n∈N eine Folge von komplexen Zahlen und es sei z ∈ C. Dann gilt73

lim
n→∞

zn = z ⇐⇒ lim
n→∞

Re(zn) = Re(z) und lim
n→∞

Im(zn) = Im(z).
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z

zn

Re(zn)Re(z)

Im(z)

Im(zn)

Beweis (∗). Es sei (zn)n∈N eine Folge von komplexen Zahlen. Für jedes n ∈ N schreiben wir
jetzt zn = xn + yn i, wobei xn, yn ∈ R. Wir schreiben zudem z = x+ y i, wobei x, y ∈ R.

Wir zeigen zuerst die “⇐”-Richtung. Wir nehmen nun also an, dass lim
n→∞

xn = x und

lim
n→∞

yn = y. Dann gilt:

73Die linke Seite betrifft die Konvergenz einer Folge von komplexen Zahlen, während die rechte Seite
von der Konvergenz zweier Folgen reeller Zahlen handelt.
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obige Aussage (3) obige Aussage (5) mit λ = i
↓ ↓

lim
n→∞

zn = lim
n→∞

(xn + yn i) = lim
n→∞

xn + lim
n→∞

(yn i) = lim
n→∞

xn +
(

lim
n→∞

yn
)

i = x+ y i.

Wir zeigen nun die “⇒”-Richtung. Es gilt

lim
n→∞

Re(zn) = lim
n→∞

1
2
(zn + zn) = 1

2

(
lim
n→∞

zn + lim
n→∞

zn
)

= 1
2
(z + z) = Re(z).

↑ ↑ ↑
Lemma 10.4 (1) obige Aussage (3) und (7) Lemma 10.4 (1)

Genauso zeigt man auch, dass lim
n→∞

Im(zn) = z. �

Die Definition einer Cauchy-Folge komplexer Zahlen ist fast wort-wörtlich die Gleiche wie
die Definition einer Cauchy-Folgen reeller Zahlen, welche wir auf Seite 51 gegeben hatten.

Definition. Es sei Folge (zn)n∈N eine Folge komplexer Zahlen.

(zn)n∈N ist eine Cauchy-Folge : ⇐⇒ ∀
ε>0
∃
N∈N

∀
n,m≥N

|zn − zm| < ε.

Satz 10.7. Jede Cauchy-Folge von komplexen Zahlen konvergiert in C.

Beweis. Es sei (zn)n∈N eine Cauchy-Folge von komplexen Zahlen. Wir müssen zeigen, dass
die Folge (zn)n∈N konvergiert. Wir setzen xn = Re(zn) und yn = Im(zn). Es folgt aus
Satz 10.6, dass es genügt folgende Behauptung zu beweisen.

Behauptung. Die reellen Folgen (xn)n∈N und (yn)n∈N konvergieren.

Wir beweisen zuerst, dass die Folge (xn)n∈N konvergiert. Nachdem R vollständig ist,
genügt es zu zeigen, dass die Folge (xn)n∈N eine Cauchy-Folge ist. Wir machen dazu folgende
Beobachtung: für beliebige n,m ∈ N gilt:

|xn − xm| = |Re(zn)− Re(zm)| = |Re(zn − zm)| ≤ |zn − zm|.
↑

Lemma 10.5 (5) besagt, dass |Re(w)| ≤ |w|

Aus dieser Beobachtung und der Voraussetzung, dass (zn)n∈N eine Cauchy-Folge ist, folgt
sofort, dass (xn)n∈N in der Tat eine Cauchy-Folge, und damit eine konvergente Folge, ist.
Ganz genau zeigt man auch die Konvergenz der Folge (yn)n∈N. �

10.3. Reihen von komplexen Zahlen. Der Begriff einer Reihe von reellen Zahlen, den
wir auf Seite 47 eingeführt hatten, überträgt sich auf offensichtliche Weise ins Komplexe.
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Definition. Es sei (an)n∈N0 eine Folge von komplexen Zahlen. Wir definieren

die Reihe
∑
n≥0

an := die Folge der Partialsummen der Folge (an)n∈N0

= die Folge (a0, a0+a1, a0+a1+a2, . . . ) = die Folge a0
a0 + a1
a0 + a1 + a2
...

Wenn die Reihe
∑
n≥0
an konvergiert, d.h. wenn die Folge der Partialsummen konvergiert,

dann schreiben wir
∞∑
n=0

an := Grenzwert der Reihe
∑
n≥0

an := lim
k→∞

k∑
n=0

an.

Für konvergente Reihen gelten dann die üblichen Rechenregeln wie in Satz 3.17.

Beispiel. Der Satz 3.16 über die Konvergenz der geometrischen Reihe verallgemeinert sich
problemlos zu folgender Aussage:

für jedes z ∈ C mit |z| < 1 gilt
∞∑
n=0

zn =
1

1− z
.

Definition. Eine Reihe
∑
n≥0
zn von komplexen Zahlen heißt absolut konvergent, wenn die

Reihe
∑
n≥0
|zn| der Beträge konvergiert.

Bemerkung. Unter Verwendung von Satz 10.7 können wir viele Aussagen über die Kon-
vergenz von reellen Reihen auch auf die Konvergenz von komplexen Reihen übertragen.
Insbesondere erhalten wir, mit fast wort-wörtlich den gleichen Formulierungen und Bewei-
sen, folgende Aussagen:

(1) Jede absolut konvergente Reihe konvergiert, siehe Satz 6.10.
(2) Das Majorantenkriterium, siehe Satz 6.8.Dieses lautet nun wie folgt. Es sei (an)n≥w

eine komplexe Folge und es sei (bn)n≥w eine reelle Folgen. Dann gilt

bn ≥ |an| für alle n und
∑
n≥w

bn konvergiert =⇒
∑
n≥w

an konvergiert.

(3) Das Quotientenkriterium, siehe Satz 6.11. Dieses lautet nun wie folgt: Es sei (an)n≥0
eine Folge von komplexen Zahlen mit an 6= 0, so dass der Grenzwert

Θ := lim
n→∞

∣∣∣an+1

an

∣∣∣
existiert. Wenn Θ < 1, dann konvergiert die Reihe

∑
n≥0

an absolut, insbesondere kon-

vergiert dann nach der Verallgemeinerung von Satz 6.10 auch die Reihe
∑
n≥0
an. Wenn

hingegen Θ > 1, dann divergiert die Reihe.
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Satz 10.8.

(1) Für jedes z ∈ C konvergiert die Exponentialreihe
∑
n≥0

zn

n!
absolut.

(2) Die Exponentialfunktion
exp: C → C

z 7→ exp(z) :=
∞∑
n=0

zn

n!
= lim

k→∞

(
1+z+

z2

2
+. . .+

zk

k!

)
besitzt die folgenden Eigenschaften:
(a) Für alle z, z′ ∈ C gilt exp(z + z′) = exp(z) · exp(z′) (Funktionalgleichung).

(b) Für alle z ∈ C gilt exp
(
z
)

= exp(z).

Beweis.

(1) In Satz 6.17 hatten wir gesehen, dass die Exponentialreihe für jedes z ∈ R absolut
konvergiert. Der Beweis, dass die Exponentialreihe auch für jedes z ∈ C absolut kon-
vergiert ist eigentlich genau der gleiche, wir müssen nur die oben kurz angeschnittene
Verallgemeinerung des Quotientenkriteriums auf komplexe Reihen verwenden. Der
Vollständigkeit halber führen wir das Argument aus. Es sei also z ∈ C beliebig. Wir
schreiben an := zn

n!
. Dann gilt

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ zn+1 · n!

zn · (n+ 1)!

∣∣∣ = lim
n→∞

|z|
n+ 1

= |z| · lim
n→∞

1

n+ 1
= 0.

Es folgt aus dieser Berechnung und dem Quotienten-Kriterium, dass die Exponenti-

alreihe
∑
n≥0
an =

∑
n≥0

zn

n!
absolut konvergiert.

(2) (a) In Theorem 6.18 hatten wir die Aussage für den Fall bewiesen, dass z, z′ ∈ R.
Der Beweis überträgt sich jedoch wort-wörtlich zu dem Fall, dass z, z′ beliebige
komplexe Zahlen sind.

(b) Diese Aussage folgt aus der allgemeinen Beobachtung, dass für jede konvergente

Reihe
∑
n≥0
zn folgende Gleichheit gilt:

∞∑
n=0
wn = lim

k→∞

k∑
n=0

wn = lim
k→∞

k∑
n=0
wn =

∞∑
n=0
wn,

↑
auf Seite 129 hatten wir gesehen, dass sich Grenzwert

und komplexe Konjugation vertauschen lassen

und der Beobachtung, dass für z ∈ C und n ∈ N0 gilt:
zn

n!
=

zn

n!
.

�

Bemerkung. Wir haben jetzt also gesehen, dass viele Definitionen und Aussagen über reelle
Folgen und Reihen problemlos auf Folgen und Reihen von komplexen Zahlen übertragen
werden können. Insbesondere alle Aussagen, welche nur mit dem Absolutbetrag “| |” von
reellen Zahlen formuliert wurden, gelten ganz analog in der Welt der komplexen Zahlen.
Allerdings können die Definitionen und Aussagen über reelle Zahlen, Folgen und Reihen,
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welche die Anordnung “>” verwenden, nicht auf die komplexen Zahlen übertragen werden.
Insbesondere gilt:

(1) Es gibt kein Analogon zum Leibniz-Kriterium, welches auf Folgen komplexer Zahlen
zutrifft.

(2) Es gibt keinen Begriff von Supremum oder Infimum einer Teilmenge von C.
(3) Es macht keinen Sinn zu sagen, dass eine Folge von komplexen Zahlen (zn)n∈N be-

stimmt gegen −∞ oder +∞ divergiert.
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11. Trigonometrische Funktionen

11.1. Definition von Sinus und Kosinus. Das folgende Lemma macht die etwas über-
raschende Aussage, dass für jede reelle Zahl t ∈ R die komplexe Zahl exp(t i) auf dem Kreis
mit Radius 1 um den Ursprung liegt.

Lemma 11.1. Für alle t ∈ R gilt | exp(t i)| = 1.

Beweis. Für t∈R gilt: Lemma 10.5 Satz 10.8 (2b) da t ∈ R
↓ ↓ ↓

| exp(t i)|2 = exp(t i) · exp(t i) = exp(t i) · exp( t i ) = exp(t i) · exp(−t i)
= exp(t i − t i) = exp(0) = 1.
↑

Funktionalgleichung, d.h. Satz 10.8 (2a)

Nachdem Beträge immer ≥ 0 sind folgt nun auch, dass exp(t i)| = 1. �

Analog zur Definition auf Seite 122 führen wir nun folgende Notation ein.

Notation. Für z ∈ C schreiben wir nun ez := exp(z) :=
∞∑
n=0

zn

n!
.

Beispiel. Mit dieser Notation gilt:

(1) Für alle z, w ∈ C gilt: ez+w = ez · ew (Funktionalgleichung).
(2) Lemma 11.1 besagt, dass für alle t ∈ R gilt: |et i| = 1.

Definition. Für t ∈ R definieren wir

sin(t) := Im(et i), genannt Sinus von t
cos(t) := Re(et i), genannt Kosinus von t.

Bemerkung. Per Definition gilt also für jedes t ∈ R folgende Gleichheit:

et i = cos(t) + sin(t) i (Eulersche Formel)

�
�
�
�
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��
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��
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in Analysis II werden wir sehen,
dass die “Länge” von diesem
Kreisbogen gerade t beträgt1

i
et i = cos(t) + sin(t) i

R i

cos(t)

sin(t) i

R

Bemerkung. Lemma 11.1 besagt, dass die komplexe Zahl et i auf dem Einheitskreis um die
Null in C = R2 liegt. Der Sinus von t ist nun die “y-Koordinate” von et i und der Kosinus
von t ist die “x-Koordinate” von et i. Die anschauliche Bedeutung von et i ist hierbei, dass,
zumindest für “kleine” t, der Kreisbogen zwischen 1 ∈ C und et i gerade die “Länge” t
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besitzt. Damit diese Aussage Sinn ergibt, müssen wir allerdings erst noch sauber definieren,
was “Länge” eigentlich heißen soll. Wir werden den Begriff “Länge” erst in Analysis II
einführen, wenn wir Analysis in einem beliebigen Rn behandeln.

Die folgenden Lemmata und Sätze beinhalten einige grundlegende Aussagen über Sinus
und Kosinus.

Lemma 11.2. Für t ∈ R gilt (1) sin(−t) = − sin(t)
(2) cos(−t) = cos(t).

Beweis. Es sei also t ∈ R. Dann gilt

(1) sin(−t) = Im
(
e−t i

)
= Im

(
et i
)

= Im
(
et i
)

= − Im
(
et i
)

= − sin(t)
↑ ↑ ↑ ↑

per Definition aus t∈R folgt −t i = t i Satz 10.8 (2b) Definition des komplex Konjugierten
↓ ↓ ↓ ↓

(2) cos(−t) = Re
(
e−t i

)
= Re

(
et i
)

= Re
(
et i
)

= Re
(
et i
)

= cos(t). �

Lemma 11.3. Für t ∈ R gilt sin(t)2 + cos(t)2 = 1.

Beweis. Es gilt: sin(t)2 + cos(t)2 = Im(et i)2 + Re(et i)2 = |et i|2 = 1.
↑ ↑

Definition des Betrags der komplexen Zahl et i Lemma 11.1 �

Ein Vorteil der Definition von Kosinus und Sinus mithilfe der komplexen Exponential-
funktion ist, dass sich nun die Additionstheoreme sehr leicht beweisen lassen.

Satz 11.4. (Additionstheoreme) Für alle x, y ∈ R gilt:

sin(x+ y) = sin(x) · cos(y) + cos(x) · sin(y),
cos(x+ y) = cos(x) · cos(y) − sin(x) · sin(y).

Beweis.

Der geniale Trick ist, dass man Sinus und Kosinus nicht getrennt betrachtet, sondern
zur komplexen Exponentialfunktion zusammenfasst. Die Additionstheoreme folgen
dann leicht aus der Funktionalgleichung der Exponentialfunktion. Bei den Additi-
onstheoremen ist es am einfachsten, wenn man sich diese Beweisidee merkt. Aus der
Beweisidee kann man sich dann problemlos die Additionstheoreme herleiten. Das ist
viel einfacher, als zu versuchen, sich die Additionstheoreme auswendig zu merken.

Es seien x, y ∈ R. Dann gilt

dies folgt aus der Funktionalgleichung ew+z = ew · ez
↓

cos(x+ y) + sin(x+ y) i = e(x+y) i = ex i+y i = ex i · ey i
= (cos(x) + sin(x) i) · (cos(y) + sin(y) i)
= cos(x)·cos(y)− sin(x)·sin(y) + (sin(x)·cos(y) + cos(x)·sin(y)) i.
↑

folgt durch Ausmultiplizieren

Der Satz folgt nun aus dem Vergleich der Realteile und der Imaginärteile. �
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Sinus und Kosinus sind untrennbare Freunde

Satz 11.5. Für alle x ∈ R gilt

sin(x) =
∞∑
k=0

(−1)k · x2k+1

(2k + 1)!
= lim

k→∞

(
x− x3

3!
+ x5

5!
− . . . (−1)k · x2k+1

(2k + 1)!

)
cos(x) =

∞∑
k=0

(−1)k · x
2k

(2k)!
= lim

k→∞

(
1− x2

2!
+ x4

4!
− . . . (−1)k · x

2k

(2k)!

)
Beide Reihen konvergieren zudem jeweils absolut.

Bemerkung. Satz 11.5 besagt insbesondere, dass wir sin(x) und cos(x) als Reihen be-
schreiben können. Dies ist wichtig, weil man dadurch in der Praxis sin(x) und cos(x)
annäherungsweise ausrechnen kann.

Beweis. Es sei x ∈ R. Ganz analog zum Beweis der absoluten Konvergenz der Exponen-
tialreihe kann man auch hier problemlos mithilfe des Quotienten-Kriteriums 6.11 zeigen,
dass die beiden angegebenen Reihen absolut konvergieren. Zudem gilt:

wir wollen den Ausdruck wieder in Real- und Imaginärteil aufteilen, nachdem in∈{−1, 1} wenn n gerade,
und nachdem in∈{− i, i} wenn n ungerade, teilen wir die Reihe auf in n gerade und n ungerade

↓
cos(x) + sin(x) i = ex i =

∞∑
n=0

(x i)n

n!
=

∞∑
n=0

in · x
n

n!
=

∑
n gerade

in · x
n

n!
+

∑
n ungerade

in · x
n

n!

↑
wir können die Reihe zerlegen, weil die Reihen rechts, wie gerade gesehen, konvergieren

=
∞∑
k=0

i2k · x
2k

(2k)!
+ i ·

∞∑
k=0

i2k · x
2k+1

(2k+1)!
=

∞∑
k=0

(−1)k · x
2k

(2k)!
+
( ∞∑
k=0

(−1)k · x
2k+1

(2k+1)!

)
i.

↑
denn i2k = (i2)k = (−1)k

Die Aussage des Satzes folgt nun, indem man den Realteil und den Imaginärteil zu Beginn
und am Ende vergleicht. �

Satz 11.6. (Stetigkeit der Sinus- und der Kosinusfunktion) Die Funktionen

R → R
t 7→ sin(t)

und
R → R
t 7→ cos(t) sind stetig.

Beweis (∗). Wir zeigen im Folgenden, dass die Sinusfunktion stetig ist. Der Beweis, dass
die Kosinusfunktion stetig ist, verläuft ganz analog. Das Stetigkeitskriterium aus Satz 7.4
besagt, dass es genügt, folgende Behauptung zu beweisen:

Behauptung. Für jede konvergente Folge (an)n∈N in R gilt lim
n→∞

sin(an) = sin
(

lim
n→∞

an
)
.
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Wir setzen a := lim
n→∞

an. Es ist
Satz 10.6 Funktionalgleichung
↓ ↓

lim
n→∞

sin(an) = lim
n→∞

Im(ean i) = Im
(

lim
n→∞

ean i
)

= Im
(

lim
n→∞

ea i · e(an−a) i
)

= Im
(
ea i · lim

n→∞
e(an−a) i

)
= Im(ea i · 1) = sin(a).
↑

das gleiche Argument wie im Beweis von Satz 7.8 zeigt,
dass für alle z ∈ C mit |z| < 1

2 gilt, dass |ez − 1| ≤ 2 · |z|
aus lim

n→∞
(an − a) = 0 folgt nun, dass lim

n→∞
e(an−a) i = 1 �

11.2. Definition von π. Wir wollen in diesem Teilkapitel “π” einführen. Die Zahl π wird
in der Schule als der halbe Umfang eines Kreises von Radius 1 eingeführt. Das Problem,
welches sich nun stellt ist, wie ist denn die “Länge” eines Kreises definiert? Wir werden diese
Frage erst in Analysis II beantworten. Wir führen im Folgenden π auf eine andere Weise ein.
Wir werden später in Analysis II sehen, dass die Definition von π, welche wir im Folgenden
geben werden, tatsächlich der Definition über den Umfang eines Kreises entspricht.

Wir wollen nun also eine vernünftige Definition von π geben, mit den Hilfsmitteln, welche
uns zur Verfügung stehen. Die Idee ist, dass wir π über die Nullstelle(n) der Kosinusfunktion
einführen. Dazu müssen wir uns aber erst einmal davon überzeugen, dass die Kosinusfunk-
tion, so wie wir sie definiert hatten, überhaupt eine Nullstelle besitzt.

Für x ∈ R gilt:

nach Satz 11.5 gilt k=0 k=1 k=2 Summand
↓ ↓ ↓ ↓

cos(x) =
∞∑
k=0

(−1)k · x
2k

(2k)!
= 1 − x2

2
+ x4

24
+
∞∑
k=3

(−1)k · x
2k

(2k)!

sin(x) =
∞∑
k=0

(−1)k · x2k+1

(2k + 1)!
= x − x3

6
+

x5

120
+
∞∑
k=3

(−1)k · x2k+1

(2k + 1)!
.

Das folgende Lemma besagt nun, dass sich für x ∈ [0, 2] die Werte von sin(x) und cos(x) an
den Partialsummen orientieren. Insbesondere erhalten wir durch dieses Lemma eine gewisse
Kontrolle über sin(x) und cos(x) für x ∈ [0, 2].

Satz 11.7. Für x ∈ [0, 2] gilt

(1) 1− x2

2
≤ cos(x) ≤ 1− x2

2
+ x4

24
und (2) x− x3

6
≤ sin(x) ≤ x− x3

6
+

x5

120
.

Bemerkung. Es folgt leicht aus Satz 11.7, dass cos(0) = 1, dass cos(2) < 0 und für alle
x ∈ (0, 2] gilt: sin(x) > 0.

Beweis (∗). Für den Beweis des Satzes benötigen wir folgende Behauptung:

Behauptung. Es sei (ak)k≥2m eine monoton fallende Folge von nicht-negativen reellen Zah-
len. Dann gilt ∞∑

k=2m

(−1)k · ak ∈ [0, a2m] falls der Grenzwert existiert.
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Graph von 1− x2

2 Graph von 1− x2

2
+ x4

24 Graph von x− x3

6
+ x5

120Graph von x− x3

6

hier liegen die Werte von cos(x) für x∈ [0, 2] hier liegen die Werte von sin(x) für x ∈ [0, 2]

2

2

Es gilt in der Tat: da alle Folgenglieder in [0, a2m] liegen, folgt aus Satz 3.6
dass auch der Grenzwert in [0, a2m] liegt

↓∞∑
k=2m

(−1)k ·ak = lim
n→∞

n∑
k=2m

(−1)k ·ak = lim
n→∞

(a2m−a2m+1+a2m+2−. . .+(−1)n ·an)︸ ︷︷ ︸
im Beweis des Leibniz-Kriteriums 6.7
auf Seite 78 hatten wir gesehen, dass

diese alternierende Summe in [0, a2m] liegt

∈ [0, a2m]

�
Wir wenden uns jetzt dem eigentlichen Beweis zu.

(1) (a) Wie gerade besprochen gilt cos(x) = 1− x2

2
+
∞∑
k=2

(−1)k · x
2k

(2k)!
.

(b) Wir müssen also zeigen, dass für alle x ∈ [0, 2] gilt
∞∑
k=2

(−1)k · x
2k

(2k)!
∈
[
0, x

4

24

]
.

(c) Nach der Behauptung genügt es zu zeigen, dass die Folge ak := x2k

(2k)!
für k ≥ 2

monoton fallend ist.
(d) Für k ≥ 2 gilt:

ak+1

ak
=

x2k+2

(2k + 2)!
· (2k)!

x2k
=

x2

(2k + 2)·(2k + 1)
≤ 4

(2k + 2)·(2k + 1)
< 1.

↑ ↑
denn x∈ [0, 2] denn k≥2

Also ist die Folge ak := x2k

(2k)!
für k ≥ 2 monoton fallend.

(2) Der Beweis der Ungleichungen für sin(x) verläuft ganz analog zum Beweis von (1). �

Satz 11.8. Die Einschränkung der Kosinusfunktion auf das Intervall [0, 2] ist streng mo-
noton fallend.

Für den Beweis von Satz 11.8 müssen wir die Werte der Kosinusfunktion an verschiedenen
Punkten vergleichen. Folgendes Lemma ermöglicht dieses Unterfangen.

Lemma 11.9. Für x, y ∈ R gilt:

(1) cos(x)− cos(y) = −2 · sin
(x+ y

2

)
· sin

(x− y
2

)
,

(2) sin(x)− sin(y) = 2 · cos
(x+ y

2

)
· sin

(x− y
2

)
.
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Beweis von Lemma 11.9. Es seien x, y ∈ R. Wir setzen u := x+y
2

und v := x−y
2

. Dann gilt:

denn u+v=x und u−v=y Satz 11.4
↓ ↓

cos(x)− cos(y) = cos(u+ v)− cos(u− v) =
= (cos(u)·cos(v)− sin(u)·sin(v)) − (cos(u)·cos(−v)− sin(u)·sin(−v))
= −2·sin(u)·sin(v) = −2·sin

(
x+y
2

)·sin
(
x−y
2

).
↑

aus Lemma 11.2 folgt, dass cos(−v) = cos(v) und sin(−v) = − sin(v),
also heben sich zwei Terme weg, und zwei Terme sind gleich

Diese Aussage über sin(x)− sin(y) wird ganz ähnlich bewiesen. �

Beweis von Satz 11.8. Wir wollen also zeigen, dass die Einschränkung der Kosinusfunktion
auf das Intervall [0, 2] streng monoton fallend ist. Es seien also x2 > x1 zwei reelle Zahlen in
[0, 2]. Wir müssen zeigen, dass cos(x2) < cos(x1). Mit anderen Worten, wir müssen zeigen,
dass cos(x2)− cos(x1) < 0. In der Tat gilt:

nach Lemma 11.9 (1) nach Satz 11.7 (2) sind die diese Sinuswerte positiv
↓ ↓

cos(x2)− cos(x1) = −2 · sin
(

x2 + x1
2︸ ︷︷ ︸

∈(0, 2], da x1, x2∈ [0, 2]
und da x2 > x1

)
· sin

(
x2 − x1

2︸ ︷︷ ︸
∈(0, 2], da x1, x2∈ [0, 2]

und da x2 > x1

)
< 0.

�

Definition. Nachdem cos(0) > 0 und cos(2) < 0 gibt es nach dem Zwischenwertsatz 8.3
ein x ∈ (0, 2), so dass cos(x) = 0. Satz 11.8 besagt, dass der Kosinus auf dem Intervall
[0, 2] streng monoton fallend ist. Es gibt also genau eine Nullstelle im Intervall [0, 2]. Wir
definieren jetzt

π := 2 · die Nullstelle der Kosinusfunktion auf dem Intervall [0, 2].

�
�
�
�

cos(2)

1

2

Nullstelle im Intervall [0, 2], dies ist per Definition π
2

1

Graph der Kosinusfunktion

Bemerkung. Es ist
sin(π

2
)2 = 1− cos(π

2
)2 = 1− 0 = 1 =⇒ sin(π

2
) = 1.

↑ ↑ ↑
Lemma 11.3 per Definition von π denn sin(x) ≥ 0 für x ∈ [0, 2]

Wir erhalten insbesondere

(a) e
π
2
i = cos(π

2
) + sin(π

2
) i = i.
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Daraus können wir auch herleiten, dass

(b) eπ i =
(
e
π
2
i)2 = i2 = −1,

(c) e
3π
2

i =
(
e
π
2
i)3 = (−1) · i = − i,

(d) e2π i =
(
e
π
2
i)4 = (−i) · i = 1.

����

�
�
�
�

�
�
�
�

�
�
�
�

����

π
2

3π
2

0

t 7→ et i

π e0i = e2π i = 1

e
3π
2

i = − ieπ i = −1

e
π
2
i = i

2π

die “Länge” des Kreisbogens ist t
et i

t

Bemerkung. Die Gleichung eπ i = −1 kann auch geschrieben werden als eπ i + 1 = 0. Diese
Gleichung wird manchmal als die schönste Gleichung der Mathematik bezeichnet, nachdem
diese die fundamentalen komplexen Zahlen e, π, i, 1 und 0 in Verbindung setzt.

1 0=+
additiv neutrales Element 0

e
Eulersche Zahl e

multiplikativ neutrales Element 1

πKreiszahl π i

imaginäre Einheit i

Bemerkung. In Satz 9.7 hatten wir gesagt, dass die Exponentialfunktion exp: R→ R streng
monoton steigend ist. Insbesondere ist die Exponentialfunktion exp: R → R injektiv und
wir konnten dadurch den Logarithmus als die Umkehrfunktion ln : (0,∞) → R definieren.
Nachdem exp(2π i) = 1 = exp(0) sehen wir nun, dass die komplexe Exponentialfunktion
exp: C→ C nicht injektiv ist. Insbesondere gibt es keine (offensichtliche) Definition eines
komplexen Logarithmus.

Das folgende Lemma zeigt, dass die Sinus- und die Kosinusfunktion 2π periodisch sind.

Lemma 11.10. Für t ∈ R gilt:

cos(t+ π
2
) = − sin(t) und sin(t+ π

2
) = cos(t)

cos(t+ π) = − cos(t), und sin(t+ π) = − sin(t)
cos(t+ 2π) = cos(t) und sin(t+ 2π) = sin(t)

Beweis (∗). Es sei t ∈ R. Dann gilt

cos(t+ π
2
) + sin(t+ π

2
) i = ei(t+

π
2
) = et i · eπ2 i = et i · i = − sin(t) + cos(t) i,

cos(t+ π) + sin(t+ π) i = ei(t+π) = et i · eπ i = et i · (−1) = − cos(t)− sin(t) i,

cos(t+ 2π) + sin(t+ 2π) i = ei(t+2π) = et i · e2π i = et i · 1 = cos(t) + sin(t) i.
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Die Aussagen folgen, wie so oft, durch Vergleich der Real- und Imaginärteile. �

Bemerkung. Die Symmetrieeigenschaften aus Lemma 11.2 und Lemma 11.10 zusammen
mit dem Graphen in Abbildung 11.2 geben uns nun in etwa die Graphen der Sinusfunktion
und der Kosinusfunktion auf ganz R, welche in Abbildung skizziert sind.

π
2

2ππ

−1

3π
2

1
Graph der Sinusfunktion

Graph der Kosinusfunktion

Wir beschließen das Teilkapitel mit einer meiner Lieblingsfunktionen.

Beispiel. In der folgenden Abbildung zeigen wir den Graphen der Funktion f : R\{0} → R,
welche gegeben ist durch x 7→ sin( 1

x
). Für alle k ∈ Z gilt

f
(

1

2k · π + π
2

)
= 1 und f

(
1

2k · π + 3π
2

)
= −1 und falls zudem k 6=0 gilt: f

(
1

k · π

)
= 0.

Wir sehen also, dass diese Funktion im Intervall [−1, 1] unendliche viele Nullstellen besitzt
und sogar jeder Zahl in [−1, 1] von unendlich vielen x’s im Intervall (0, 1] angenommen
wird. Diese Funktion f ist der Ursprung für viele weitere Funktionen mit unerwarteten
Eigenschaften.
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−1

1
2

1

Graph von x 7→sin( 1
x
) auf R\{0}

11.3. Polarkoordinatendarstellung von komplexen Zahlen.

Satz 11.11. (Satz über die Polarkoordinatendarstellung) Zu jeder Zahl z ∈ C \ {0}
existiert genau ein r ∈ R>0 = {x ∈ R |x > 0} und genau ein ϕ ∈ [0, 2π), so dass

z = r · eϕ i.

Definition. Zu jeder Zahl z ∈ C \ {0} existiert also genau ein r ∈ R>0 und genau ein
ϕ ∈ [0, 2π), so dass z = r · eϕ i. Dieses Zahlenpaar (r, ϕ) nennt man die Polarkoordinaten
von z.

Beweis (∗). Es sei also z ∈ C \ {0}. Wir zeigen zuerst die Existenz von r ∈ R>0 und
ϕ ∈ [0, 2π) mit z = reϕ i. Wir setzen w := z

|z| . Man beachte, dass |w| = 1. Wir wollen nun
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��

|z| = r ist der euklidische Abstand zum Ursprung

z = r · eϕ i

ϕ ist der “Winkel” d.h. die “Länge” des Kreisbogens

im Folgenden zeigen, dass es ein ϕ ∈ [0, 2π) mit w = eϕ i = cos(ϕ) + sin(ϕ) i gibt. Wir
schreiben w = x + y i. Nachdem |w| = 1 folgt aus |w|2 = x2 + y2, dass |x| ≤ 1 und auch
|y| ≤ 1.

Behauptung. Es gibt ein ψ ∈ [0, π] mit cos(ψ) = x.

Für den Kosinus gilt cos(0) = 1 und cos(π) = − cos(0) = −1. Die Kosinusfunktion ist
stetig, also existiert, nach dem Zwischenwertsatz 8.3 ein ψ ∈ [0, π], so dass cos(ψ) = x. �

Behauptung. Es ist sin(ψ) = y oder sin(ψ) = −y.

Wir müssen also zeigen, dass sin(ψ)2 = y2. Dies ist in der Tat der Fall, denn

sin(ψ)2 = 1− cos(ψ)2 = 1− x2 = x2 + y2︸ ︷︷ ︸
=|w|2=1

− x2 = y2.
↑

folgt aus Lemma 11.3 �
Wenn sin(ψ) = y, dann gilt natürlich, dass

eψ i = cos(ψ) + sin(ψ) i = x+ y i = w.

Andererseits, wenn sin(ψ) = −y, dann gilt:

Lemma 11.2 Lemma 11.10
↓ ↓

ei(2π−ψ) = cos(2π − ψ) + sin(2π − ψ) i = cos(−ψ) + sin(−ψ) i = cos(ψ)− sin(ψ) i
= x+ y i = w.

Nachdem 2π − ψ ∈ [π, 2π] haben wir also ein ϕ ∈ [0, 2π] mit w = eϕ i gefunden. Nachdem
e2π i = e0i gibt es auch ein ϕ ∈ [0, 2π) mit w = eϕ i. Nun gilt

z = |z| · z
|z|

= |z| · w = |z|︸︷︷︸
=:r

· eϕ i.

Es verbleibt zu zeigen, dass r und ϕ ∈ [0, 2π) eindeutig bestimmt sind. Es ist klar, dass
r eindeutig bestimmt ist, da r = |z|. Die Kosinusfunktion ist auf [0, π] streng monoton
fallend.74 Man kann damit auch leicht zeigen, dass ϕ ∈ [0, 2π) eindeutig bestimmt ist. Die
Ausarbeitung der Details verbleibt hierbei eine freiwillige Übungsaufgabe. �

74In der Tat, es folgt aus sin(π2 − x) = sin(π2 + x) und aus Satz 11.7, dass sin(x) > 0 für x ∈ (0, π). Es

folgt dann aus dem Beweis von Satz 11.8, dass die Kosinusfunktion auf [0, π] streng monoton fallend ist.
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ψ

w = x+ y i
wobei |w| = 1 π

1

−1

Graph der Kosinusfunktion

xx

Abbildung 38. Skizze für den Beweis von Satz 11.11.

Bemerkung. Mit Satz 11.11 können wir jetzt die Multiplikation von komplexen Zahlen
geometrisch interpretieren. Es seien also z, w ∈ C. Nach Satz 11.11 können wir schreiben
w = r · eϕ i und z = s · eψ i. Dann gilt

w · z = r · eϕ i · s · eψ i = r · s · e(ϕ+ψ) i.

Wir sehen also, dass sich die “Winkel”75 addieren und die Beträge multiplizieren.

��

����

��
��
��
��

w · z = r · s · e(ϕ+ψ) i
z = s · eψ i

ϕ+ ψψϕ

w = r · eϕ i

11.4. Die Einheitswurzeln (∗). Wir beschließen das Kapitel mit folgendem Satz.

Satz 11.12. Es sei n ∈ N. Dann gilt für z ∈ C, dass

zn = 1 ⇐⇒ z = e2π ik/n, wobei k ∈ {0, . . . , n− 1}.

Beweis (∗). Wir beginnen mit einer Vorbemerkung. Für z ∈ C und m ∈ N0 gilt:

(ez)m = ez · · · · · ez︸ ︷︷ ︸
m-Mal

= ez+···+z = ez·m.

Wir beweisen nur die “⇐=”-Richtung. Es sei also k ∈ {0, . . . , n− 1}. Dann gilt

z = e2π i
k
n =⇒ zn =

(
e2π i

k
n

)n
= e2π i

k
n
·n = e2πi·k =

(
e2πi
)k

= 1k = 1.
↑ ↑

Vorbemerkung Vorbemerkung

75Wir setzen das Wort “Winkel” in Anführungszeichen, weil wir den Begriff Winkel in dieser Vorlesung
nicht eingeführt haben.
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Die “=⇒”-Richtung folgt ziemlich leicht aus dem Satz über die Polarkoordinatendarstel-
lung. Nachdem wir die Aussage nicht verwenden werden, wollen wir die Details nicht
ausführen. �

Definition. Die komplexen Zahlen z = e2π ik/n, k = 0, . . . , n − 1 werden oft als die n-ten
Einheitswurzeln bezeichnet.

Die letzte Abbildung des Kapitels zeigt die 3-ten, 6-ten sowie die 8-ten Einheitswurzeln.
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e
2π
8

i

e
4π
3

i

e
2π
6

i

die 3-ten Einheitswurzeln die 8-ten Einheitswurzeln

e
2π
3

i

die 6-ten Einheitswurzeln

1
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12. Differentiation

12.1. Definition der Ableitung und erste Eigenschaften.

Definition. Es sei76f : (a, b) → R eine Funktion, es sei x0 ∈ (a, b) und es sei h 6= 0 mit
x0 + h ∈ (a, b). Dann gilt:

Steigung der Geraden durch die beiden Punkte
(x0, f(x0)) und (x0 + h, f(x0 + h)) auf dem Graphen von f

=
f(x0 + h)− f(x0)

h
.

Wir bezeichnen diesen Wert als Differenzenquotient von f bei x0 bezüglich h.

����

����

Steigung =
f(x0 + h)− f(x0)

h

x0 + hx0

f(x0 + h)

f(x0)

Der Gedanke ist nun zu betrachten, wie sich der Differenzquotienten verhält, wenn h
“immer kleiner wird”. Mathematisch heißt das, dass wir den Grenzwert des Differenzen-
quotienten mit h→ 0 betrachten, falls dieser Grenzwert existiert.

Definition. Es sei f : (a, b) → R eine Funktion und es sei x0 ∈ (a, b). Wir sagen, f ist
differenzierbar in x0, wenn der Grenzwert77

f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h

existiert. Wir nennen f ′(x0) die Ableitung von f im Punkt x0.

Bemerkung. Es folgt direkt aus den Definitionen, dass

lim
h→0

f(x0+h)−f(x0)
h

= lim
x→x0

f(x)−f(x0)
x−x0 .

Manchmal werden wir den Ausdruck auf der rechten Seite bevorzugen.

Definition. Es sei f : (a, b)→ R eine Funktion. Wenn f differenzierbar im Punkt x0 ∈ (a, b)
ist, dann bezeichnen wir die Funktion

` : R → R
x 7→ f(x0) + f ′(x0) · (x− x0)

76In diesem Kapitel betrachten wir nur Funktionen, welche auf offenen Intervallen (a, b) definiert sind.
Hierbei gilt, dass −∞ ≤ a < b ≤ ∞.

77Wir betrachten also die Funktion (a− x0, 0) ∪ (0, b− x0) → R
h 7→ f(x0+h)−f(x0)

h ,

und wir betrachten dann den Grenzwert mit h→ 0 für diese Funktion.



146

als die Linearisierung von f am Punkt x0. Zudem bezeichnen wir den Graphen der Linea-
risierung als die Tangente zum Graphen von f am Punkt x0.

Bemerkung. Die anschauliche Bedeutung der Differenzierbarkeit von f im Punkt x0 ist,
dass f in der “Nähe von x0” durch eine lineare Funktion “approximiert” werden kann.
Mit anderen Worten, der Graph kann in der “Nähe von (x0, f(x0))” durch eine Gerade
approximiert werden.

��

��

x1

Graph der Linearisierung
`(x) = f(x0) + f ′(x0)(x− x0)

f(x0)

Graph von f

x0

an diesem Punkt kann der Graph nicht durch eine Gerade
“approximiert” werden; f ist also im Punkt x1 nicht differenzierbar

Definition. Es sei f : (a, b) → R eine Funktion. Wir sagen f ist differenzierbar, wenn f in
jedem Punkt x0 ∈ (a, b) differenzierbar ist. Wir nennen dann die Funktion

f ′ : (a, b) → R
x 7→ f ′(x) die 1. Ableitung von f .

Notation. Der Klarheit halber schreiben wir manchmal df

dx
:= f ′ und df

dx

∣∣∣
x=x0

:= f ′(x0).

Lemma 12.1. Es seien m, y ∈ R. Dann ist x 7→ m · x+ y differenzierbar und es gilt78

d

dx
(m · x+ y) = m oder knapper: (m · x+ y)′ = m.

Beweis. Wir betrachten die Funktion f(x) = m · x+ y. Es sei x0 ∈ R. Dann gilt

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(m·(x0 + h) + y)− (m·x0 + y)

h
= lim

h→0

m·h
h

= m.
�

Der folgende Satz gibt ein hilfreiches Kriterium für Differenzierbarkeit.

Satz 12.2. Es sei f : (a, b)→ R eine Funktion und x0 ∈ (a, b). Dann gilt:

f ist differenzierbar im Punkt x0 ⇐⇒
es gibt eine Funktion ϕ : (a, b)→ R,

welche stetig in x0 ist, so dass
f(x)−f(x0) = (x−x0)·ϕ(x) für alle x∈(a, b)

Zudem gilt im Falle der Differenzierbarkeit, dass ϕ(x0) = f ′(x0).

78Wenn wir einen Ausdruck in x angeben, dann meinen wir damit die Funktion, welche auf der Teilmenge
von R definiert ist, für den dieser Ausdruck definiert ist. Mit m · x + y meinen wir also die auf ganz R
definierte Funktion x 7→ m · x+ y.
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Beweis. Wir machen zwei Vorbemerkungen:

(1) Wie oben angemerkt gilt: lim
h→0

f(x0+h)−f(x0)
h

= lim
x→x0

f(x)−f(x0)
x−x0 .

(2) Nach Satz 7.9 gilt: ϕ ist stetig im Punkt x0 ⇐⇒ lim
x→x0

ϕ(x) = ϕ(x0).

Wir wenden uns nun dem eigentlichen Beweis des Satzes zu. Wir zeigen zuerst die “⇒”-
Richtung. Wir nehmen also an, dass f differenzierbar ist im Punkt x0. Wir setzen

ϕ : (a, b) → R

x 7→

{
f(x)− f(x0)

x− x0
, wenn x0 6= x,

f ′(x0), wenn x = x0.

Es folgt aus (1) und (2), dass ϕ im Punkt x0 stetig ist. Alle anderen Aussagen sind sowieso
von ϕ erfüllt.

Wir beweisen nun die “⇐”-Richtung. Wir nehmen also an, dass es eine solche Funktion
ϕ gibt. Dann gilt:

lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0
= lim

x→x0
ϕ(x) = ϕ(x0).

↑ ↑ ↑
folgt aus (1) Wahl von ϕ folgt aus (2), da ϕ

im Punkt x0 stetig

Wir haben also bewiesen, dass f in x0 differenzierbar ist, und dass ϕ(x0) = f ′(x0). �

Lemma 12.3. Es sei f : (a, b)→ R eine Funktion und es sei x0 ∈ (a, b). Dann gilt:

f ist differenzierbar im Punkt x0 =⇒ f ist stetig im Punkt x0.

Beweis. Es sei f : (a, b)→ R eine Funktion, welche im Punkt x0 ∈ (a, b) differenzierbar ist.
Nach Satz 12.2 gibt es eine Funktion ϕ : (a, b)→ R, welche stetig in x0 ist, so dass

f(x) = f(x0) + (x− x0) · ϕ(x) für alle x ∈ (a, b).

Die konstante Funktion x 7→ f(x0) und die lineare Funktion x 7→ x− x0 sind natürlich
stetig. Zudem ist nach Voraussetzung die Funktion x 7→ ϕ(x) stetig im Punkt x0. Also
folgt aus Satz 7.5 und der obigen Gleichheit, dass x 7→ f(x) im Punkt x0 stetig ist. �

Satz 12.4. (Ableitungsregeln) Es seien f, g : (a, b) → R Funktionen, welche differen-
zierbar im Punkt x ∈ (a, b) sind. Zudem sei λ ∈ R. Dann sind die Funktion f + g, λf und
f · g im Punkt x differenzierbar, und es gilt:

(1) (f + g)′(x) = f ′(x) + g′(x)

(2) (λf)′(x) = λ · f ′(x)

(3) (f · g)′(x) = f ′(x)·g(x) + f(x)·g′(x) (Produktregel)

Wenn g(x) 6= 0, dann ist die Funktion f
g

im Punkt x differenzierbar, und es gilt:

(4)
(
f
g

)′
(x) =

g(x) · f ′(x)− g′(x) · f(x)

g(x)2
(Quotientenregel).
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Beweis. Es seien f, g : (a, b) → R Funktionen, welche differenzierbar im Punkt x ∈ (a, b)
sind. Es folgt leicht aus den Definitionen, dass die ersten beiden Aussagen gelten.

Wir beweisen nun die Produktregel. Es ist

(f ·g)′(x) = lim
h→0

1
h

(f(x+ h)·g(x+ h)− f(x)·g(x)) =

Wir wollen jetzt in den Ausdruck f(x+h)·g(x+h)−f(x)·g(x) die beiden Differenzen
f(x+ h)− f(x) und g(x+ h)− g(x) einführen, welche in den Definitionen von f ′(x)
und g′(x) auftauchen. Wir wenden jetzt genau den gleichen Trick wie im Beweis von
Satz 3.4 an, nämlich wir führen eine geschickte Nullergänzung durch.

= lim
h→0

1
h

(
f(x+ h)·g(x+ h)−f(x)·g(x+ h) + f(x)·g(x+ h)− f(x)·g(x)

)
= lim

h→0

1
h

(
f(x+ h)·g(x+ h)− f(x)·g(x+ h)

)
+ lim

h→0

1
h

(
f(x)·g(x+ h)− f(x)·g(x)

)
= lim

h→0

1
h

(
f(x+ h)− f(x)

)
︸ ︷︷ ︸

=f ′(x)

· lim
h→0

g(x+ h)︸ ︷︷ ︸
=g(x),weil g stetig

+ f(x) · lim
h→0

1
h

(
g(x+ h)− g(x)

)
︸ ︷︷ ︸

=g′(x)

= f ′(x)·g(x) + f(x)g′(x).

Wir wenden uns nun dem Beweis der Quotientenregel zu. Diese wird ganz ähnlich bewiesen
wie die Produktregel. In der Tat, es ist79

lim
h→0

1

h

(
f(x+ h)

g(x+ h)
− f(x)

g(x)

)
= lim

h→0

1

g(x+ h)·g(x)

f(x+ h)·g(x)− f(x)·g(x+ h)

h

= lim
h→0

1

g(x+ h)·g(x)

f(x+ h)·g(x)−f(x)·g(x) + f(x)·g(x)− f(x)·g(x+ h)

h

= lim
h→0

1

g(x+ h)·g(x)

(
f(x+ h)− f(x)

h
g(x)− g(x+ h)− g(x)

h
f(x)

)
=

1

g(x)2
(f ′(x)·g(x)− g′(x)f(x)).

�

Beispiel. In Übungsblatt 9 werden wir mithilfe der Ableitungsregeln zeigen, dass für jedes

n ∈ Z gilt:
d

dx
xn = n · xn−1.

12.2. Ableitung der Exponentialfunktion, sowie von Sinus und Kosinus. Wir er-
innern daran, dass nach der Definition auf Seite 90 und nach Satz 11.5 gilt:

exp(x) = 1 + x+ x2

2
+
∞∑
n=3

xn

n!
sowie sin(x) = x− x3

3!
+ x5

5!
+
∞∑
k=3

(−1)k · x2k+1

(2k + 1)!
.

Um die Ableitungen der Exponentialfunktion und der trigonometrischen Funktionen be-
stimmen zu können, müssen wir erst einige grundlegende Grenzwerte berechnen.

79Der besseren Lesbarkeit wegen unterschlagen wir im Argument folgenden subtilen Punkt. Nach Vor-
aussetzung ist g(x) 6= 0. Nach Lemma 12.3 wissen wir, dass g im Punkt x stetig ist. Also gibt es ein ε > 0
so, dass für alle h ∈ (−ε, ε) gilt, dass g(x + h) 6= 0. Insbesondere macht es Sinn g(x + h) im Nenner zu
erlauben.
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Satz 12.5. (1) lim
x→0

exp(x)− 1

x
= 1 und (2) lim

x→0

sin(x)

x
= 1.

Beweis von Satz 12.5 (1). 80 Für den Beweis von Satz 12.5 benötigen wir folgende, erst mal
etwas unmotivierte Behauptung.

Behauptung 1. Für x ∈ R mit |x| ≤ 1
2

gilt
∣∣∣ ∞∑
m=0

xm

(m+ 2)!

∣∣∣ ≤ 2.

Es sei also |x| ≤ 1
2
. Dann gilt:∣∣∣ ∞∑

m=0

xm

(m+ 2)!

∣∣∣ ≤
∞∑
m=0

∣∣∣ xm

(m+ 2)!

∣∣∣ =
∞∑
m=0

|x|m

(m+ 2)!
≤

∞∑
m=0

(
1
2

)m
=

1

1− 1
2

= 2.

↑ ↑ ↑
folgt aus Satz 6.10 folgt aus Satz 3.17, da Satz 3.16, da dies eine

|x| ≤ 1
2 und (m+ 2)! ≥ 1 geometrische Reihe ist�

Behauptung 2. Es seien f, g : (−η, η) → R zwei Funktionen, so dass lim
x→0

f(x) = 0 und so

dass g beschränkt ist, dann gilt lim
x→0

f(x) · g(x) = 0.

Die Behauptung folgt aus Satz 3.5 zusammen mit Satz 7.10. �
Wir wenden uns jetzt dem eigentlichen Beweis der Aussage zu. Nachdem es manchmal

leichter ist zu zeigen, dass ein Ergebnis “0” ist, beweisen wir lieber die äquivalente Aussage:

lim
x→0

1

x

(
exp(x)− 1− x

)
= 0. In der Tat gilt:

lim
x→0

1

x

(
exp(x)−1− x

)
= lim

x→0

1

x

(
1 + x+

∞∑
n=2

xn

n!
−1− x

)
= lim

x→0

1

x
·
∞∑
n=2

xn

n!

denn 1
x · x

n = x · xn−2 Substitution m = n− 2 Behauptung 2
↓ ↓ ↓
= lim

x→0
x ·

∞∑
n=2

xn−2

n!
= lim

x→0
x ·

∞∑
m=0

xm

(m+ 2)!︸ ︷︷ ︸
nach Behauptung 1 ist
für |x| ≤ 1

2
der Betrag

durch 2 beschränkt

= 0

�

Beweis von Satz 12.5 (2). Der Beweis verläuft ganz analog zum Beweis von Teil (1). In
der Tat gilt:

lim
x→0

1

x

(
sin(x)−x

)
= lim

x→0

1

x

(
x+

∞∑
n=1

(−1)n · x2n+1

(2n+ 1)!
−x
)

= lim
x→0

1

x
·
∞∑
n=1

(−1)n · x2n+1

(2n+ 1)!

= lim
x→0

x ·
∞∑
n=1

(−1)n · x2n

(2n+ 1)!
= lim

x→0
x ·

∞∑
m=0

(−1)m+1 · x2m+2

(2m+ 3)!︸ ︷︷ ︸
für |x| ≤ 1

2
ist der Betrag

wiederum durch 2 beschränkt

= 0

Aus dieser Berechnung folgt sofort, dass lim
x→0

sin(x)
x

= 1. �

80Bevor man den technisch etwas anspruchsvollen Beweis liest, kann es hilfreich sein, sich die Aussage
des Satzes, mithilfe der obigen Beschreibungen von exp(x) und sin(x) plausibel zu machen.
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Mithilfe von Satz 12.5können wir jetzt die Ableitungen der Exponentialfunktion, der
Sinusfunktion und der Kosinusfunktion bestimmen.

Satz 12.6.

(1)
d

dx
exp(x) = exp(x) (2)

d

dx
sin(x) = cos(x) (3)

d

dx
cos(x) = − sin(x).

Beweis. Wir betrachten zuerst die Exponentialfunktion. Es ist

d

dx
exp(x) = lim

h→0

exp(x+ h)− exp(x)

h
= lim

h→0

exp(x) · exp(h)− exp(x)

h

= exp(x) · lim
h→0

exp(h)− 1

h︸ ︷︷ ︸
= 1, nach Satz 12.5

= exp(x) · 1 = exp(x).

Wir wenden uns nun der Sinusfunktion zu. Wir führen folgende Berechnung durch:

d

dx
sin(x) = lim

h→0

sin(x+ h)− sin(x)

h

= lim
h→0

2 cos
(
x+

h
2

)
sin
(
h
2

)
h

= lim
h→0

cos
(
x+ h

2

)
︸ ︷︷ ︸

= cos(x), weil cos nach
Satz 11.6 stetig ist

· lim
h→0

sin
(
h
2

)
h
2︸ ︷︷ ︸

= 1 nach Satz 12.5
und Substitution x= h

2

= cos(x).x
nach Lemma 11.9 (2)

Ganz ähnlich kann man mithilfe von Lemma 11.9 (1) zeigen, dass d
dx

cos(x) = − sin(x).

Dies ist eine Übungsaufgabe auf Übungsblatt 9. �

12.3. Die Kettenregel und die Umkehrregel.

Satz 12.7. (Kettenregel) Es seien f : (a, b)→ R und g : (c, d)→ R zwei Funktionen mit
f((a, b)) ⊂ (c, d). Wenn f im Punkt x0 ∈ (a, b) differenzierbar ist und wenn g im Punkt
f(x0) differenzierbar ist, dann ist g ◦ f im Punkt x0 differenzierbar und es gilt

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Beweis. Wir setzen y0 := f(x0). Nach Satz 12.2 “⇒” gibt es Funktionen

(1) α : (a, b)→ R mit f(x)− f(x0) = (x− x0) · α(x), wobei α stetig in x0 ist,
(2) β : (c, d)→ R mit g(y)− g(y0) = (y − y0) · β(y), wobei β stetig in y0 ist.

Es gilt nun: Anwendung von (2) auf y = f(x)
↓

(g ◦ f)(x)− (g ◦ f)(x0) = g(f(x))− g(

=y0︷ ︸︸ ︷
f(x0)) = (f(x)− f(x0)) · β(f(x)).

= (x− x0) · α(x) · β(f(x)).
↑

Anwendung von (1)

Zudem folgt aus Satz 7.7, dass die Funktion x 7→ α(x) · β(f(x)) stetig in x0 ist. Es folgt
also aus Satz 12.2 “⇐”, dass die Funktion g ◦ f im Punkt x0 differenzierbar ist. Zudem gilt

(g ◦ f)′(x0) = α(x0) · β(f(x0)) = f ′(x0) · g′(f(x0)).
↑ ↑

folgt aus dem letzten Satz von Satz 12.2
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�

Korollar 12.8. Für jedes a ∈ (0,∞) gilt
d

dx
ax = ax · ln(a).

Beweis. Für alle x ∈ R gilt: denn nach Satz 12.6 gilt exp′ = exp
↓

d

dx
ax =

d

dx
exp(ln(a)·x) = exp′(ln(a)·x)·(ln(a)·x)′ = exp(ln(a)·x)·ln(a) = ax ·ln(a).

↑ ↑ ↑
Definition von ax Kettenregel mit f(x) = ln(a)·x und g(x) = exp(x) Definition von ax �

Satz 12.9. (Umkehrregel) Es sei f : (a, b)→ R eine stetige und streng monotone Funk-
tion. Wenn f in einem Punkt x0 ∈ (a, b) differenzierbar ist mit f ′(x0) 6= 0, dann ist die
Umkehrfunktion f−1 im Punkt y0 := f(x0) differenzierbar und es gilt:

(f−1)′(y0) =
1

f ′(f−1(y0))
.

Bemerkung. Die Aussage der Umkehrregel wird in Abbildung 39 illustriert:

(1) Aus Lemma 9.4 wissen wir, dass wir den Graphen der Umkehrfunktion f−1 erhalten,
indem wir den Graphen von f an der x = y-Diagonale spiegeln.

(2) Ganz analog zu (1) erhalten wir die Tangente zum Graphen von f−1 am Punkt
(y0, f

−1(y0)) = (f(x0), x0), indem wir die Tangente zum Graphen von f am Punkt
(x0, f(x0)) an der x = y-Diagonale spiegeln.

(3) Ganz allgemein gilt jedoch, dass wenn wir eine Gerade mit Steigung m an der x = y-
Diagonale spiegeln, erhalten wir eine Gerade mit Steigung 1

m
.

Tangente zum Graphen der Funktion f
am Punkt (x0, f(x0)) mit Steigung f ′(x0)

Tangente zum Graphen der Funktion f−1

am Punkt (f(x0), f
−1(f(x0)) = (y0, f

−1(y0))
mit Steigung 1

f ′(x0)
= 1

f ′(f(y0))

(x0, f(x0))

Graph der Umkehrfunktion f−1

Graph der Funktion f

(f(x0), x0) = (f(x0), f
−1(f(x0))) = (y0, f

−1(y0))

Abbildung 39. Die Ableitung der Umkehrfunktion.

Beweis. Es sei f : (a, b) → R eine stetige und streng monotone Funktion und zudem sei
x0 ∈ (a, b). Wir betrachten im Folgenden den Fall, dass f streng monoton steigend ist.
Der Fall, dass f streng monoton fallend ist, wird ganz ähnlich bewiesen. Es folgt nun aus
Lemma 9.2, dass die Umkehrfunktion auf dem offenen Intervall (f(a), f(b)) definiert ist.
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Wir nehmen nun an, dass f im Punkt x0 differenzierbar ist mit f ′(x0) 6= 0.

(1) Nach Satz 12.2 gibt es eine Funktion ϕ : (a, b)→ R, welche stetig in x0 ist, mit

(∗) f(x)− f(x0) = (x− x0) · ϕ(x).

Wir wollen nun mithilfe des Differenzierbarkeitskriteriums aus Satz 12.2 zeigen, dass
die Umkehrfunktion f−1 : (f(a), f(b)) → R im Punkt y0 = f(x0) differenzierbar
ist. Für beliebiges y ∈ (f(a), f(b)) folgt aus (∗), angewandt auf x := f−1(y) und
x0 := f−1(y0), dass

y − y0 = (f−1(y)− f−1(y0)) · ϕ(f−1(y)).

Also ist
f−1(y)− f−1(y0) =

1

ϕ(f−1(y))
· (y − y0).

Es folgt aus Satz 9.6 und Satz 7.7, dass die Abbildung y 7→ 1
ϕ(f−1(y))

im Punkt y0
stetig ist. Also ist die Funktion f−1 nach Satz 12.2 im Punkt y0 differenzierbar.

(2) Es verbleibt die Ableitung der Umkehrfunktion im Punkt y0 zu bestimmen:81 8283

(f ◦f−1)(y) = y ⇒ d

dy

∣∣∣
y=y0

(f ◦f−1)(y)︸ ︷︷ ︸
= f ′(f−1(y0)) · (f−1)′(y0)

nach der Kettenregel

= d

dy

∣∣∣
y=y0

y︸ ︷︷ ︸
=1

⇒ (f−1)′(y0) =
1

f ′(f−1(y0))
.

�

Korollar 12.10.
d

dx
ln(x) =

1

x
.

Beweis. Es ist d

dx
ln(x) =

1

exp′(ln(x))
=

1

exp(ln(x))
= 1

x .
↑ ↑

Umkehrregel angewandt auf f(x)=exp(x) denn nach Satz 12.6 gilt exp′ = exp �

Korollar 12.11. Für alle d ∈ R gilt84
d

dx
xd = d · xd−1 als Funktion auf (0,∞).

81Die folgende Berechnung ersetzt nicht den gerade erst erbrachten Beweis, dass die Umkehrfunktion
im Punkt y0 differenzierbar ist, denn in dieser Berechnung verwenden wir ja die Kettenregel und hierbei
verwenden wir schon implizit, dass wir in (1) gezeigt hatten,das f−1 im Punkt y0 differenzierbar ist.

82Wir hätten die Ableitung von f−1 auch in (1) mithilfe des Nachsatzes von Satz 12.2 bestimmen können,
aber das Argument, welches wir jetzt geben, kann man sich leichter merken.

83Mit diesem an sich einfachen Beweis kann man sich auch jederzeit leicht die Formel für die Ableitung
der Umkehrfunktion herleiten.

84Für beliebiges d ∈ R ist die Funktion x 7→ xd nur für x ∈ (0,∞) definiert. Für d ∈ N0 ist die Funktion
auf ganz R und für d ∈ Z ist diese Funktion immerhin noch auf R \ {0} definiert. Für d ∈ Z beweisen wir
die Ableitungsregel d

dxx
d = d · xd−1 in Übungsblatt 9 mithilfe der Produkt- und der Quotientenregel.
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Beweis. Es sei d ∈ R. Es gilt: denn nach Satz 12.6 gilt exp′ = exp und
nach Korollar 12.10 gilt ln(x)′ = 1

x↓
d

dx
xd =

d

dx
exp(ln(x) · d) = exp′(ln(x) · d) · (ln(x) · d)′ = exp(ln(x) · d)︸ ︷︷ ︸

=exp(ln(x))d=xd

· 1

x
· d = xd−1 · d.

↑ ↑
Definition von xd Kettenregel angewandt auf

f(x) = ln(x)·d und g(x) = exp(x) �

Beispiel. Es gilt: d

dx

√
x =

d

dx
x

1
2 =

1

2
· x 1

2
−1 =

1

2
· 1√

x
als Funktion auf (0,∞).

↑
Korollar 12.11

12.4. Stetig differenzierbare Funktionen. Es sei f : (a, b) → R eine differenzierbare
Funktion. Wir erhalten dann also aus f eine neue Funktion, nämlich die 1. Ableitung

f ′ : (a, b) → R
x 7→ f ′(x).

Wir können uns nun fragen, was für Eigenschaften diese Funktion besitzt. Von den Bei-
spielen her, welche wir bis jetzt betrachtet hatten, könnte man meinen, dass die Ableitung
immer stetig ist. Das folgende Beispiel zeigt jedoch, dass dies nicht notwendigerweise der
Fall ist.

Beispiel. Wir betrachten die Funktion

f : R → R

x 7→
{
x2 · sin( 1

x
), wenn x 6= 0,

0, wenn x = 0.

In Übungsblatt 9 werden wir sehen, dass die Funktion in jedem Punkt differenzierbar ist,
insbesondere auch im Punkt x = 0, wo die Ableitung 0 beträgt. Die Ableitung von f ist
also gegeben durch

f ′ : R → R

x 7→
{

2x · sin( 1
x
)− cos( 1

x
), wenn x 6= 0,

0, wenn x = 0.

In Übungsblatt 9 zeigen wir, dass diese Ableitungsfunktion im Punkt x = 0 nicht stetig ist.

Dieses leicht verstörende Beispiel führt uns zu folgender Definition, welche im Folgenden
öfters eine Rolle spielen wird.

Definition. Es sei f : (a, b)→ R eine Funktion. Wenn f differenzierbar ist, und wenn zudem
f ′ stetig ist, dann heißt f stetig differenzierbar.

Wir beschließen das Kapitel mit folgender fast schon selbsterklärender Definition.



154

1
8π

1
6π

1
4π

−1

1
2π
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4π

1
6π

1
8π

4π2
1

y = x2

y = −x2

Graph der Funktion sin( 1
x
), x 6= 0 Graph der Funktion x2 · sin( 1

x
), x 6= 0

Definition. Es sei f : (a, b) → R eine differenzierbare Funktion. Wenn die Ableitung f ′

differenzierbar ist, dann schreiben wir

f (2) := f ′′ := (f ′)′,

genannt die 2. Ableitung von f . Allgemeiner, wenn die (n− 1)-te Ableitung von f differen-
zierbar ist, dann definieren wir die n-te Ableitung von f als

f (n) := (f (n−1))′

und wir sagen, f ist n-fach differenzierbar.

Beispiel. Wir betrachten die Funktion

f : R → R

x 7→
{
−x2, wenn x ≤ 0,
x2, wenn x > 0.

Man kann ohne große Mühe zeigen, dass die Funktion f differenzierbar ist mit Ableitung

f ′ : R → R

x 7→
{
−2x, wenn x ≤ 0,

2x, wenn x > 0.

Mit anderen Worten, es ist f ′(x) = 2 · |x|. Die Funktion f ′ ist stetig, jedoch ist die Funktion
f ′ im Punkt x = 0 nicht differenzierbar. Also ist die ursprüngliche Funktion f stetig
differenzierbar, jedoch nicht zweimal differenzierbar ist.

Beispiel. In diesem Beispiel wollen wir kurz aufzeigen, dass höhere Ableitungen auch im
echten Leben durchaus eine Rolle spielen. Nehmen wir an, wir sollen die Bahn eines Aufzugs
programmieren, welche bei t = 0 bei h(0) = 0 anfängt und bei einer Zeit T bei h(T ) = H
angekommen ist. Dazu müssen wir eine Funktion h : R → R konstruieren mit folgenden
Eigenschaften:

(1) h(0) = 0 und h(T ) = H.
(2) T sollte möglichst klein sein, Sie wollen ja schnell am Ziel sein.
(3) |h′(t)| sollte aus Sicherheitsgründen nicht größer als 2, 5m

s
sein.
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(4) |h′′(t)| entspricht der Kraft, welche auf einen Körper wirkt. Diese sollte aus Gesund-
heitsgründen durch 0, 1 · g = 0, 1 · 9, 81m

s2
begrenzt sein.

(5) h(3)(t), d.h. die Änderung der Kraft, welche auf einen Körper wirkt, wird in der Phy-
sik als Ruck bezeichnet. Der Absolutbetrag des Rucks, d.h. |h(3)(t)|, sollte ebenfalls
niedrig gehalten werden, denn großer Ruck wird von Menschen normalerweise als
unangenehm empfunden.85

Geschwindigkeiten von Aufzügen

Quelle: https://peters-research.com/index.php/papers/ideal-lift-kinematics/

85Außer man ist auf der Dult und zahlt ein Vermögen, um genau das zu erfahren.

https://peters-research.com/index.php/papers/ideal-lift-kinematics/


156

13. Der Mittelwertsatz der Differentialrechnung

13.1. Globale und lokale Extrema von Funktionen.

Definition. Es sei D ⊂ R eine Teilmenge, es sei f : D → R eine Funktion und es sei x0 ∈ D.

(1) Wir sagen f nimmt bei x0 ein globales Maximum an, wenn gilt:

f(x0) ≥ f(x) für alle x ∈ D.

(2) Wir sagen, f nimmt bei x0 ein lokales Maximum an, wenn gilt:

es gibt ein δ > 0, so dass f(x0) ≥ f(x) für alle x ∈ D mit x ∈ (x0−δ, x0+δ).

Ganz analog definieren wir lokales und globales Minimum. Wir sagen f nimmt bei x0 ein
lokales Extremum an, wenn f bei x0 ein lokales Maximum oder ein lokales Minimum an-
nimmt.

�
�
�
�

(x0−δ, x0+δ)
lokales Maximum wird

hier angenommen

x0

Graph von f

hier wird ein globales
Minimum angenommen

Definition. Es seien −∞ ≤ a ≤ b ≤ +∞. Für ein Intervall der Form [a, b], (a, b] oder [a, b)
bezeichnen wir das Intervall (a, b) als das Innere des Intervalls.

Satz 13.1. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im
Inneren des Intervalls differenzierbar ist.86Zudem sei x0 ∈ I ein Punkt im Inneren des
Intervalls. Wenn f ein lokales Extremum in x0 annimmt, dann ist f ′(x0) = 0.

Graph einer
Funktion f : (a, b]→R

f nimmt hier lokale Extrema an

Ableitung ist 0, obwohl kein lokales Extremum vorliegt

Bemerkung. Die Umkehrung der Aussage von Satz 13.1 gilt nicht: Wenn f ′(x0) = 0 bedeutet
das nicht, dass bei x0 ein lokales Extremum vorliegt. Wenn wir beispielsweise f(x) = x3

betrachten, dann ist f ′(x) = 3x2, also ist f ′(0) = 0, aber 0 liegt kein lokales Extremum vor.

Beweis. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im Inneren
des Intervalls differenzierbar ist. Zudem sei x0 ∈ I ein Punkt im Inneren des Intervalls.

86Wenn also beispielsweise f : [a, b) → R eine Funktion ist, dann fordern wir, dass f auf dem Intervall
(a, b) differenzierbar ist. Im Punkt a fordern wir, dass f stetig ist, aber auch nicht mehr.
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Wir nehmen an, dass f bei x0 ein lokales Minimum annimmt. (Der Fall, dass ein lokales
Maximum vorliegt, wird ganz analog bewiesen.) Es gibt also per Definition ein δ > 0, so
dass f(x0 + h) ≥ f(x0) für alle h ∈ (−δ, δ).

Nachdem x0 im Inneren des Intervalls liegt und nachdem f differenzierbar ist, existiert
also der Grenzwert

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Nach der Definition des Grenzwertes lim
h→0

einer Funktion, siehe Seite 102, müssen die links-

und rechtsseitigen Grenzwerte lim
h↗0

und lim
h↘0

existieren und diese müssen mit f ′(x0) über-

einstimmen. Es gilt also

f ′(x0) = lim
h↗0

f(x0+h)−f(x0)
h︸ ︷︷ ︸

für h ∈ (–δ, 0) gilt:
h<0 und f(x0+h)≥f(x0)

also ist der Bruch ≤ 0

≤ 0 und es gilt f ′(x0) = lim
h↘0

f(x0+h)−f(x0)
h︸ ︷︷ ︸

für h ∈ (0, δ) gilt:
h>0 und f(x0+h)≥f(x0)

also ist der Bruch ≥ 0

≥ 0.

Wir haben also gezeigt, dass f ′(x0) ≤ 0 und f ′(x0) ≥ 0. Dies impliziert, dass f ′(x0) = 0. �

Bemerkung. Es sei f : [a, b]→ R eine stetige Funktion auf einem kompakten Intervall. Nach
Satz 8.2 nimmt f ein globales Maximum an. Es gibt nun zwei Möglichkeiten:

(1) Das globale Maximum wird in den Endpunkten a oder b angenommen.
(2) Das globale Maximum wird im Inneren (a, b) des Intervalls angenommen. Wenn f auf

(a, b) differenzierbar ist, dann muss nach Satz 13.1 die Ableitung an diesem Punkt
null sein.

Die Beobachtung erlaubt es uns oft, das globale Maximum einer explizit gegebenen Funktio-
nen zu bestimmen. Die gleiche Diskussion gilt natürlich auch für Minima anstatt Maxima.

����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��

globales Extremum wird am Rand angenommen oder im Inneren, dort gilt dann f ′(x0)=0

13.2. Mittelwertsatz der Differentialrechnung. Der folgende Satz ist einer der ganz
zentralen Sätze der Analysis I.

Satz 13.2. (Mittelwertsatz der Differentialrechnung) Es seien a < b ∈ R und es sei
f : [a, b] → R eine stetige Funktion, welche auf (a, b) differenzierbar ist. Dann gibt es ein
ξ ∈ (a, b), so dass

f ′(ξ) =
f(b)−f(a)

b−a .

Bemerkung. Wir können uns f(b)−f(a)
b−a als die “durchschnittliche Steigung” der Funktion

f : [a, b] → R vorstellen. Der Mittelwertsatz der Differentialrechnung besagt also, dass es
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ein ξ ∈ (a, b) gibt, so dass an dem Punkt ξ die Ableitung, d.h. die Steigung der Tangente
im Punkt (ξ, f(ξ)), gerade der durchschnittlichen Steigung entspricht.

�
�
�
�

�
�
�
�

��
��
��
�� durchschnittliche Steigung ist

f(b)− f(a)

b− a

(ξ, f(ξ))

f(b)

Steigung der Tangente bei ξ

ist f ′(ξ) =
f(b)−f(a)

b−a

a b

f(a)

ξ

Wir beweisen den Mittelwertsatz zuerst für den Spezialfall, dass f(a) = f(b). Dieser
Spezialfall ist schon so wichtig, dass er als eigener Satz formuliert wird.

Satz 13.3. (Satz von Rolle87) Es seien a < b ∈ R und es sei g : [a, b] → R eine stetige
Funktion, welche auf (a, b) differenzierbar ist. Wenn g(a) = g(b), dann gibt es ein ξ ∈ (a, b),
so dass g′(ξ) = 0.

Beweis des Satzes von Rolle. Da g stetig ist existieren nach Satz 8.2 zwei reelle Zahlen
x0, x1 ∈ [a, b], so dass

g(x0) ≥ g(x) ≥ g(x1) für alle x ∈ [a, b].

Bei x0 liegt also insbesondere ein lokales Maximum vor und bei x1 liegt insbesondere ein
lokales Minimum vor.

(1) Wenn x0 ∈ (a, b), dann folgt aus Satz 13.1, dass g′(x0) = 0. Also sind wir fertig.
(2) Genauso, wenn x1 ∈ (a, b), dann folgt wiederum aus Satz 13.1, dass g′(x1) = 0. Wir

sind also wiederum fertig.
(3) Wenn x0 und x1 auf den Endpunkten des Intervalls liegen, dann folgt aus g(a) = g(b),

dass g(a) = g(b) sowohl der maximale als auch der minimale Funktionswert ist. Es
folgt also, dass, die Funktion g konstant ist. Dies bedeutet aber, dass g′(x) = 0 für
alle x ∈ (a, b). �

x1x0

Graph der Funktion g : [a, b]→ R
g(a) = g(b)

a b

Beweis des Mittelwertsatzes der Differentialrechnung.

Wenn f(a) = f(b), dann ist die gewünschte Aussage gerade der Satz von Rolle. In
der Tat werden wir nun den allgemeinen Fall mit einem kleinen Trick auf den Satz
von Rolle zurück führen.

87Der Satz ist nach dem französischen Mathematiker Michel Rolle (1652-1719) benannt.
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Wir betrachten die stetige Funktion

g(x) := f(x)− f(b)− f(a)

b− a
· (x− a),

welche auf dem Intervall [a, b] definiert ist. Diese Funktion ist stetig und sie ist differenzier-
bar auf (a, b). Durch explizites Einsetzen sieht man, dass g(a) = f(a) = g(b). Nach dem
Satz von Rolle existiert also ein ξ ∈ (a, b), so dass g′(ξ) = 0. Nachdem

g′(x) = f ′(x)− f(b)− f(a)

b− a
folgt also, wie gewünscht, dass

f ′(ξ) =
f(b)− f(a)

b− a
. �

Im Folgenden wollen wir einen Zusammenhang zwischen Monotonie und Ableitung herlei-
ten. In der folgenden Abbildung erinnern wir dazu noch einmal an den Begriff der (strengen)
Monotonie, welchen wir auf Seite 113 eingeführt hatten.

monoton steigende Funktion streng monoton steigende Funktion

x1 x2 x2x1

Satz 13.4. (Monotoniesatz) Es sei I ⊂ R ein Intervall und es sei f : I → R eine stetige
Funktion, welche im Inneren des Intervalls differenzierbar ist. Dann gilt:

(1) f ′(x) ≥ 0 für alle inneren Punkte x von I ⇐⇒ f ist monoton steigend
(2) f ′(x) > 0 für alle inneren Punkte x von I =⇒ f ist streng monoton steigend.

Zudem gelten die offensichtlichen analogen Aussagen für (streng) monoton fallende Funk-
tionen.

Bemerkung. Im Allgemeinen gilt in (2) nicht die Umkehrung. Wir betrachten beispielsweise
die Funktion f(x) = x3, deren Graphen wir unten skizzieren. Diese Funktion ist streng
monoton steigend. Aber es gilt f ′(0) = 0, d.h. die Ableitung ist nicht immer positiv.

die Funktion ist streng
monoton steigend

die Ableitung bei x = 0 ist 0

Graph der Funktion x 7→ x3

Beispiel. Wir betrachten die Funktion f : [0,∞) → R
x 7→

√
x = x

1
2

Nach der Diskussion auf Seite 119 ist diese Funktion stetig. Nach Korollar 12.11 ist die
Funktion x 7→

√
x auf dem offenen Intervall (0,∞) differenzierbar und für jedes x ∈ (0,∞)
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gilt:
f ′(x) =

1

2
· x

1
2
−1 =

1

2
· 1√

x
> 0.

Es folgt also aus Satz 13.4, dass die Funktion streng monoton steigend ist.

����

Graph von x 7→
√
x = x

1
2

Beweis. Es sei I ⊂ R ein Intervall und es sei f : I → R eine stetige Funktion, welche im
Inneren des Intervalls differenzierbar ist.

(1) Wir beweisen zuerst die “⇐”-Richtung. Es sei also f monoton steigend. Dann gilt
für alle inneren Punkte x des Intervalls I, dass

f ′(x) = lim
h↘0

f(x+h) − f(x)
h︸ ︷︷ ︸

da h > 0 und f monoton steigend
ist der Zähler ≥ 0 und der Nenner > 0,

also ist der Quotient ≥ 0

≥ 0.

Wir beweisen nun die “⇒”-Richtung. Es sei also f ′(x) ≥ 0 für alle x im Inneren des
Intervalls I. Wir müssen also folgende Behauptung beweisen:

Behauptung. Für alle x2 > x1 gilt f(x2) ≥ f(x1).

Wir führen einen Widerspruchsbeweis durch. Wir nehmen nun also an, dass es
x2 > x1 in I gibt, so dass f(x2) < f(x1). Wenn wir den Mittelwertsatz 13.2 auf die
Einschränkung von f auf [x1, x2] anwenden, erhalten wir ein ξ ∈ (x1, x2), so dass

f ′(ξ) =
f(x2)− f(x1)

x2 − x1
, also folgt: f ′(ξ) = f(x2)− f(x1)

x2 − x1
< 0.

↑
da x2>x1 und f(x2)<f(x1)

im Widerspruch zur Voraussetzung, dass f ′(x) ≥ 0 für alle x im Inneren von I.

�
�
�
�

�
�
�
�

Intervall I

??

f(x2)

f(x1) Graph von f

x1 x2

(2) Die zweite Aussage des Satzes wird eigentlich genau wie die “⇒”-Richtung von (1)
mithilfe eines Widerspruchbeweises bewiesen.88 �

88Es ist eine gute Übungsaufgabe sich zu überlegen, warum man denn die “⇐”-Richtung von (2) nicht
auch ganz analog wie die “⇐”-Richtung von (1) beweisen geht. Was läuft da schief?
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Korollar 13.5. (Tachosatz) Es sei I ein Intervall und es sei f : I → R eine stetige
Funktion, welche im Inneren des Intervalls differenzierbar ist. Wenn f ′(x) = 0 für alle x
im Inneren von I, dann ist f konstant.

Bemerkung. Etwas salopp besagt das Korollar also: wenn der Tacho des Autos immer bei 0
ist, dann ist das Auto immer am gleichen Ort.
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Beispiel. Wir betrachten die Funktion f(x) = sin2(x) + cos2(x). Für alle x ∈ R gilt

f ′(x) = 2 sin(x)·sin ′(x) + 2·cos(x)·cos ′(x) = 2 sin(x)·cos(x) + 2 cos(x)·(− sin(x)) = 0.
↑ ↑

aus (xn)′ = n · xn−1 und aus der Kettenregel nach Satz 12.6 gilt sin′(x) = cos(x)
folgt: (f(x)n)′ = n · f(x)n−1 · f ′(x) und cos′(x) = − sin(x)

Aus Korollar 13.5 folgt also, die uns natürlich schon längst bekannte Tatsache, dass die
Funktion x 7→ sin2(x) + cos2(x) eine konstante Funktion ist.

Beweis. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im Inneren
des Intervalls differenzierbar ist, und so dass f ′(x) = 0 für alle x im Inneren von I. Es folgt
aus dem Monotoniesatz 13.4, dass f sowohl monoton steigend als auch monoton fallend ist.
Das ist nur möglich, wenn f konstant ist.89 �

Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im Inneren des
Intervalls differenzierbar ist. Zudem sei x0 ∈ I ein Punkt im Inneren des Intervalls. In
Satz 13.1 hatten wir gesehen, dass wenn f ein lokales Extremum in x0 annimmt, dann ist
f ′(x0) = 0. Andererseits hatten wir auch gesehen, dass aus f ′(x0) = 0 nicht notwendiger-
weise folgt, dass bei x0 ein lokales Extremum vorliegt.

Der nächste Satz besagt nun, dass wir in vielen Fällen, mithilfe der 2. Ableitung, doch
die Aussage treffen können, dass ein lokales Extremum vorliegt. Für die Formulierung des
Satzes erinnern wir an die Definition des lokalen Extremums und wir führen eine neue, eng
verwandte, Definition ein.

Definition. Es sei D ⊂ R eine Teilmenge, es sei f : D → R eine Funktion und es sei x0 ∈ D.

(1) Wie auf Seite 156 sagen wir, f nimmt bei x0 ein lokales Maximum an, wenn gilt:

es gibt ein δ > 0, so dass f(x0) ≥ f(x) für alle x ∈ D mit x ∈ (x0−δ, x0+δ).

(2) Wir sagen, f nimmt bei x0 ein striktes lokales Maximum an, wenn gilt:

es gibt ein δ > 0, so dass f(x0) > f(x) für alle x0 6=x ∈ D mit x ∈ (x0−δ, x0+δ).

89Man kann die Aussage natürlich auch leicht direkt mithilfe des Mittelwertsatzes 13.2 beweisen.
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Ganz analog definieren wir den Begriff des strikten lokalen Minimums.

hier liegt ein striktes
lokales Maximum vor

hier liegt ein lokales Maximum
aber kein striktes lokales

Maximum vor

Satz 13.6. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im
Inneren des Intervalls zweifach differenzierbar ist. Zudem sei x0 ∈ I ein Punkt im Inneren
des Intervalls.

(1) Wenn f ′(x0) = 0 und f ′′(x0)> 0, dann liegt bei x0 ein striktes lokales Minimum vor.
(2) Wenn f ′(x0) = 0 und f ′′(x0)< 0, dann liegt bei x0 ein striktes lokales Maximum vor.

Beispiel. Wir betrachten die Funktion f(x) = x2. Dann ist f ′(x) = 2x und f ′′(x) = 2. Also
gilt f ′(0) = 0 und f ′′(0) = 2, und f nimmt in der Tat in bei x = 0 ein lokales Minimum an.

Graph von f(x) = x2

f ′(x)=2x, also ist f ′(0)=0
f ′′(x)=2, also ist f ′′(0)=2

Graph von f(x) = −x2
f ′(x)=−2x, also ist f ′(0)=0
f ′′(x)=−2, also ist f ′′(0)=−2

Beweis. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion, welche im Inneren
des Intervalls zweifach differenzierbar ist. Zudem sei x0 ∈ I ein Punkt im Inneren des
Intervalls.

(1) Wir nehmen nun an, dass f ′(x0) = 0, und dass f ′′(x0) > 0. Es folgt:

lim
h→0

f ′(x0 + h)

h
= lim

h→0

f ′(x0 + h)− f ′(x0)

h
= f ′′(x0) > 0.

↑ ↑ ↑
denn f ′(x0) = 0 Definition von f ′′(x0) nach Voraussetzung

Aus der Definition des Grenzwertes folgt, dass es ein δ > 0 gibt, so dass 90

für alle 0 6= h ∈ (−δ, δ) gilt:
f ′(x0 + h)

h
> 0.

Es folgt:

(a) für alle h ∈ (−δ, 0) gilt: f ′(x0 + h) < 0,
(b) für alle h ∈ (0, δ) gilt: f ′(x0 + h) > 0.

90Ganz allgemein gilt: wenn lim
t→a

g(x) = b > 0, dann folgt aus der Definition des Grenzwertes angewandt

beispielsweise auf ε = b
3 , dass es ein δ > 0 gibt, so dass g(t) > 2b

3 > 0 für alle t ∈ (a− δ, a+ δ).
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Es folgt nun aus diesen Ungleichungen und dem Monotoniesatz 13.4:

(a) f ist auf dem Intervall [x0 − δ, x0] streng monoton fallend,
(b) f ist auf dem Intervall [x0, x0 + δ] streng monoton steigend.

Dies wiederum impliziert, dass bei x0 ein striktes lokales Minimum vorliegt.
(2) Diese Aussage wird natürlich ganz analog bewiesen. �

x0

Graph von f

Graph der Ableitung f ′

Graph der zweiten Ableitung f ′′

Intervall (x0−δ, x0+δ)

Abbildung 40. Skizze für den Beweis von Satz 13.6.
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14. Arkusfunktionen und die Regel von l’Hôpital

14.1. Grenzwerte von Quotienten. Analog zur Diskussion auf Seite 43 führen wir aber
erst einmal folgende Notation ein.

Notation. Es sei f : (a, b)→ R eine Funktion.

lim
x↗b

f(x) = 0+ :⇔ lim
x↗b

f(x)=0 & es gibt ein δ>0 so dass f(x)>0 für x∈(b−δ, b),
lim
x↗b

f(x) = 0– :⇔ lim
x↗b

f(x)=0 & es gibt ein δ>0 so dass f(x)<0 für x∈(b−δ, b).

Wir führen die analoge Definition auch für rechtsseitige Grenzwerte ein.

abb

lim
x↗b

f(x) = 0 lim
x↗b

f(x) = 0+ lim
x↗b

f(x) = 0−

Notation. Analog zur partiellen Multiplikation auf Seite 42 führen wir nun auf der Menge
R ∪ {±∞} ∪ {0±} folgende partielle Division ein:

: a < 0 0 a > 0 +∞ −∞
b > 0 a

b
0 a

b
+∞ −∞

0+ −∞ ∗ +∞ +∞ −∞
0− +∞ ∗ −∞ −∞ +∞
b < 0 a

b
0 a

b
−∞ +∞

+∞ 0 0 0 ∗ ∗
−∞ 0 0 0 ∗ ∗

Hierbei bedeutet das Symbol “∗”, dass die Division nicht definiert ist.

Wir können nun folgenden Satz formulieren.

Satz 14.1. Es seien f, g : (a, b)→ R Funktionen, so dass g(x) 6= 0 für alle x ∈ (a, b), und
so dass lim

x↗b
f(x) und lim

x↗b
g(x) existieren oder bestimmt gegen ±∞ divergieren. Dann gilt:

lim
x↗b

f(x)

g(x)
=

lim
x↗b

f(x)

lim
x↗b

g(x)
,

wenn der Quotient auf der rechten Seite in der obigen Tabelle definiert ist. Für linksseitige
Grenzwerte gelten natürlich die analogen Aussagen.

Beweis. Der Beweis ist ganz ähnlich zum Beweis von Satz 3.11 (2) und Satz 3.10. �

Beispiel. Es ist
lim
x↗π

2

sin(x)
cos(x) = 1

0+ = +∞.

14.2. Umkehrfunktionen von trigonometrischen Funktionen.
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Definition. Die Tangensfunktion ist definiert als die Funktion

tan: R \ {π
2

+ n · π |n ∈ Z} → R
x 7→ tan(x) :=

sin(x)
cos(x) .

2ππ

Graph von tan(x)

Lemma 14.2.

(1) Es ist d
dx tan(x) = 1

cos(x)2 .

(2) Die Einschränkung der Tangensfunktion auf das Intervall (−π
2
, π
2
) ist streng monoton

steigend.
(3) Es gilt:

lim
x↘−π

2

tan(x) = −∞ und lim
x↗+π

2

tan(x) = +∞.

Beweis.

(1) Es gilt: Quotientenregel, siehe Satz 12.4 Satz 12.6

↓ ↓
d

dx
tan(x) =

d

dx

sin(x)

cos(x)
=

cos(x)·sin′(x)− sin(x)·cos′(x)

cos(x)2
=

cos(x)2 + sin(x)2

cos(x)2
=

1

cos(x)2
.

(2) Aus (1) folgt, dass die Ableitung der Tangensfunktion auf (−π
2
, π
2
) positiv ist. Es folgt

aus dem Monotoniesatz 13.4, dass die Einschränkung der Tangensfunktion auf das
Intervall (−π

2
, π
2
) streng monoton steigend ist.

(3) Aus Satz 14.1 folgt: lim
x↘±π

2

tan(x) = lim
x↘±π

2

sin(x)
cos(x)

= ±1
0+

= ±∞. �

Definition. Wir betrachten die Funktion tan: (−π
2
, π
2
) → R. Nach Lemma 14.2 (2) ist die

Funktion streng monoton und daher nach der Bemerkung auf Seite 115 injektiv. Zudem folgt
aus Lemma 14.2 (3) und Lemma 9.2, dass tan((−π

2
, π
2
)) = (−∞,∞) = R. Wir bezeichnen

die zugehörige Umkehrfunktion

arctan: R → (−π
2
, π
2
)

x 7→ arctan(x) := tan−1(x)

als die Arkustangensfunktion, oder kurz, als den Arkustangens.
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1

−1 1

xy–Diagonale

−1

Graph der Arkustangensfunktion

Graph der Tangensfunktion auf (−π
2
, π
2
)

π
2

−π
2

−π
2

π
2

Lemma 14.3.

(1) Es ist d
dx arctan(x) = 1

1+x2 .

(2) Die Arkustangensfunktion ist streng monoton steigend.
(3) Es ist

lim
x→−∞

arctan(x) = −π
2

und lim
x→∞

arctan(x) = +
π

2
.

Bemerkung. Die Aussage, dass in der Ableitung der Arkustangensfunktion keine trigono-
metrische Funktion auftaucht, ist überraschend und wird später noch eine sehr wichtige
Rolle spielen, wenn wir Stammfunktionen betrachten.

Beweis.

(1) Es gilt: d

dx
arctan(x) =

1

tan′(arctan(x))
=

1
1

cos(arctan(x))2

= cos(arctan(x))2.

↑ ↑
die Umkehrregel für Ableitungen nach Lemma 14.2 (1) gilt: tan ′(x) = 1

cos2(x)
besagt: (f−1)′(x) = 1

f ′(f−1(x))

Wir müssen also noch zeigen, dass für alle x ∈ R gilt: cos(arctan(x))2 = 1
1+x2

. Wir
geben zwei Argumente, eines ist sehr kurz und präzise, das andere ist dafür etwas
anschaulicher.
(a) Wir führen folgende Berechnung durch:

wir setzen zwischenzeitlich y := arctan(x) wir teilen Zähler und Nenner durch cos(y)2

↓ ↓
cos(arctan(x))2 = cos(y)2 =

cos(y)2

cos(y)2+sin(y)2
= 1

1+ sin(y)2

cos(y)2

= 1
1+tan(y)2

= 1
1+x2

.
↑

denn y = arctan(x)

(b) Im anschaulichen Argument betrachten wir der Verständlichkeit halber nur den
Fall, dass x ≥ 0. Wir schreiben α = arctan(x) ∈ (0, π

2
). In einem rechtwinkligen
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Dreieck mit Winkel α wie in Abbildung 41 links gilt, dass

sin(α) =
Gegenkathete

Hypotenuse
und cos(α) =

Ankathete

Hypotenuse

Also folgt:
tan(α) =

Gegenkathete

Ankathete
.

In Abbildung 41 rechts betrachten wir jetzt ein rechtwinkliges Dreieck mit Winkel
α und Ankathete der Länge 1. Aus tan(α) = x folgt dann, dass die Länge der
Gegenkathete x beträgt. Aus dem Satz von Pythagoras folgt dann, dass die
Hypotenuse die Länge

√
1 + x2 besitzt. Zusammengefasst erhalten wir also, dass

cos(α) =
Ankathete

Hypotenuse
=

1√
1 + x2

.

Daraus folgt nun aber, dass

cos(arctan(x))2 = cos(α)2 = 1
1+x2 .

Hypotenuse

Ankathete zu α

Gegenkathete zu α

α

1

x
√

1 + x2

α

Abbildung 41.

(2) Diese Aussage folgt aus Lemma 14.2 (2) und Lemma 9.5. Alternativ folgt die Aussage
aus (1) und aus Satz 13.4.

(3) Diese Aussage folgt leicht aus den Definitionen und Lemma 14.2 (3). Der Beweis dazu
ist eine freiwillige Übungsaufgabe. �

Nachdem die Umkehrfunktion der Tangensfunktion soviel Freude bereitet hat, betrachten
wir nun auch noch Umkehrfunktionen der Sinus- und Kosinusfunktion.

Definition. Wir betrachten die Einschränkung der Sinusfunktion auf das Intervall [−π
2
, π
2
].

Nachdem d
dx

sin(x) = cos(x) > 0 für alle x ∈ (−π
2
, π
2
) folgt aus Satz 13.4, dass die Sinus-

funktion auf dem Intervall [−π
2
, π
2
] streng monoton steigend ist. Die dazugehörige Umkehr-

funktion

arcsin : [−1, 1] → [−π
2
, π
2
]

wird die Arkussinusfunktion genannt. Ganz analog kann man zeigen, dass die Einschränkung
der Kosinusfunktion auf das Intervall [0, π] streng monoton fallend ist. Die dazugehörige
Umkehrfunktion

arccos : [−1, 1] → [0, π]

wird die Arkuskosinusfunktion genannt.
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π
2 ππ

Graph der KosinusfunktionGraph der Sinusfunktion

streng monoton fallendstreng monoton steigend

−π
2

−π
2

π
2

π
2

1

1

−1

π

π−1−1
π
2

−1

1

−1

Graph der
Arkuskosinusfunktion

Graph der Arkussinusfunktion

Graph der Sinusfunktion
auf dem Intervall [−π

2
, π
2
] Graph der Kosinusfunktion

auf dem Intervall [0, π]

Wir beschließen das Kapitel mit folgendem Lemma, welches in Präsenzübungsblatt 10
bewiesen wird.

Lemma 14.4. Die Arkussinusfunktion und die Arkuskosinusfunktion sind auf dem Inter-
vall (−1, 1) differenzierbar. Zudem gilt auf dem Intervall (−1, 1):

d
dx arcsin(x) = 1√

1−x2 und d
dx arccos(x) = − 1√

1−x2 .

Auch in diesem Fall sehen wir also, dass die Ableitungen nicht durch trigonometrische
Funktionen gegeben sind.

14.3. Die Regel von l’Hôpital. In Satz 14.1 hatten wir Grenzwerte der Form lim
x↘a

f(x)

g(x)

betrachtet. Der Satz 14.1 macht jedoch keine Aussage für folgende zwei Fälle:

(1) lim
x↘a

f(x) = 0 und lim
x↘a

g(x) = 0 (2) lim
x↘a

f(x) = ±∞ und lim
x↘a

g(x) = ±∞.

Die Regel von l’Hôpital erlaubt es zum Glück, viele von solchen Grenzwerten zu bestimmen.

Satz 14.5. (Regel von l’Hôpital) Es seien f, g : (a, b)→ R differenzierbare Funktionen,
so dass g(x) 6= 0 und g′(x) 6= 0 für alle x ∈ (a, b). Wenn einer der folgenden beiden Fälle
eintritt:

(1) lim
x↘a

f(x) = 0 und lim
x↘a

g(x) = 0 (2) lim
x↘a

f(x) = ±∞ und lim
x↘a

g(x) = ±∞,



169

dann gilt
lim
x↘a

f(x)
g(x) = lim

x↘a

f ′(x)
g′(x) ∈ R ∪ {−∞} ∪ {∞},

wenn der Grenzwert auf der rechten Seite existiert oder bestimmt gegen ±∞ divergiert. Die
Regel von l’Hôpital gilt ganz analog auch für rechtsseitige Grenzwerte und für beidseitige
Grenzwerte.

Beispiel. Es gilt:
lim
x↘0

√
x

sin(x)

0
0
l′H

===== lim
x↘0

1
2
√
x

cos(x) = lim
x↘0

1
2
√
x cos(x)

= 1
0+ = +∞.

↑
wir zeigen mit “ 0

0” an, dass die Grenzwerte der Funktionen im Nenner jeweils 0 sind,
und wir zeigen mit “l

′H
= ” an, dass wir die Regel von l’Hôpital anwenden

Bei manchen Gelegenheiten muss man die Funktion erst umschreiben, bevor man die Regel
von l’Hôpital anwenden kann. Beispielsweise gilt:

Vereinfachen des Bruchs
↓

lim
x↘0

(
x · ln(x)

)
= lim

x↘0

ln(x)
1
x

∞
∞ l′H

===== lim
x↘0

1
x

− 1
x2

= lim
x↘0

(−x) = 0.
↑

der Grenzwert ist von der Form 0 · ∞, wir schreiben die Funktion als Bruch um,
so dass wir die Regel von l’Hôpital anwenden können

Zudem gilt:

lim
x↘0

(
1

x
− 1

sin(x)

)
= lim

x↘0

sin(x)−x
x·sin(x)

l′H
= lim

x↘0

cos(x)− 1

x·cos(x) + sin(x)

l′H
= lim

x↘0

− sin(x)

−x·sin(x) + 2·cos(x)
= 0.

↑
der Grenzwert ist von der Form ∞−∞, wir schreiben die Funktion wiederum als Bruch um

Für den Beweis der Regel von l’Hôpital benötigen wir folgenden Satz.

Satz 14.6. (Verallgemeinerter Mittelwertsatz der Differentialrechnung) Es seien
f, g : [a, b] → R zwei differenzierbare Funktionen. Wenn g′(x) 6= 0 für alle x ∈ (a, b) und
wenn g(a) 6= g(b), dann existiert ein ξ ∈ (a, b) mit

f ′(ξ)
g′(ξ) =

f(b)−f(a)
g(b)−g(a) .

Bemerkung. Wenn g(x) = x, dann erhalten wir gerade die Aussage vom üblichen Mittel-
wertsatz 13.2 der Differentialrechnung.

Beweis des Verallgemeinertern Mittelwertsatzes der Differentialrechnung.

Wie wir gerade gesehen haben, ist der Satz eine Verallgemeinerung vom Mittelwert-
satz 13.2, welchen wir mithilfe des Satzes von Rolle 13.3 bewiesen hatten. Auch den
jetzigen Satz können wir mit fast dem gleichen Trick auf den Satz von Rolle zurück
führen.

Wir betrachten die Funktion, welche definiert ist durch

ϕ(x) := f(x)− f(b)− f(a)

g(b)− g(a)
· (g(x)− g(a)).
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Es gilt ϕ(a) = f(a) und ϕ(b) = f(a). Wir können also den Satz 13.3 von Rolle auf die
differenzierbare Funktion ϕ anwenden und erhalten ein ξ ∈ (a, b), so dass ϕ′(ξ) = 0. Dann
gilt

0 = ϕ′(ξ) = f ′(ξ)− f(b)− f(a)

g(b)− g(a)
· g′(ξ).

Nach Voraussetzung gilt g′(ξ) 6= 0. Wir erhalten also, wie gewünscht, dass

f ′(ξ)

g′(ξ)
=

f(b)− f(a)

g(b)− g(a)
. �

Beweis der Regel von l’Hôpital. Wir betrachten nur folgenden Spezialfall der Regel von
l’Hôpital: Es seien f, g : [a,∞)→ R zwei stetige Funktionen, welche auf (a,∞) differenzier-
bar sind, so dass g(x) 6= 0 und g′(x) 6= 0 für alle x ∈ (a,∞) und so dass gilt:91

(1) f(a) = g(a) = 0,

(2) der Grenzwert lim
x↘a

f ′(x)
g′(x)

ist reelle Zahl.

Alle anderen Fälle der Regel von l’Hôpital werden in [F, Kapitel 16] bewiesen.
Wir erinnern zuerst daran, dass für jede Funktion h : (a,∞)→ R und d ∈ R per Defini-

tion gilt:
lim
x↘a

h(x) = d :⇐⇒ ∀
ε>0
∃
δ>0

∀
x∈(a,a+δ)

|h(x)− d| < ε.

Nach Voraussetzung (2) existiert der Grenzwert

d := lim
x↘a

f ′(x)

g′(x)
∈ R und wir müssen zeigen, dass lim

x↘a

f(x)

g(x)
= d.

Es sei also ε > 0. Nachdem limx↘a
f ′(x)
g′(x)

= d folgt aus der obigen Definition des rechtsseitigen

Grenzwert, dass es ein δ > 0 gibt, so dass

(∗) für alle ξ ∈ (a, a+ δ) gilt:
∣∣∣f ′(ξ)
g′(ξ)

− d
∣∣∣ < ε.

Es genügt nun folgende Behauptung zu beweisen.

Behauptung.
für alle x ∈ (a, a+ δ) gilt:

∣∣∣f(x)

g(x)
− d

∣∣∣ < ε.

Es sei also x ∈ (a, a+ δ). Dann gilt:

nach Voraussetzung (1) gilt f(a) = g(a) = 0 folgt aus (∗), da ξ ∈ (a, x) ⊂ (a, a+ δ)
↓ ↓∣∣∣ f(x)

g(x)
− d

∣∣∣ =
∣∣∣ f(x)− f(a)

g(x)− g(a)
− d

∣∣∣ =
∣∣∣ f ′(ξ)
g′(ξ)

− d
∣∣∣ < ε.

↑
der verallgemeinerte Mittelwertsatz besagt, dass es ein ξ ∈ (a, x)

gibt, so dass diese Gleichheit gilt �

Der folgende Satz besagt nun, dass die Regel von l’Hôpital anstatt für Grenzwerte x→ a
auch für Grenzwerte x→ ±∞ angewandt werden kann.

91Die Voraussetzungen sind beispielsweise erfüllt für lim
x↘0

√
x
x .
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Satz 14.7. (Regel von l’Hôpital) Es seien f, g : (a,∞)→ R differenzierbare Funktionen,
so dass g(x) 6= 0 und g′(x) 6= 0 für alle x ∈ (a,∞). Wenn einer der folgenden beiden Fälle
eintritt:

(1) lim
x→∞

f(x) = 0 und lim
x→∞

g(x) = 0 (2) lim
x→∞

f(x) = ±∞ und lim
x→∞

g(x) = ±∞,

dann gilt
lim
x→∞

f(x)
g(x) = lim

x→∞

f ′(x)
g′(x) ∈ R ∪ {−∞} ∪ {∞},

wenn der Grenzwert auf der rechten Seite existiert oder bestimmt gegen ±∞ divergiert.
Genau die gleiche Aussage gilt auch für den Grenzwert x→ −∞.

Beispiel.

(1) Für jedes α > 0 gilt:

lim
x→∞

ln(x)

xα
l′H
= lim

x→∞

d
dx ln(x)
d
dxx

α
= lim

x→∞

1
x

α · xα−1
= lim

x→∞

1

α
· 1

xα
= 0.

↑ ↑ ↑
Regel 14.7 von l’Hôpital Korollar 12.10 und Korollar 12.11 denn α>0

Das heißt für x → ∞ wächst die Logarithmusfunktion ln(x) “langsamer” als jede
positive Potenz von x.

(2) Für jedes n ∈ N gilt:

lim
x→∞

ex

xn
l′H
= lim

x→∞

ex

nxn−1
l′H
= lim

x→∞

ex

n(n− 1)xn−2
l′H
= . . .

l′H
= lim

x→∞

ex

n(n− 1) · · · · · 2 · 1
= +∞.

Man kann dieses Argument noch etwas verallgemeinern und wir sehen, dass für alle
a > 1 und d ∈ R gilt

lim
x→∞

ax

xd
l′H
= . . .

l′H
= lim

x→∞

ln(a)n · ax

d(d−1) · · · (d+n−1) · xd−n
= lim

x→∞

ln(a)n · ax

d(d−1) · · · (d−n+1)
· xn−d = ∞.

↑ ↑
wir setzen n := max{dde, 0} und wir wenden da a>1 und n−d≥0

die Regel von l’Hôpital n-Mal an

Das heißt für x → ∞ wächst jede Exponentialfunktion ax mit a > 1 “schneller” als
jede Potenzfunktion xd.

Im Beweis von Satz 14.7 werden wir folgendes Lemma verwenden.

Lemma 14.8. Es sei f : (0,∞)→ R eine Funktion. Für jedes a ∈ R gilt:

lim
x→∞

f(x) = a ⇐⇒ lim
x↘0

f
(
1
x

)
= a.

Die gleiche Aussage gilt auch für bestimmte Divergenz gegen ±∞.

Beweis von Lemma 14.8. Die Aussage folgt eigentlich sofort aus den Definitionen der bei-
den Grenzwerte links und rechts, welche wir auf den Seiten 102 und 104 eingeführt hat-
ten. �

Wir wenden uns jetzt dem Beweis von Satz 14.7 zu.
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Beweis von Satz 14.7.

Der Gedanke ist natürlich, dass wir die Aussage von Satz 14.7 mithilfe von Lem-
ma 14.8 auf Satz 14.5 zurückführen wollen.

Wir setzen k(x) := f( 1
x
) und l(x) := g( 1

x
). Wir erhalten:

gilt nach der ursprünglichen Regel von l’Hôpital, also Satz 14.5,
Lemma 14.8 wenn wir zeigen können, dass der Grenzwert rechts in R ∪ {±∞} existiert

↓ ↓
lim
x→∞

f(x)

g(x)
= lim

x↘0

k(x)

l(x)
= lim

x↘0

k′(x)
l′(x)

= lim
x↘0

d
dxf( 1x)
d
dxg( 1x)

= lim
x↘0

f ′( 1x)·−1
x2

g′( 1x)·−1
x2

= lim
x↘0

f ′( 1
x )

g′( 1
x )

= lim
x→∞

f ′(x)
g′(x) .

↑ ↑ ↑
Kettenregel Kürzen Lemma 14.8

Nach Voraussetzung existiert der Grenzwert rechts in R ∪ {±∞}. Wir hatten also die
Regel 14.5 von l’Hôpital legitim verwendet. �

Wir haben jetzt den Begriff Grenzwertbegriff→∞ zweimal eingeführt, einmal für Folgen,
und einmal für Funktionen. Hierbei herrscht folgender Zusammenhang:

Lemma 14.9. Es sei f : (0,∞)→ R eine Funktion. Für a ∈ R ∪ {±∞} gilt:

lim
x→∞

f(x)︸ ︷︷ ︸
Grenzwert der Funktion

f : (0,∞)→ R

= a =⇒ lim
n→∞

f(n)︸ ︷︷ ︸
Grenzwert der Folge

(f(n))n∈N

= a.

Beweis. Der Satz folgt sofort aus den Definitionen, welche wir auf den Seiten 32 und 104
eingeführt hatten. �

Beispiel. Wir betrachten die Folge an = (1 + 1
n
)n mit n ∈ N. Dann gilt:92

lim
n→∞

(1+ 1
n
)n = lim

x→∞
exp

(
ln(1+ 1

n
)·n
)

= exp
(

lim
n→∞

ln(1+ 1
n
)·n
)

= exp
(

lim
x→∞

ln(1+ 1
x
)·x
)

↑ ↑ ↑
Definition von Potenzen, siehe Seite 122 folgt aus Satz 7.4, da exp stetig Lemma 14.9

= exp
(

lim
x→∞

ln(1+ 1
x)

1
x

)
l′H
= exp

(
lim
x→∞

1
1+ 1

x

· −1
x2

−1
x2

)
= exp

(
lim
x→∞

1
1+ 1

x

)
= exp(1) = e.

↑
Regel 14.7 von l’Hôpital

Wir sehen also, dass wir mithilfe von Ableitungen und der Regel von l’Hôpital Grenzwerte
von Folgen von reellen Zahlen bestimmen können, welche ansonsten zumindest sehr schwer
zu berechnen wären.

92Manchmal wird die Gleichheit lim
n→∞

(1 + 1
n )n = e auch als Definition der Eulerschen Zahl verwendet.
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Beispiel. Die Umkehrung von Lemma 14.9 nicht. Wenn wir beispielsweise die Funktion
f(x) = sin(πx) betrachten, dann gilt für den “Folgengrenzwert”, dass

lim
n→∞

f(n) = lim
n→∞

sin(πn) = lim
n→∞

0 = 0,

aber der “Funktionengrenzwert” lim
x→∞

f(x) existiert nicht.
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15. Das Riemann-Integral

15.1. Definition des Riemann-Integrals.

Definition. Eine Zerlegung Z von einem Intervall [a, b] ist eine Menge Z = {z0, z1, . . . , zn}
von reellen Zahlen, so dass

a = z0 < z1 < z2 < · · · < zn−1 < zn = b.

Sei nun f : [a, b]→ R eine beschränkte Funktion. Wir definieren

die Untersumme U(f, Z) :=
n−1∑
k=0

(zk+1 − zk) · inf f([zk, zk+1]) und

die Obersumme O(f, Z) :=
n−1∑
k=0

(zk+1 − zk) · sup f([zk, zk+1])

von f bezüglich der Zerlegung Z.

��
��
��
��

��
��
��
��

z0 = a z1 z3 z4 = bz2z4 = bz3z1z0 = a

Zerlegung des Intervalls [a, b] Untersumme bezüglich Z

Obersumme bezüglich Z

z2

Graph der Funktion f : [a, b]→ R

Beispiel. Wir betrachten die Funktion f : [0, 1] → R
x 7→ x.

Für n ∈ N sei Zn := {0, 1
n
, . . . , n−1

n
, 1} die Zerlegung von [0, 1] in n Intervalle der Länge 1

n
.

Dann gilt:

U(f, Zn) =
n−1∑
k=0

(
k + 1

n
− k

n
)︸ ︷︷ ︸

= 1
n

· inf f([
k

n
,
k + 1

n
])︸ ︷︷ ︸

= k
n

=
1

n2
·
n−1∑
k=0

k =
1

n2
· (n− 1)n

2
=

n− 1

2n
.

↑
Lemma 2.3
↓

O(f, Zn) =
n−1∑
k=0

(
k + 1

n
− k

n
)︸ ︷︷ ︸

= 1
n

· sup f([
k

n
,
k + 1

n
])︸ ︷︷ ︸

= k+1
n

=
1

n2
·
n−1∑
k=0

(k+1) =
1

n2
· n(n+ 1)

2
=

n+ 1

2n
.

Definition. Es sei Z eine Zerlegung von [a, b]. Eine Verfeinerung der Zerlegung Z ist eine
Zerlegung, welche wir aus Z durch Zufügen von endlich vielen Punkten in [a, b] erhalten.

Wir fassen im folgenden Lemma einige grundlegende Eigenschaften von Untersummen
und Obersummen zusammen.
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Lemma 15.1. Es sei f : [a, b]→ R eine beschränkte Funktion.

(1) Wenn Z ′ eine Verfeinerung einer Zerlegung Z ist, dann gilt

U(f, Z) ≤ U(f, Z ′) und O(f, Z ′) ≤ O(f, Z).

(2) Es seien Z,Z ′ zwei Zerlegungen von [a, b], dann gilt

U(f, Z ′) ≤ O(f, Z).

(3) sup{U(f, Z) |Z Zerlegung von [a, b]} ≤ inf{O(f, Z) |Z Zerlegung von [a, b]}.93
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Verfeinerung Z ′ der Zerlegung Z

Obersumme bezüglich Z ′Obersumme bezüglich Z

Zerlegung Z

Beweis. Es sei f : [a, b]→ R eine beschränkte Funktion.

(1) Wir erhalten eine Verfeinerung in dem wir zu einer Zerlegung endlich viele Punkte
hinzufügen. Indem wir diese der Reihe nach hinzufügen sehen wir, dass es genügt
folgende Behauptung zu beweisen.

Behauptung. Es sei Z = {z0, . . . , zn} eine Zerlegung und w ein weiterer Punkt in
[a, b]. Dann gilt U(f, Z) ≤ U(f, Z ∪ {w}) und O(f, Z ∪ {w}) ≤ O(f, Z).

Es ist w ∈ [a, b]. Also existiert ein i ∈ {0, . . . , n−1}, so dass w ∈ [zi, zi+1]. Dann gilt:

alle anderen Terme in den Untersummen heben sich weg
↓

U(f, Z ∪ {w})− U(f, Z) =

= (w−zi) · inf f([w, zi])︸ ︷︷ ︸
≥inf f([zi,zi+1])

+ (zi+1−w) · inf f([zi+1, w])︸ ︷︷ ︸
≥inf f([zi,zi+1])

− (zi+1−zi) · inf f([zi, zi+1])

≥ ((w − zi) + (zi+1 − w)− (zi+1 − zi))︸ ︷︷ ︸
=0

· inf f([zi, zi+1]) = 0.

Insbesondere ist also U(f, Z) ≤ U(f, Z∪{w}). Mit fast dem gleichen Argument zeigt
man, dass O(f, Z ∪ {w}) ≤ O(f, Z).

(2) (a) Nehmen wir zuerst an, dass Z = Z ′. Nachdem für eine beliebige beschränkte
nichtleere Teilmenge M ⊂ R gilt, dass inf(M) ≤ sup(M), folgt sofort aus den
Definitionen, dass U(f, Z) ≤ O(f, Z).

93Die Menge {U(f, Z) |Z Zerlegung von [a, b]} ist also die Menge aller Untersummen, welche bezüglich
beliebigen Zerlegungen auftreten. Aus a ≤ b folgt, dass diese Menge der Untersummen nichtleer ist und
aus (2) folgt, dass diese Menge nach oben beschränkt. Nach Satz 5.2 existiert daher das Supremum dieser
Menge.
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(b) Es seien nun Z,Z ′ zwei beliebige Zerlegungen von [a, b]. Dann gilt:94

U(f, Z ′) ≤ U(f, Z ∪ Z ′) ≤ O(f, Z ∪ Z ′) ≤ O(f, Z).
↑ ↑ ↑

folgt aus (1) folgt aus (a) folgt aus (1)

(3) Diese Aussage folgt aus (2) und aus der Definition von Supremum und Infimum. �

Im Folgenden sagen wir nun, dass eine Funktion f Riemann-integrierbar ist, wenn die
Gleichheit in Lemma 15.1 (3) gilt. Genauer gesagt haben wir folgende Definition.

Definition. Eine beschränkte Funktion f : [a, b]→ R heißt Riemann-integrierbar, wenn

sup{U(f, Z) |Z Zerlegung von [a, b]} = inf{O(f, Z) |Z Zerlegung von [a, b]}.
Wenn f Riemann-integrierbar ist, dann nennen wir diesen gemeinsamen Wert das Riemann-
Integral über f von a nach b, und wir schreiben

b∫
a

f(x) dx := inf{O(f, Z) | Z Zerlegung von [a, b]}︸ ︷︷ ︸
=sup{U(f,Z) | Z Zerlegung von [a, b]}

.

Bemerkung. Wir sagen in Zukunft oft auch “integrierbar” anstatt “Riemann-integrierbar”
und “Integral” anstatt “Riemann-Integral”. Wenn f Riemann-integrierbar ist, dann sagen

wir auch, dass das Integral
∫ b
a
f(x) dx existiert.95

Beispiel. Es sei f : [a, b]→ R eine konstante Funktion, das heißt es gibt ein c ∈ R, so dass
f(x) = c für alle x ∈ [a, b]. Dann gilt für jede Zerlegung Z = {z0, . . . , zn} von [a, b], dass

U(f, Z) =
n−1∑
k=0

(zk+1 − zk)·inf f([zk, zk+1])︸ ︷︷ ︸
= c, da f konstant

=
n−1∑
k=0

(zk+1 − zk) · c = c·(zn − z0)=c·(b− a).
↑

alle anderen Terme heben sich weg

Genauso zeigt man auch, dass O(f, Z) = c·(b−a). Wir haben also gezeigt, dass f Riemann-
integrierbar ist, und dass

b∫
a

f(x) dx = c · (b− a).

Beispiel. Wir betrachten die Dirichlet-Funktion

f : [1, 5] → R
x 7→

{
0, wenn x ∈ Q ∩ [1, 5]
2, andernfalls.

94Hier verwenden wir, dass für zwei Zerlegungen eines Intervalls [a, b] auch die Vereinigung Z ∪ Z ′ eine
Zerlegung ist, und diese ist eine Verfeinerung sowohl von Z als auch von Z ′.

95Wenn wir schreiben “Riemann-integrierbar”, dann stellt sich die Frage, ob es denn noch andere De-
finitionen von “Integrierbarkeit” gibt, außer der Riemann-Integrierbarkeit. Dies ist in der Tat der Fall, in
Analysis III werden wir das Lebesgue-Integral kennenlernen, welches viel allgemeiner (und auch deutlich
komplizierter) ist.
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Es sei Z = {z1, . . . , zn} eine beliebige Zerlegung des Intervalls [1, 5]. Dann gilt

U(f, Z) =
n−1∑
k=0

(zk+1 − zk) · inf f([zk, zk+1])︸ ︷︷ ︸
= 0, weil [zk, zk+1] nach

der Bemerkung auf Seite 56
rationale Zahlen enthält

=
n−1∑
k=0

(zk+1 − zk) · 0 = 0

O(f, Z) =
n−1∑
k=0

(zk+1 − zk) · sup f([zk, zk+1])︸ ︷︷ ︸
= 2, weil [zk, zk+1] nach

der Bemerkung auf Seite 61
irrationale Zahlen enthält

=
n−1∑
k=0

(zk+1 − zk) · 2 = (5− 1) · 2 = 8.

Die Funktion f ist also nicht Riemann-integrierbar. 96

Der folgende Satz erlaubt es, die Integrabilität einer Funktion zu zeigen, ohne direkt mit
Infimum und Supremum zu arbeiten.

Satz 15.2. Es sei f : [a, b]→ R eine beschränkte Funktion. Es gilt:

f ist integrierbar ⇐⇒
es gibt eine Folge von Zerlegungen (Zn)n∈N

von [a, b], so dass lim
n→∞

U(f, Zn) = lim
n→∞

O(f, Zn).

Zudem gilt: wenn solch eine Folge von Zerlegungen vorliegt, dann ist
b∫
a

f(x) dx = lim
n→∞

U(f, Zn) = lim
n→∞

O(f, Zn).

Beweis. Wir beweisen zuerst die “⇒”-Richtung. Wir nehmen also an, dass die Funktion

f : [a, b]→ R integrierbar ist. Wir setzen I :=
∫ b
a
f(x) dx. Per Definition gilt

sup{U(f, Z) |Z Zerlegung von [a, b]} = I = inf{O(f, Z) |Z Zerlegung von [a, b]}.
Nach Satz 5.3 existieren also Folgen von Zerlegungen (Wn)n∈N und (W ′

n)n∈N mit

lim
n→∞

U(f,Wn) = I = lim
n→∞

O(f,W ′
n).

Dann gilt

I = lim
n→∞

U(f,Wn) ≤ lim
n→∞

U(f,Wn ∪W ′
n) ≤ lim

n→∞
O(f,Wn ∪W ′

n) ≤ lim
n→∞

O(f,W ′
n) = I.

↑ ↑ ↑
Lemma 15.1 (1) Lemma 15.1 (2) Lemma 15.1 (1)

Dann gilt Nachdem der erste Ausdruck gleich dem letzten Ausdruck ist, müssen alle Un-
gleichheiten also schon Gleichheiten sein. Die Folge von Zerlegungen (Wn ∪W ′

n)n∈N hat
also die gewünschte Eigenschaft.

Wir beweisen nun die “⇐”-Richtung. Wir nehmen nun also an, es gibt eine Folge von
Zerlegungen Zn von [a, b], so dass

lim
n→∞

U(f, Zn) = lim
n→∞

O(f, Zn).

96In Analysis III werden wir sehen, dass f Lebesgue-integrierbar ist mit Lebesgue-Integral 4 · 2 = 8.
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Dann gilt folgt aus der Definition des Supremums und Satz 3.6
↓

lim
n→∞

U(f, Zn) ≤ sup{U(f,W ) |W Zerlegung von [a, b]}
≤ inf{O(f, Z) |Z Zerlegung von [a, b]} ≤ lim

n→∞
O(f, Zn).

↑ ↑
weil nach Lemma 15.1 (1) immer gilt U(f,W ) ≤ O(f, Z) Definition des Infimums.

Wir haben angenommen, dass der erste Ausdruck gleich dem letzten Ausdruck ist. Wir
sehen also wiederum, dass alle Ungleichheiten schon Gleichheiten sind. Insbesondere ist f
integrierbar. Zudem folgt aus den Gleichheiten, dass das Integral in der Tat der Grenzwert
der Untersummen U(f, Zn) und der Obersummen O(f, Zn) ist. �

Beispiel.

(1) Wir betrachten wiederum die Funktion f : [0, 1] → R
x 7→ x,

zusammen mit der Folge von Zerlegungen Zn := {0, 1
n
, . . . , n−1

n
, 1}, n ∈ N. Es gilt:

lim
n→∞

U(f, Zn) = lim
n→∞

n− 1

2n
=

1

2
= lim

n→∞

n+ 1

2n
= lim

n→∞
O(f, Zn).

↑ ↑
auf Seite 174 hatten wir gezeigt, dass U(f, Zn) = n−1

2n und O(f, Zn) = n+1
2n

Es folgt also aus Satz 15.2, dass
∫ 1

0
f(x) dx = 1

2
.

(2) Wir betrachten die Funktion f : [−1, 1] → R

x 7→
{

0, wenn x 6= 0,
1
3
, wenn x = 0,

zusammen mit der unten skizzierten Folge von Zerlegungen Zn := {−1,− 1
2n
, 1
2n
, 1}.

Dann gilt
U(f, Zn) = 0,
O(f, Zn) = 1

3
· ( 1

2n
− (− 1

2n
)) = 1

3n
.

Die Grenzwerte dieser Folgen von Untersummen und Obersummen sind jeweils 0. Es
folgt also aus Satz 15.2, dass f integrierbar ist mit

∫ 1

−1 f(x) dx = 0.

��
��
��
��

1
2n

−1
2n

1−1

Graph von f

15.2. Eigenschaften des Riemann-Integrals. In diesem Kapitel wollen wir einige grund-
legende Eigenschaften des Riemann-Integrals beweisen.
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Satz 15.3. Es seien f, g : [a, b]→ R integrierbare Funktionen und λ ∈ R. Dann sind auch
die Funktionen f + g und λ · f integrierbar und es gilt

b∫
a

f(x) + g(x) dx =
b∫
a

f(x) dx+
b∫
a

g(x) dx

b∫
a

λ · f(x) dx = λ ·
b∫
a

f(x) dx.

Beweis (∗). Es seien f, g : [a, b] → R integrierbare Funktionen. Wir müssen zeigen, dass
f + g integrierbar ist mit

b∫
a

f(x) + g(x) dx =
b∫
a

f(x) dx+
b∫
a

g(x) dx.

Nach Satz 15.2 existieren Folgen von Zerlegungen (Xn)n∈N und (Yn)n∈N von [a, b], so dass

lim
n→∞

U(f,Xn) = lim
n→∞

O(f,Xn) =
∫ b
a
f(x) dx, und

lim
n→∞

U(g, Yn) = lim
n→∞

U(g, Yn)) =
∫ b
a
g(x) dx.

Nach Satz 15.2 genügt es nun zu zeigen, dass

lim
n→∞

U(f + g,Xn ∪ Yn) = lim
n→∞

O(f + g,Xn ∪ Yn) =
b∫
a

f(x) dx+
b∫
a

g(x) dx.

Für den Beweis dieser Aussage benötigen wir folgende Behauptung.

Behauptung. Für jede Zerlegung Z von [a, b] gilt:

U(f, Z) + U(g, Z) ≤ U(f + g, Z)

und es gilt: O(f + g, Z) ≤ O(f, Z) +O(g, Z).

Wir beweisen die Aussage für die Untersummen. Die Aussage für die Obersummen wird
dann ganz analog bewiesen. Es folgt sofort aus den Definitionen, dass es genügt zu zeigen,
dass für jedes Intervall [c, d] folgende Ungleichung gilt:

inf
(
f([c, d])

)
+ inf

(
g([c, d])

)
≤ inf

(
(f + g)([c, d])

)
.

Aus der Definition von inf((f + g)([c, d])) folgt, dass es genügt zu zeigen, dass

inf
(
f([c, d])

)
+ inf

(
g([c, d])

)
≤ (f + g)(x) für alle x ∈ [c, d].

Es gilt aber in der Tat für ein beliebiges x ∈ [c, d], dass

inf
(
f([c, d])

)
+ inf

(
g([c, d])

)
≤ f(x) + g(x) = (f + g)(x).
↑

aus der Definition des Infimums folgt inf(f([c, d])) ≤ f(x) und inf(g([c, d])) ≤ g(x) �
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Mithilfe der Behauptung können wir nun zeigen, dass folgende Ungleichungen gelten:∫ b
a
f(x) dx+

∫ b
a
g(x) dx = lim

n→∞
U(f,Xn) + lim

n→∞
U(g, Yn)

≤ lim
n→∞

U(f,Xn∪Yn) + lim
n→∞

U(g,Xn∪Yn) nach Lemma 15.1 (1)

≤ lim
n→∞

U(f + g,Xn∪Yn) nach der Behauptung

≤ lim
n→∞

O(f + g,Xn∪Yn) nach Lemma 15.1 (2)

≤ lim
n→∞

O(f,Xn∪Yn) + lim
n→∞

O(g,Xn∪Yn) nach der Behauptung

≤ lim
n→∞

O(f,Xn) + lim
n→∞

O(g, Yn) nach Lemma 15.1 (1)

=
∫ b
a
f(x) dx+

∫ b
a
g(x).

Dies ist jedoch nur möglich, wenn alle Ungleichheiten schon Gleichheiten sind. Wir haben
damit also die gewünschte Aussage bezüglich f + g bewiesen.

Es sei nun λ ∈ R. Die Aussage für λ ·f wird mit ähnlichen Methoden wie oben bewiesen.
Die Ausführung dieses Beweises verbleibt als freiwillige Übungsaufgabe. �

Korollar 15.4. Es sei f : [a, b]→ R eine integrierbare Funktion. Wenn g : [a, b]→ R eine
Funktion ist, welche sich von f nur in endlich vielen Punkten unterscheidet, dann ist g
ebenfalls integrierbar und es gilt

b∫
a

g(x) dx =
b∫
a

f(x) dx.

�
�
�
�

��

����

��

a

Graph von f

ba

Graph von g

b

Beweis. Es seien t1, . . . , tn die Punkte im Intervall [a, b] an denen sich f und g unterscheiden.
Dann gilt

g = f + (g − f) = f +
n∑
i=1

Funktion, welche überall, außer bei ti, null ist.︸ ︷︷ ︸
das Beispiel auf Seite 178 zeigt, dass eine

solche Funktion integrierbar ist mit Integral = 0

Das Korollar folgt nun aus dieser Beobachtung und Satz 15.3. �

Lemma 15.5. (Monotonieeigenschaft des Integrals) Es seien f, g : [a, b] → R zwei
integrierbare Funktionen, so dass f(x) ≤ g(x) für alle x ∈ [a, b]. Dann ist

b∫
a

f(x) dx ≤
b∫
a

g(x) dx.
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Beweis. Für jedes Intervall [c, d] in [a, b] gilt, dass

inf
(
f([c, d])

)
≤ inf

(
g([c, d])

)
.

Also gilt auch für alle Zerlegungen Z von [a, b], dass

U(f, Z) ≤ U(g, Z).

Das Lemma folgt nun leicht aus dieser Beobachtung. �

Lemma 15.6. Es sei f : [a, c]→ R eine beschränkte Funktion und es sei a < b < c. Dann
gilt c∫

a

f(x) dx =
b∫
a

f(x) dx +
c∫
b

f(x) dx,

wenn die beiden Integrale auf der rechten Seite existieren.
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a c
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Beweis (∗). Nach Satz 15.2 existieren Folgen von Zerlegungen (Xn)n∈N von [a, b] und (Yn)n∈N
von [b, c] gibt, so dass

lim
n→∞

U(f,Xn) = lim
n→∞

O(f,Xn) =
b∫
a

f(x) dx,

lim
n→∞

U(f, Yn) = lim
n→∞

O(f, Yn) =
c∫
b

f(x) dx.

Für eine beliebige Zerlegung X von [a, b] und eine beliebige Zerlegung Y von [b, c] ist X∪Y
eine Zerlegung von [a, c]. Es folgt sofort aus den Definitionen, dass

(∗) U(f,X) + U(f, Y ) = U(f,X ∪ Y ) und O(f,X) +O(f, Y ) = O(f,X ∪ Y ).

Es folgt also, dass
folgt aus (∗)
↓b∫

a

f(x) dx+
c∫
b

f(x) dx = lim
n→∞

U(f,Xn) + lim
n→∞

U(f, Yn) = lim
n→∞

U(f,Xn ∪ Yn)

≤ lim
n→∞

O(f,Xn ∪ Yn) = lim
n→∞

O(f,Xn) + lim
n→∞

O(f, Yn) =
b∫
a

f(x) dx+
c∫
b

f(x) dx.
↑

folgt aus (∗)
Alle Ungleichheiten müssen also Gleichheiten sein. Also folgt:

c∫
a

f(x) dx = lim
n→∞

O(f,Xn ∪ Yn) =
b∫
a

f(x) dx+
c∫
b

f(x) dx.

↑ ↑
Satz 15.2, diesen können wir anwenden weil oben alles Gleichheiten sind
weil oben lauter Gleichheiten vorliegen �
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15.3. Beispiele von integrierbaren Funktionen. In diesem Kapitel wollen wir von ver-
schiedenen Typen von Funktionen zeigen, dass diese integrierbar sind. Beispielsweise wollen
wir zeigen, dass stetige Funktionen immer integrierbar sind. Wir werden dazu folgendes In-
tegrabilitätskriterium verwenden:

Satz 15.7. (Riemannsches Integrabilitätskriterium) Es sei f : [a, b] → R eine be-
schränkte Funktion. Es gilt:

f ist integrierbar ⇐⇒ zu jedem ε > 0 gibt es eine Zerlegung Z
von [a, b] mit O(f, Z)− U(f, Z) < ε.

Beweis (∗). Wir beweisen zuerst die “⇒”-Richtung. Wir nehmen also an, dass die Funktion

f : [a, b]→ R integrierbar ist. Wir setzen I =
∫ b
a
f(x) dx. Dann gibt es nach Satz 15.2 eine

Zerlegung Z mit I − U(f, Z) < ε
2

und mit O(f, Z) − I < ε
2
. Daraus folgt die Ungleichung

O(f, Z)− U(f, Z) < ε.
Wir beweisen nun die “⇐”-Richtung. Wir nehmen also an, dass es zu jedem ε > 0 eine

Zerlegung Z des Intervalls [a, b] gibt, so dass O(f, Z) − U(f, Z) < ε. Insbesondere gibt es
zu jedem n ∈ N eine Zerlegung Zn von [a, b], so dass O(f, Zn) − U(f, Zn) < 1

n
. Es folgt

wiederum aus der Definition der Konvergenz von Folgen, dass

lim
n→∞

U(f, Zn) = lim
n→∞

O(f, Zn).

Also ist f nach Satz 15.2 integrierbar. �

Wir wollen nun die Differenz O(f, Z)− U(f, Z) besser verstehen.

Notation. Es sei f : [a, b] → R eine beschränkte Funktion. Für eine nichtleere Teilmenge
M ⊂ [a, b] definieren wir:

d(f,M) := sup
{
f(x)− f(x′)

∣∣x, x′ ∈M}.
Bemerkung. Aus |a− b| = max{a− b, b− a} folgt:

d(f,M) = sup
{
| f(x)− f(x′) |

∣∣x, x′ ∈M}.
d(f,M)

Graph von f

d(f,N)

NM

Lemma 15.8. Es sei ϕ : [a, b]→ R eine beschränkte Funktion. Für jede beliebige Zerlegung
Z = {z0, z1, . . . , zn} von [a, b] gilt:

O(ϕ,Z)− U(ϕ,Z) =
n−1∑
i=0

(zi+1 − zi) · d(ϕ, [zi, zi+1]).



183

Beweis. Das Lemma erhalten wir durch folgende Berechnung:

O(ϕ,Z)− U(ϕ,Z) =
n−1∑
i=0

(zi+1 − zi) · supϕ([zi, zi+1])−
n−1∑
i=0

(zi+1 − zi) · inf ϕ([zi, zi+1])

=
n−1∑
i=0

(zi+1 − zi) ·
(

supϕ([zi, zi+1])− inf ϕ([zi, zi+1])
)

=
n−1∑
i=0

(zi+1 − zi) · sup
{
ϕ(x)− ϕ(x′)

∣∣x, x′ ∈ [zi, zi+1]
}︸ ︷︷ ︸

=d(ϕ,[zi,zi+1])

=
n−1∑
i=0

(zi+1 − zi) · d(ϕ, [zi, zi+1]).
�

Satz 15.9. Wenn f : [a, b]→ R eine integrierbare Funktion ist, dann ist auch |f | integrier-
bar und es gilt: ∣∣∣ b∫

a

f(x) dx
∣∣∣ ≤ b∫

a

|f(x)| dx.

Beweis der Integrierbarkeit von |f |. Es sei also f : [a, b] → R eine integrierbare Funktion.
Wir müssen zeigen, dass |f | : [a, b] → R ebenfalls integrierbar ist. Es folgt leicht aus dem
Riemannschen Integrabilitätskriterium 15.7, dass es genügt zu zeigen, dass für jede Zerle-
gung Z von [a, b] gilt:

O(|f |, Z)− U(|f |, Z) ≤ O(f, Z)− U(f, Z).

Diese Aussage wiederum folgt sofort aus Lemma 15.8 und folgender Behauptung.

Behauptung. Für jede nichtleere Teilmenge M ⊂ [a, b] gilt: d(|f |,M) ≤ d(f,M).

Es gilt in der Tat:

d(|f |,M) = sup{|f(x)|−|f(x′)| |x, x′ ∈M} ≤ sup{|f(x)−f(x′)| |x, x′ ∈M} = d(f,M).
↑

aus der Dreiecksungleichung folgt für alle x, x′ ∈M , dass |f(x)| − |f(x′)| ≤ |f(x)− f(x′)|,
die Aussage über die Suprema folgt sofort aus dieser Beobachtung �

Beweis der Ungleichung. Aus der Tatsache, dass für alle x ∈ [a, b] gilt

−|f(x)| ≤ f(x) ≤ |f(x)|
und aus der Monotonieeigenschaft 15.5 des Integrals 15.5 folgt:

−
b∫
a

|f(x)| dx ≤
b∫
a

f(x) dx ≤
b∫
a

|f(x)| dx.

Es folgt97 also wie gewünscht, dass
∣∣ ∫ b

a
f(x) dx

∣∣ ≤ ∫ b
a
|f(x)| dx. �

97Hier verwenden wir die Aussage, dass aus −y ≤ z ≤ y folgt: |z| ≤ y.
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Satz 15.10. Jede stetige Funktion f : [a, b]→ R ist integrierbar.

Beweis. Es sei f : [a, b] → R eine stetige Funktion. Wir wollen mithilfe des Riemannschen
Integrabilitätskriteriums 15.7 zeigen, dass f integrierbar ist. Es sei also ε > 0. Wir müssen
also eine Zerlegung Z = {z0, . . . , zn} finden, so dass gilt:

n−1∑
i=0

(zi+1 − zi) · d(f, [zi, zi+1]) = O(f, Z)− U(f, Z) < ε.
↑

Lemma 15.8

Wir müssen dazu nur folgende Behauptung beweisen.98

Behauptung. Es gibt eine Zerlegung Z = {z0, . . . , zn}, so dass für alle i gilt:

d(f, [zi, zi+1]) <
ε

b− a
.

Wir müssen also eine Zerlegung des Intervalls [a, b] finden, welche so “fein” ist, dass
die maximale Differenz auf jedem Teilintervall [zi, zi+1] höchstens ε

b−a beträgt. An-
ders ausgedrückt, die zi’s müssen so eng beieinander liegen, dass die Funktionswerte
dazwischen sich nur noch um höchstens ε

b−a unterscheiden können. Eine solche Zer-
legung finden wir, wenn wir uns der gleichmäßigen Stetigkeit entsinnen.

Nachdem f stetig ist und auf dem kompakten Intervall [a, b] definiert ist, folgt aus Satz 7.14,
dass f gleichmäßig stetig ist. Zur Erinnerung, das heißt

∀
η>0
∃
δ>0

∀
x, x′ ∈ [a, b]

mit |x−x′|<δ

|f(x)− f(x′)| < η.

Mit anderen Worten, es gilt
∀
η>0
∃
δ>0

∀
Intervalle

[c, d] ⊂ [a, b]
mit Länge ≤ δ

d(f, [c, d]) < η.

Wir setzen nun η = ε
b−a und wir wählen ein δ > 0 mit der obigen Eigenschaft.

Die Idee ist nun eine Zerlegung zu wählen, so dass die Länge von jedem Teilintervall
[zk, zk+1] höchstens δ beträgt.

Wir wählen ein n ∈ N, so dass b−a
n
< δ. Wir betrachten dann die Zerlegung zi = a+ i · b−a

n
,

wobei i = 0, . . . , n. Dann gilt, wie gewünscht für alle i, dass d(f, [zi, zi+1]) <
ε

b−a . �

98Wenn für alle i gilt d(f, [zi, zi+1]) < ε
b−a , dann folgt

n−1∑
i=0

(zi+1 − zi) · d(f, [zi, zi+1]) ≤
n−1∑
i=0

(zi+1 − zi) ·
ε

b− a
= (b− a) · ε

b− a
= ε.
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Höhe entspricht d auf den Teilintervallen

η η

Zerlegung Za ba bδ

Abbildung 42. Illustration für den Beweis von Satz 15.10.

15.4. Mittelwertsatz der Integralrechnung. Der Mittelwertsatz der Differentialrech-
nung 13.2 besagt, dass unter gewissen Voraussetzungen, die “mittlere Steigung” einer Funk-
tion f : [a, b] → R als Wert f ′(ξ) der Ableitung an einem Punkt angenommen wird. Der
folgende Mittelwertsatz der Integralrechnung macht nun eine ähnliche Aussage über “mitt-
lere Funktionswerte”.

Satz 15.11. (Mittelwertsatz der Integralrechnung) Wenn f : [a, b]→ R eine stetige
Funktion ist, dann gibt es ein ξ ∈ [a, b], so dass

f(ξ) = 1
b−a ·

b∫
a

f(x) dx.
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1

b− a
·
b∫
a

f(x) dx

Graph von f

a bξ

Beweis.

Die Aussage erinnert etwas an den Zwischenwertsatz 8.3 für stetige Funktionen. Al-

lerdings gibt es keinen Grund anzunehmen, dass 1
b−a

∫ b
a
f(x) dx zwischen f(a) und

f(b) liegt. Beispielsweise ist dies nicht der Fall für die Funktion, welche in der Abbil-
dung unten skizziert ist. Die Idee ist nun, dass wir uns auf ein Teilintervall [x0, x1]
von [a, b] einschränken, so dass das Intervall [f(x0), f(x1)] “so groß wie möglich” ist.

�
�
�

�
�
�

�
�
�
�

a bx0 x1ξ

Graph von f

Nachdem f stetig ist, folgt aus Satz 8.2, dass es x0, x1 ∈ [a, b] gibt, so dass für alle x ∈ [a, b]
gilt:

f(x0) ≤ f(x) ≤ f(x1).
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Es folgt aus der Monotonieeigenschaft 15.5 des Integrals, dass

f(x0) =
1

b− a
·

b∫
a

f(x0) dx︸ ︷︷ ︸
= f(x0) · (b− a) da
Integrand konstant

≤ 1

b− a
·
b∫
a

f(x) dx︸ ︷︷ ︸
liegt also zwischen
f(x0) und f(x1)

≤ 1

b− a
·

b∫
a

f(x1) dx︸ ︷︷ ︸
= f(x1) · (b− a) da
Integrand konstant

= f(x1).

Wir sehen also, dass 1
b−a

∫ b
a
f(x) dx zwischen den Funktionswerten f(x0) und f(x1) liegt.

Es folgt nun also aus dem Zwischenwertsatz 8.3, dass es ein ξ zwischen x0 und x1 gibt,
welches die gewünschte Eigenschaft besitzt. �
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16. Der Hauptsatz der Differential- und Integralrechnung

16.1. Stammfunktionen.

Definition. Es sei f : I → R eine Funktion auf einem Intervall und es sei F : I → R eine
stetige Funktion, welche differenzierbar ist im Inneren von I. Wir definieren:

F ist Stammfunktion von f :⇐⇒ F ′(x) = f(x) für alle inneren Punkte x von I.

Eine Stammfunktion wird manchmal auch Aufleitung genannt.

Beispiel. Wir betrachten die Funktion

[0,∞) → R
x 7→

√
x = x

1
2 ,

eine Stammfunktion ist gegeben durch
[0,∞) → R

x 7→ 2
3
· x 3

2 .

Bemerkung. Aus den schon bestimmten Ableitungen erhalten wir sogar eine lange Tabelle
an Stammfunktionen:

Funktion f(x) Ableitung f ′(x) Funktion g(x) Stammfunktion G(x)

arctan(x)
1

1 + x2
1

1 + x2
arctan(x)

arcsin(x)
1√

1− x2
1√

1− x2
arcsin(x)

ex ex ex ex

sin(x) cos(x) cos(x) sin(x)
cos(x) − sin(x) sin(x) − cos(x)

tan(x)
1

cos2(x)

1

cos2(x)
tan(x)

xα α · xα−1 xβ für β 6= −1
xβ+1

β + 1

ln(x) für x > 0 1
x

1

x
ln(|x|)

ln(−x) für x < 0 1
x

Wenn F eine Stammfunktion einer Funktion f ist, dann erhalten wir weitere Stamm-
funktionen von f , indem wir zu F eine beliebige konstante Funktion dazu addieren. Das
folgende Lemma besagt nun, dass dies die einzige Möglichkeit ist, weitere Stammfunktion
zu finden.

Lemma 16.1. Es sei f : I → R eine Funktion auf einem Intervall. Wenn F und G Stamm-
funktionen von f : I → R sind, dann ist die Funktion F −G eine konstante Funktion.

Beweis. Für alle x im Inneren von I gilt:

(F −G)′(x) = F ′(x)−G′(x) = f(x)− f(x) = 0.
↑

da F und G Stammfunktionen von f

Da F und G zudem per Definition einer Stammfunktion stetig sind folgt nun aus dem
Tachosatz, also Korollar 13.5, dass F −G eine konstante Funktion ist. �

Lemma 16.1 motiviert nun folgende Notation.
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Notation. Für zwei Funktionen F,G : I → R schreiben wir:

F
.
= G ⇐⇒ F −G ist eine konstante Funktion.

Beispiel. Es ist x2 + 2
.
= x2 − 3 und sin2(x)

.
= − cos2(x).

Frage 16.2. Besitzt jede stetige Funktion f : I → R eine Stammfunktion?

Es ist normalerweise schwierig für eine gegebene Funktion eine Stammfunktion explizit
hinzuschreiben. Beispielsweise, was eine Stammfunktion der Funktion x 7→ ln(x) oder was
ist eine Stammfunktion der Funktion x 7→ exp(−x2)?

16.2. Der Hauptsatz der Differential- und Integralrechnung. In diesem Teilkapitel
wollen wir Frage 16.2 beantworten. Dazu benötigen wir folgende Notation.

Notation. Es sei I ein Intervall und es sei f : I → R eine stetige Funktion. Für b < a in I
definieren wir b∫

a

f(x) dx := −
a∫
b

f(x) dx.

Für a ∈ I definieren wir zudem a∫
a

f(x) dx := 0.

Wir können nun einen der wichtigsten Sätze der Analysis I formulieren, welcher ganz
nebenbei auch Frage 16.2 mit “Ja” beantwortet.

Satz 16.3. (Hauptsatz der Differential- und Integralrechnung - HDI) Es sei im
Folgenden f : I → R eine stetige Funktion auf einem Intervall I und es sei x0 ∈ I. Die
Funktion

F : I → R
x 7→ F (x) :=

x∫
x0

f(t) dt,︸ ︷︷ ︸
Riemann-Integral

existiert, da f stetig
ist eine Stammfunktion von f .

Beweis. In Übungsblatt 11 zeigen wir, dass F stetig ist. Wir müssen also noch zeigen, dass
F im Inneren des Intervalls differenzierbar ist und dort F ′ = f gilt. Es sei x ∈ I ein belie-
biger innerer Punkt. Dann gilt

lim
h↘0

F (x+ h)− F (x)

h
= lim

h↘0

1

h
·
( x+h∫

x0

f(t) dt−
x∫
x0

f(t) dt

)
folgt aus Lemma 15.6 und aus h > 0 weil f stetig
↓ ↓
= lim

h↘0

1

h
·
x+h∫
x

f(t) dt︸ ︷︷ ︸
= f(ξh) für ein ξh ∈ [x, x+ h],
nach dem Mittelwertsatz 15.11

der Integralrechnung

= lim
h↘0

f(ξh) = f
(

lim
h↘0

ξh

)
= f(x).

↑
denn aus ξh ∈ [x, x+h]
folgt lim

h↘0
ξh = x
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Ganz analog gilt auch für den linksseitigen Grenzwert:

lim
h↗0

F (x+ h)− F (x)

h
= lim

h↗0

1

h
·
( x+h∫

x0

f(t) dt−
x∫
x0

f(t) dt

)
folgt aus Lemma 15.6 und aus h < 0 weil f stetig
↓ ↓
= lim

h↗0

1

−h
·
x∫

x+h

f(t) dt︸ ︷︷ ︸
= f(ξh) für ein ξh ∈ [x, x+ h],
nach dem Mittelwertsatz 15.11

der Integralrechnung

= lim
h↗0

f(ξh) = f
(

lim
h↗0

ξh

)
= f(x).

↑
denn aus ξh ∈ [x, x+h]
folgt lim

h↗0
ξh = x

Wir sehen also, dass sowohl der rechtsseitige als auch der linksseitige Grenzwerte existieren
und mit f(x) übereinstimmen. Wir haben also die gewünschte Aussage bewiesen. �

Satz 16.4. Es sei f : I → R eine stetige Funktion auf einem Intervall I und es sei F eine
Stammfunktion von f . Dann gilt für alle a, b ∈ I, dass

b∫
a

f(x) dx = F (b)− F (a).

Beweis. Es sei f : I → R eine stetige Funktion auf einem Intervall I und es sei F eine
Stammfunktion von f . Wir betrachten die Funktion

G : I → R

x 7→
x∫
a

f(t) dt.

Der Hauptsatz 16.3 der Differential- und Integralrechnung besagt, dass G ebenfalls eine
Stammfunktion von f ist. Nachdem sowohl F als auch G Stammfunktionen von f sind
folgt aus Lemma 16.1, dass ein C ∈ R existiert, so dass F (x) = G(x) + C für alle x ∈ I.
Also gilt:

b∫
a

f(x) dx−
a∫
a

f(x) dx︸ ︷︷ ︸
=0

= G(b)−G(a) = (G(b) + C)− (G(a) + C) = F (b)− F (a).

�

Notation. Für eine beliebige Funktion F : I → R und a, b ∈ I schreiben wir[
F (x)

]x=b
x=a

:= F (b)− F (a).

Beispiel. Wir führen folgende zwei Berechnungen durch:

(1) 1∫
0

x dx =
[ x2

2

]x=1

x=0
=

12

2
− 0

2
=

1

2
.

↑
folgt aus Satz 16.4 und der Tatsache, dass x 7→ 1

2x
2 Stammfunktion von x 7→ x ist
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Wir haben also jetzt ganz einfach das Riemann-Integral berechnet, welches wir auf
Seite 178 noch mühevoll mithilfe der Definition des Riemann-Integrals bestimmt
hatten.

(2) −1∫
−5

1

x
dx =

[
ln(|x|)

]x=−1
x=−5 = ln(| − 1|)− ln(| − 5|) = ln(1)︸︷︷︸

=0

− ln(5) = − ln(5).
↑

folgt aus Satz 16.4 und der Tatsache, dass x 7→ ln(|x|) eine Stammfunktion von x 7→ 1
x ist

16.3. Bestimmung von Stammfunktionen. Der Hauptsatz 16.3 der Differential- und
Integralrechnung motiviert folgende Notation.

Notation. Wenn F (x) eine Stammfunktion von f(x) ist, dann schreiben wir im Folgenden99∫
f(x) dx

.
= F (x).

Beispiel. Es ist ∫ 1

1 + x2
dx

.
= arctan(x) aber auch

∫ 1

1 + x2
dx

.
= arctan(x) + 3.

Satz 16.4 gibt uns weitere Motivation um Stammfunktionen für explizit gegebene Funk-
tionen zu bestimmen. Wir beginnen mit folgendem elementaren Lemma.

Lemma 16.5. Es sei I ein Intervall, es seien f, g : I → R stetige Funktionen und es sei
λ ∈ R. Dann gilt100 ∫

f(x) + g(x) dx
.
=
∫
f(x) dx+

∫
g(x) dx,∫

λ · f(x) dx
.
= λ ·

∫
f(x) dx.

Beweis. Dieses Lemma folgt aus Satz 12.4 und der Definition von Stammfunktionen. �

Es stellt sich nun die Frage, welche weiteren Integrationsregeln es gibt. Beispielsweise
würde man sich erhoffen, dass es Produktregeln und Quotientenregeln für Stammfunktionen
gibt. Auf Seite 187 hatten wir unter anderem gesehen, dass∫ 1

x
dx

.
= ln(|x|) und

∫ 1

1 + x2
dx

.
= arctan(x).

Es folgt aus diesen beiden Beispielen, dass es keine Produktregel oder Quotientenregel für
Stammfunktionen gibt, d.h. es gibt beispielsweise keine allgemein gültige Regel, wie man
eine Stammfunktion eines Produkts f · g aus den Funktionen f und g und aus Stammfunk-
tionen von f und g herleiten kann.

99Zur Erinnerung, wir schreiben F
.
= G, wenn die Funktionen F und G sich nur um eine konstante

Funktion unterscheiden. Es folgt aus Lemma 16.1, dass für je zwei Stammfunktionen F und G einer
Funktion auf einem Intervall gilt F

.
= G. Deshalb ist es bei der Beschreibung von Stammfunktionen besser

mit “
.
=” als mit “=” zu arbeiten.

100Mit anderen Worten, wenn F eine Stammfunktion von f ist, und wenn G eine Stammfunktion von g
ist, dann ist F +G eine Stammfunktion von f + g.
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16.4. Stammfunktionen von elementaren Funktionen (∗). Wir wollen die Diskussi-
on am Ende des letzten Teilkapitel noch etwas fortsetzen. Wir müssen dazu etwas weiter
ausholen und führen erst einmal folgende Definition ein.

Definition. Die elementaren Funktionen sind die Funktionen, welche man aus den Poly-
nomfunktionen, der Exponentialfunktion, der Sinusfunktion durch (mehrfaches) Anwenden
folgender Operationen erhalten kann:

(1) Addition, Subtraktion, Multiplikation, Division,
(2) Einschränkung des Definitionsbereichs auf ein offenes Teilintervall,
(3) Verknüpfung,
(4) Bilden der Umkehrfunktion.

Beispiel. Die folgenden Funktionen sind beispielsweise elementar:

e−x
2

,
1√

1− x4
, cos(x) = sin

(
x+

π

2

)
, tan(x) =

sin(x)

cos(x)
und sin(

√
x) +

arctan(x)

ln(x) + 3
.

Es folgt aus der Produktregel 12.4, der Quotientenregel 12.4, der Kettenregel 12.7 und der
Umkehrregel 12.9, dass die Ableitung einer elementaren Funktion wiederum eine elementare
Funktion ist. Der folgende Satz besagt, dass die analoge Aussage für Stammfunktionen nicht
gilt.

Satz 16.6. Die elementaren Funktionen x 7→ e−x
2

und x 7→ 1√
1− x4

besitzen keine Stamm-

funktionen, welche elementar sind.

Beweis. Der Satz wird in [C, Theorem 4.1] und [AE, Seite 44] bewiesen. �

Wir sehen also, dass wir beim Betrachten von Stammfunktionen neue, uns bisher unbe-
kannte Funktionen entdecken.

16.5. Partielle Integration. In diesem und dem nächsten Teilkapitel wollen wir zwei
Methoden kennenlernen, mit denen man zumindest manchmal Stammfunktionen explizit
bestimmen kann.

Nachdem Stammfunktionen über Ableitungen definiert sind können wir aus unseren Er-
gebnisse über Ableitungen neue Aussagen über Stammfunktionen gewinnen. In diesem, und
dem folgenden Teilkapitel werden wir sehen, wie die Produktregel und die Kettenregel für
Ableitungen uns bei der Bestimmung von Stammfunktionen helfen können.

Satz 16.7. (Partielle Integration) Es seien u, v : I → R zwei stetig differenzierbare 101

Funktionen auf einem offenen Intervall I und es sei V eine Stammfunktion von v. Dann
gilt ∫

u(x) · v(x) dx
.
= u(x) · V (x) −

∫
u′(x) · V (x) dx.

101Zur Erinnerung, eine Funktion f : (a, b)→ R heißt stetig differenzierbar, wenn f differenzierbar und
wenn f ′ stetig ist. Wir benötigen diese Voraussetzung, um sicher zu stellen, dass u(x) ·v(x) und u′(x) ·V (x)
stetig sind.
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Beweis. Aus der Produktregel 12.4 der Ableitung und der Definition einer Stammfunktion
folgt, dass

(u(x) · V (x))′ = u′(x) · V (x) + u(x) · v(x)︸︷︷︸
=V (x)′

,

also ist
u(x) · v(x) = (u(x) · V (x))′ − u′(x) · V (x).

Aus Lemma 16.5 und der Definition einer Stammfunktion folgt nun, wie erhofft, dass∫
u(x) · v(x) dx

.
= u(x) · V (x)−

∫
u′(x) · V (x) dx. �

Bemerkung.

(1) Die Formel aus dem vorherigen Satz kann man sich wie folgt merken:∫
u(x) · v(x) dx

.
= u(x) · V (x) −

∫
u′(x) · V (x) dx.

• ↑ ↓ ↑
Die Pfeile ↓ und ↑ zeigen an, ob der Term abgeleitet oder aufgeleitet wurde. Das
Symbol • zeigt an, dass dieser Faktor sich nicht ändert.

(2) Für a, b ∈ I folgt zudem aus Satz 16.4, dass gilt:

b∫
a

u(x) · v(x) dx =
[
u(x) · V (x)

]b
a
−

b∫
a

u′(x) · V (x) dx.

Beispiel.

(1) Wir wollen eine Stammfunktion von x 7→ x · cos(x) bestimmen. Es gilt:
• ↑ ↓ ↑∫

x︸︷︷︸
u

· cos(x)︸ ︷︷ ︸
v

dx
p. I..
= x︸︷︷︸

u

· sin(x)︸ ︷︷ ︸
V

−
∫

1︸︷︷︸
u′

· sin(x)︸ ︷︷ ︸
V

dx
.
= x · sin(x) + cos(x).x

wir setzen u(x) = x v(x) = cos(x)
dann ist u′(x) = 1 V (x) = sin(x)

(2) Manchmal muss man ein Integral erst geschickt als Produkt umschreiben, um parti-
elle Integration erfolgreich anwenden zu können. Beispielsweise ist∫

ln(x) dx
.
=
∫

ln(x) · 1 dx
p. I..
= ln(x) · x −

∫ 1

x
· x dx .

= ln(x) · x− x.
• ↑ ↓ ↑

(3) Es kann notwendig sein, partielle Integration mehrmals anzuwenden. Beispielsweise
gilt: ∫

x2 · cos(x) dx
p. I..
= x2 · sin(x)−

∫
2x · sin(x) dx

p. I..
= x2 · sin(x)−

(
2x · (− cos(x))−

∫
2 · (− cos(x)) dx

)
.
= x2 · sin(x) + 2x · cos(x)− 2 · sin(x).
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Bemerkung. Mithilfe der partiellen Integration kann man also ein Integral durch ein an-
deres, hoffentlich deutlich leichteres, Integral ersetzen. Die partielle Integration bietet sich
an, wenn u(x) eine “einfachere Ableitung” besitzt, z.B. u(x) = xn oder u(x) = ln(x). Denn
durch den Übergang von u(x) · v(x) zu u′(x) · V (x) erhalten wir dadurch, mit etwas Glück,
einen einfacheren Integranden.

Beispiel. Manchmal muss man auf der Suche nach Stammfunktionen auch Ausdauer und
Kreativität zeigen und darf dabei den Überblick nicht verlieren. Beispielsweise gilt:∫

cos2(x) dx
.
=
∫

cos(x) · cos(x) dx
p. I..
= cos(x) · sin(x)−

∫
(− sin(x)) · sin(x) dx

• ↑ ↓ ↑
.
= cos(x) · sin(x) +

∫
(1− cos2(x)) dx

.
= cos(x) · sin(x) + x−

∫
cos2(x) dx.

Wir lösen jetzt nach
∫

cos2(x) dx auf, und erhalten, dass∫
cos2(x) dx

.
=

1

2
· (cos(x) · sin(x) + x).

16.6. Substitution.

Lemma 16.8. Es sei I ein Intervall, es sei f : I → R eine stetige Funktion und es sei F
eine Stammfunktion von f . Für alle c, d ∈ R gilt∫

f(cx+ d) dx
.
= 1

c
· F (cx+ d).

Beweis. Es gilt: (
1

c
· F (cx+ d)

)
′ =

1

c
· F ′(cx+ d) · (cx+ d)′ = f(cx+ d).

↑ ↑
Kettenregel 12.4 für Ableitungen da F Stammfunktion von f

Per Definition einer Stammfunktion ist das genau die Aussage, welche wir beweisen muss-
ten. �

Beispiel.

(1) Es gilt
∫

cos(2x+ 3) dx
.
=

1

2
· sin(2x+ 3).

↑
folgt aus Lemma 16.8 und der Tatsache, dass F (x) = sin(x)

eine Stammfunktion von f(x) = cos(x) ist

(2) Wir wollen jetzt noch mal einen anderen Ansatz wählen um eine Stammfunktion für
cos2(x) zu finden. Die Idee ist dieses Mal, dass wir cos2(x) geschickt umschreiben.
Wir wissen, dass

sin2(x) + cos2(x) = 1
↑

Lemma 11.3

und cos(2x) = cos2(x)− sin2(x).
↑

folgt aus Satz 11.4

Durch Auflösen nach cos2(x) erhalten wir:
cos2(x) =

1

2
(cos(2x) + 1).
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Es folgt:∫
cos2(x) dx

.
=

1

2

∫
cos(2x) + 1 dx

.
=

1

2

∫
cos(2x) dx+

1

2

∫
1 dx

.
=

1

4
sin(2x) +

1

2
x.

↑
folgt aus Lemma 16.8 und der Tatsache, dass sin Stammfunktion von cos ist

Satz 16.9. (Substitutionsregel für Stammfunktionen) Es seien I und J zwei offene
Intervalle, es sei u : I → R eine stetig differenzierbare Funktion mit u(I) ⊂ J und zudem
sei ϕ : J → R eine stetige Funktionen. Wenn Φ: J → R eine Stammfunktion für ϕ ist,
dann gilt∫

ϕ(u(x)) · u′(x) dx
.
=
(1)

Φ(u(x))
.
=
(2)

Funktion, welche wir erhalten, indem

wir u = u(x) in
∫
ϕ(u) du einsetzen.

Beweis.

(1) Es gilt: d

dx
Φ(u(x)) = Φ′(u(x)) · u′(x) = ϕ(u(x)) · u′(x).

↑ ↑
Kettenregel 12.7 für Ableitungen da Φ Stammfunktion von ϕ

Also ist Φ(u(x)) in der Tat eine Stammfunktion von ϕ(u(x)) · u′(x).
(2) Die zweite Gleichheit des Satzes folgt aus der Beobachtung, das der Term ganz rechts

nur eine andere Schreibweise des mittleren Terms ist, denn
∫
ϕ(u) du ist ja gerade

die Notation für eine Stammfunktion von ϕ. �

Beispiel. Wir führen folgende Berechnung durch:∫
sin(x2 + 3︸ ︷︷ ︸

=:u(x)

) · 2x︸︷︷︸
=u′(x)

dx
.
=
∫

sin(u) du
.
= − cos(u)

.
= − cos(x2 + 3).

↑ ↑
Substitutionsregel mit Rücksubstitution, d.h. wir setzen u = x2+3

ϕ(u)=sin(u) und u(x)=x2+3 in die Stammfunktion
∫

sin(u) du
.
= − cos(u) ein

Ansatz 16.10. In der Praxis führt man Integration durch Substitution also wie folgt durch.

(1) Man versucht den Integranden in die Form f(x) = ϕ(u(x)) · u′(x) für geeignete
Funktionen ϕ und u zu bringen.

(2) Man bestimmt
∫
ϕ(u) du.

(3) Man setzt u = u(x) in
∫
ϕ(u) du ein, um eine Stammfunktion für die ursprüngliche

Funktion f(x) = ϕ(u(x)) · u′(x) zu erhalten.

Beispiel. In vielen Beispielen braucht man etwas Geschick um eine zielführende Substitu-
tion zu finden.

(1)

Substitution u = x2+3 mit u′ = 2x
↓∫

x · ln(x2 + 3) dx
.
= 1

2

∫
ln(x2 + 3︸ ︷︷ ︸

=:u(x)

) · 2x︸︷︷︸
=u′(x)

dx
.
= 1

2

∫
ln(u) du

.
= 1

2
· u · (ln(u)− 1)

.
= 1

2
· (x2 + 3) · (ln(x2 + 3)− 1).

↑ ↑
siehe Seite 192 Rücksubstitution u = x2 + 3
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(2)
∫

x2

1 + x6
dx

.
=

1

3

∫
1

1 + (x3)2
· 3x2 dx .

=
1

3

∫
1

1 + u2
du

.
=

1

3
arctan(u)

.
=

1

3
arctan(x3).

↑ ↑
Substitution u = x3 mit u′ = 3x2 Rücksubstitution u = x3

(3)
∫

cos(
√
x) dx

.
= 2 ·

∫
cos(

√
x︸︷︷︸

=:u(x)

) ·
√
x︸︷︷︸

=:u(x)

· 1

2
√
x︸︷︷︸

=u′(x)

dx = 2 ·
∫

cos(u) · u dux x
wir wollen die Substitution u=

√
x durchführen, Substitution u =

√
x

dazu müssen wir den Term u′= 1
2
√
x

einführen

.
= 2(u · sin(u) + cos(u))

.
= 2(

√
x · sin(

√
x) + cos(

√
x)).

↑ ↑
auf Seite 192 hatten wir mithilfe von Rücksubstitution u =

√
x

partieller Integration eine Stamm-
Funktion von u 7→ cos(u) · u bestimmt

Das nächste Beispiel ist so interessant, dass wir es als Lemma formulieren.

Lemma 16.11. Es ist 1∫
−1

√
1− x2 dx =

1

2
π.

Bemerkung. Nachdem der Graph von
√

1− x2 gerade einen Halbkreis von Radius 1 be-
schreibt, besagt dieses Lemma, dass “unsere” Definition von π aus Kapitel 11.2 in der Tat
mit der “üblichen” Definition von π über den Flächeninhalt übereinstimmt.
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Graph der Funktion x 7→
√

1− x2 ist ein Halbkreis

−1 1

Beweis. Wir ignorieren erst einmal die Grenzen des Integrals und führen folgende Berech-
nung durch:102103∫ √

1− x2 dx .
=
∫

(1− x2) · 1√
1−x2 dx

.
=
∫

(1− sin(arcsin(x)︸ ︷︷ ︸
=:u(x)

)2) · 1√
1− x2︸ ︷︷ ︸
=u′(x)

dx
.
=
∫

1− sin(u)2 du

↑
Substitution u = arcsin(x)

.
=
∫

cos2(u) du
.
= 1

2
u+ 1

4
sin(2u)

.
= 1

2
arcsin(x) + 1

4
sin(2 arcsin(x)).

↑ ↑
siehe Seite 194 Rücksubstitution u = arcsin(x)

102Man könnte den Term sin(2 arcsin(x)) ganz am Ende noch vereinfachen, führt uns aber nicht weiter,
und wir unterlassen dies deshalb.

103In Übungsblatt 12 werden wir aus Freude am Rechnen partielle Integration, anstatt Substitution,
verwenden, um eine weitere Stammfunktion von

√
1− x2 zu bestimmen.
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Jetzt erinnern wir uns an die Grenzen des Integrals und erhalten:
1∫
−1

√
1−x2 dx =

[
1
2

arcsin(x) + 1
4

sin(2 arcsin(x))
]1
−1 = π

4
+ 1

4
sin(π)− −π

4
− 1

4
sin(−π) =

π

2
.

↑ ↑
folgt aus Satz 16.4 und der gerade bestimmten denn arcsin(1) = π

2 und arcsin(−1) = −π2
Stammfunktion von

√
1− x2 �

Der folgende Satz ist eine Variante der obigen Substitutionsregel für Stammfunktionen.

Satz 16.12. (Substitutionsregel für Integrale) Es seien I und J zwei offene Intervalle,
es sei u : I → R eine stetig differenzierbare Funktion mit u(I) ⊂ J und zudem sei ϕ : J → R
eine stetige Funktionen. Für alle a, b ∈ I gilt:

b∫
a

ϕ(u(x)) · u′(x) dx =
u(b)∫
u(a)

ϕ(u) du.

Beweis. Es sei Φ: J → R eine Stammfunktion von ϕ. Wir führen folgende Berechnung
durch:
b∫
a

ϕ(u(x)) · u′(x) dx =
[
Φ(u(x))

]x=b
x=a

= Φ(u(b))− Φ(u(a)) =
[
Φ(u)

]u=u(b)
u=u(a)

=
u(b)∫
u(a)

ϕ(u) du.

↑ ↑
nach Satz 16.9 ist Φ(u(x)) eine Stammfunktion Satz 16.4

also folgt die Gleichheit aus Satz 16.4 �

Beispiel.

x=5∫
x=2

1

1 + 3 · x2
dx =

x=5∫
x=2

1√
3
· 1

1 + (
√

3x)2
·
√

3 dx =
u=u(5)=5

√
3∫

u=u(2)=2
√
3

1√
3

1

1 + u2
du

↑ ↑
wir treffen Vorbereitungen für eine Substitution u =

√
3x

Substitution u =
√

3x

=
1√
3

[
arctan(u)

]u=5
√
3

u=2
√
3

=
1√
3

(
arctan

(
5
√

3
)
− arctan

(
2
√

3
))
.

↑
folgt aus der Tabelle auf Seite 187

Bemerkung. Zusammengefasst sehen wir also, dass es nur wenige Ansätze gibt, Stamm-
funktionen einer gegebenen Funktion explizit anzugeben:

(1) Wir haben die Tabelle von Stammfunktionen auf Seite 187.
(2) Partielle Integration.
(3) Substitution.
(4) Geschicktes Umschreiben von Funktionen und Termen, so dass wir mit (1)–(3) vorwärts

kommen.

Aber Satz 16.6 sagt uns, dass diese Ansätze bei vielen (ja eigentlich sogar bei den allermeis-
ten) Funktionen zum scheitern verurteilt sind. Es ist leider im Allgemeinen nicht möglich,
eine Stammfunktion einer gegebenen Funktion explizit anzugeben.
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17. Uneigentliche Integrale

Definition. Es sei f : [a, b)→ R eine stetige Funktion, wobei a ∈ R und b ∈ R ∪ {∞}. Wir
definieren

b∫
a

f(x) dx := lim
d↗b

d∫
a

f(x) dx ∈ R ∪ {±∞},

wenn der Grenzwert auf der rechten Seite in R ∪ {±∞} existiert. Wenn dies der Fall ist,
dann nennen wir den Grenzwert das uneigentliche Integral von f auf [a, b). Ganz analog
definiert man das uneigentliche Integral auf einem halb-offenen Intervall (a, b].

Beispiel. Es sei µ ∈ (−∞, 0). Dann gilt:

∞∫
0

eµ·x dx = lim
d→∞

d∫
0

eµ·x dx = lim
d→∞

[
1
µ
· eµ·x

]d
0

= lim
d→∞

( 1
µ
· eµ·d − 1

µ
) = − 1

µ
.

↑ ↑
folgt aus Lemma 16.8 folgt aus µ < 0

Für später formulieren wir das nächste Beispiel als Lemma.

Lemma 17.1. Für s ∈ (0,∞) gilt ∞∫
1

1

xs
dx =

{
1

s− 1
, falls s > 1,

+∞, falls s ≤ 1.

Graph von x 7→ 1
x

Graph von x 7→ 1√
x

Graph von x 7→ 1
x2

1 5 10

Beweis. Wir betrachten zuerst den Fall s 6= 1. In diesem Fall gilt:

∞∫
1

1

xs
dx = lim

d→∞

d∫
1

x−s dx = lim
d→∞

[
x−s+1

−s+ 1

]d
1

= lim
d→∞

(
d−s+1

−s+ 1
+

1

s− 1

)
=

{
1

s− 1
, falls s>1,

+∞, falls s<1.

Nun betrachten wir noch den Fall s = 1. In diesem Fall gilt:
∞∫
1

1
x
dx = lim

d→∞

d∫
1

1

x
dx = lim

d→∞

[
ln(x)

]d
1

= lim
d→∞

(ln(d)− ln(1)) = +∞.
�

Definition. Es sei f : (a, b) → R eine stetige Funktion, wobei a ∈ R ∪ {−∞} und wobei
b ∈ R∪{∞}. Wir wählen ein c ∈ (a, b). Wir definieren das uneigentliche Integral von f auf
(a, b) wie folgt: b∫

a

f(x) dx :=
c∫
a

f(x) dx+
b∫
c

f(x) dx,
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wenn die beiden uneigentlichen Integrale rechts in R∪{±∞} definiert sind, und wenn dann
auch die Summe im Sinne der Tabelle auf Seite 42 definiert ist.104

Satz 17.2. Es sei f : (a, b) → R eine stetige Funktion und es sei F eine Stammfunktion
von f . Dann gilt

b∫
a

f(x) dx = lim
x↗b

F (x)− lim
x↘a

F (x),

wenn die rechte Seite definiert ist.

Beweis. Der Satz folgt eigentlich sofort aus Satz 16.4 und aus den Definitionen. Es sei also
f : (a, b)→ R eine stetige Funktion und es sei F eine Stammfunktion von f . Es sei c ∈ (a, b)
beliebig. Dann gilt

b∫
a

f(x) dx =
b∫
c

f(x) dx+
c∫
a

f(x) dx = lim
x↗b

x∫
c

f(t) dt+ lim
x↘a

c∫
x

f(t) dt

= lim
x↗b

(
F (x)− F (c)

)
+ lim

x↘a

(
F (c)− F (x)

)
= lim

x↗b
F (x)− lim

x↘a
F (x).

↑ ↑
Satz 16.4 F (c) hebt sich weg �

Beispiel. ∞∫
−∞

1

1 + x2
dx = lim

x→∞
arctan(x)− lim

x→−∞
arctan(x) = π

2
− (−π

2
) = π.

↑
nach der Tabelle auf Seite 187 ist arctan(x) Stammfunktion von 1

1+x2
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Graph der Funktion x 7→ 1
1+x2

“Flächeninhalt” = π

Im Folgenden werden wir noch die Konvergenz von Reihen und von uneigentlichen Inte-
gralen in Verbindung bringen.

Satz 17.3. (Integral-Vergleichskriterium) Es sei f : [1,∞)→ [0,∞) eine stetige Funk-
tion, welche monoton fallend ist. Dann gilt∑

n≥1
f(n) konvergiert ⇐⇒ das uneigentliche Integral

∞∫
1

f(x) dx ist endlich.

Beweisskizze. Es sei f : [1,∞)→ R eine stetige, monoton fallende Funktion. Wir betrachten
die Funktionen

ϕ : [1,∞) → R
x 7→ f(bxc) und

ψ : [1,∞) → R
x 7→ f(bxc+1) = ϕ(x+1).

104Man kann leicht mithilfe von Lemma 15.6 zeigen, dass die Definition nicht von der Wahl von c ∈ (a, b)
abhängt.
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Da f monoton fallend ist, und da bxc ≤ x ≤ bxc + 1 gilt ϕ(x) ≥ f(x) ≥ ψ(x) für alle
x ∈ [1,∞).

Graph von f

Graph von ϕ

Graph von ψ

Dann gilt ∞∑
n=1

f(n) =
∞∫
1

ϕ(x) dx ≥
∞∫
1

f(x) dx ≥
∞∫
1

ψ(x) dx =
∞∑
n=2

f(n).

↑ ↑
folgt aus ϕ ≥ f ≥ ψ und der Monotonieeigenschaft 15.5 des Integrals

Wir beweisen zuerst die “⇐”-Richtung. Wenn
∫∞
1
f(x) dx endlich ist, dann folgt aus den

Ungleichungen, der Monotonie von f und Satz 4.3, dass die Reihe
∑
n≥2

f(n) konvergiert.

Damit konvergiert aber auch die Reihe
∑
n≥1

f(n).

Wir beweisen nun die “⇒”-Richtung. Wenn
∑
n≥1
f(n) konvergiert, dann folgt aus den

Ungleichungen und dem Analogon von Satz 4.3 für Grenzwerte von monoton steigenden

Funktionen, dass der Grenzwert lim
d→∞

∫ d
1
f(x) dx =

∫∞
1
f(x) dx endlich ist. �

Beispiel. Es sei s ∈ (0,∞). Wir sehen:∑
n≥1

1

ns
konvergiert ⇐⇒

∞∫
x=1

1

xs
ist endlich ⇐⇒ s > 1.

↑ ↑
Satz 17.3 Lemma 17.1

Wir können daraus folgende Schlüsse ziehen:

(1) Wir erhalten einen neuen Beweis der Aussage, dass die Reihe
∑
n≥1

1
n2 konvergiert, und

dass die harmonische Reihe
∑
n≥1

1
n

divergiert.

(2) Wir sehen jetzt auch, dass für jedes s ∈ (1,∞) die Reihe
∑
n≥1

1
ns

konvergiert. Diese

Aussage hat nichts mit Integralen zu tun, aber zumindest für s ∈ (1, 2) ist es sehr
schwierig die Aussage, ohne Zuhilfenahme von Integralen zu beweisen.

(3) Wir sehen also insbesondere, dass für jedes ε > 0 die Reihe
∑
n≥1

1

n1+ε
konvergiert. Mit

anderen Worten, die harmonische Reihe “divergiert gerade so eben”.
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18. Die Gamma-Funktion (∗)

In diesem Kapitel wollen wir die Gamma-Funktion einführen und einige Eigenschaften der
Gamma-Funktion beweisen. Dieses Kapitel ist nicht Teil der Analysis-Vorlesung. Aber es
kann nichtsdestotrotz interessant sein, dieses Kapitel zu lesen, weil es eine gute Gelegenheit
bietet, das Gelernte zu trainieren und anzuwenden.

In diesem Kapitel werden wir unter anderem folgendes Lemma beweisen.

Lemma 18.1. Für jedes s > 0 konvergiert das uneigentliche Integral
∞∫
0

ts−1 · e−t dt.

Wir verschieben den Beweis des Lemmas auf etwas später. Mithilfe des Lemmas können
wir nun schon einmal den Hauptdarsteller des Kapitels einführen.

Definition. Wir bezeichnen Γ: (0,∞) → R

x 7→ Γ(x) :=
∞∫
0

tx−1 · e−t dt

als die Gamma-Funktion.

Graph der Gamma-Funktion Γ: (0,∞)→ R

2 4

2

4

In diesem Kapitel werden wir zudem den folgenden Satz beweisen, welcher einige der
wichtigsten Eigenschaften der Gamma-Funktion zusammenfasst.

Satz 18.2.

(1) Γ(1) = 1,
(2) für alle x ∈ (0,∞) gilt Γ(x+ 1) = x · Γ(x),
(3) für alle n ∈ N gilt: Γ(n) = (n− 1)!.

Bemerkung. Satz 18.2 besagt also, dass man die Gamma-Funktion als Erweiterung der
Fakultät n! von natürlichen Zahlen auf beliebige positive reelle Zahlen auffassen kann.

Wir werden nun im Folgenden Lemma 18.1 und Satz 18.2 beweisen. Für den Beweis von
Lemma 18.1 benötigen wir dabei den folgenden Satz, welchen man mithilfe von Lemma 15.5
leicht beweisen kann. Wir überlassen den Beweis als freiwillige Übungsaufgabe.

Satz 18.3. (Majoranten-Kriterium für uneigentliche Integrale) Es seien im Fol-
genden f, g : [a, b) → R zwei stetige Funktionen gegeben, wobei b ∈ R ∪ {∞}. Nehmen wir
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an, es gibt ein C ∈ R, so dass

g(x) ≥ |f(x)| für alle x ∈ [C, b).

Dann gilt folgende Aussage für uneigentliche Integrale:
b∫
a

g(x) dx konvergiert =⇒
b∫
a

f(x) dx konvergiert.

Eine analoge Aussage gilt auch für uneigentliche Integrale von Funktionen, welche auf einem
halb-offenen Intervall der Form (a, b] definiert sind.

Beispiel. Wir betrachten das uneigentliche Integral
∞∫
1

x+ 10

x3 + x2 + 2 + arctan(x)
dx.

Man kann leicht zeigen, dass x+10
x3+x2+2+arctan(x)

≤ 2
x2

für alle x ∈ [5,∞). Es folgt also aus

Lemma 17.1 und aus Satz 18.3, dass das obige uneigentliche Integral konvergiert.

Mithilfe von Satz 18.3 können wir nun Lemma 18.1 beweisen.

Beweis von Lemma 18.1. Es sei also s > 0 gegeben. Die Funktion ts−1 · e−t ist nur auf dem
Intervall (0,∞) definiert. Per Definition des uneigentlichen Integrals gilt

∞∫
0

ts−1 · e−t dt =
1∫
0

ts−1 · e−t dt︸ ︷︷ ︸
uneigentliches Integral (1)

+
∞∫
1

ts−1 · e−t dt︸ ︷︷ ︸
uneigentliches Integral(2)

wenn beide uneigentlichen Integrale rechts existieren. Wir müssen nun also zeigen, dass
beide uneigentliche Integrale in der Tat existieren.

(1) Wir starten mit dem ersten uneigentlichen Integral. Für alle t ∈ (0, 1] gilt e−t ∈ (0, 1],
also gilt ts−1 · e−t ≤ ts−1. Nach Satz 18.3 genügt es zu zeigen, dass das uneigentliche
Integral

∫ 1

0
ts−1 dt konvergiert. Dieses wiederum bestimmen wir wie folgt:

1∫
0

ts−1 dt = lim
d↘0

[
ts

s

]t=1

t=d
= lim

d↘0

(
1

s
− ds

s

)
=

1

s
.

↑
folgt aus Satz 16.4 und der Tabelle auf Seite 187

Wir zeigen nun, dass auch das zweite uneigentliche Integral
∫∞
1
ts−1 · e−t dt existiert.

Wir beweisen zuerst folgende Behauptung:

Behauptung. Es gibt ein C ∈ R, so dass für alle t ≥ C gilt:

ts−1 · e−t ≤ 1

t2
.

Auf Seite 171 hatten wir mithilfe der Regel von l’Hôpital gesehen, dass

lim
t→∞

ts−1 · e−t
1
t2

= lim
t→∞

ts+1

et
= 0.
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Wenden wir die Definition von lim
t→∞

tx+1

et
= 0 auf ε = 1 an, sehen wir, dass es ein C ∈ R

gibt, so dass für alle t ≥ C gilt: ts−1 · e−t ≤ 1
t2
. �

Wir hatten in Lemma 17.1 gezeigt, dass das uneigentliche Integral
∫∞
1

1
t2
dt kon-

vergiert. Es folgt dann wieder aus Satz 18.3, dass auch
∫∞
1
ts−1e−t dt konvergiert. �

Wir werden uns nun dem Beweis von Satz 18.2 zu.

Beweis von Satz 18.2. Wir hatten schon auf Seite 197 gesehen, dass gilt:

Γ(1) =
∞∫
0

e−x dx = lim
d→∞

d∫
0

e−x dx = lim
d→∞

[
− e−x

]d
0

= lim
d→∞

(e−d + 1) = 1.

Wir wenden uns nun dem Beweis der zweiten Aussage des Satzes zu. Für a, b ∈ (0,∞)
folgt mithilfe von partieller Integration, dass

b∫
a

tx · e−t dt p. I.
=

[
tx · (−e−t)

]t=b
t=a
−

b∫
a

x · tx−1 · (−e−t) dt.
• ↑ ↓ ↑

Es folgt, dass
Definition des uneigentlichen Integrals obige Nebenrechnung

↓ ↓
Γ(x+ 1) =

∞∫
0

tx · e−t dt = lim
a↘0

1∫
a

tx · e−t dt + lim
b→∞

b∫
1

tx · e−t dt =

= lim
a↘0

([
− tx ·e−t

]t=1

t=a
+ x·

1∫
a

tx−1 ·e−t dt
)

+ lim
b→∞

([
− tx ·e−t

]t=b
t=1

+ x·
b∫
1

tx−1 ·e−t dt
)

= −lim
a↘0

(−ax · e−a)︸ ︷︷ ︸
=0

+ lim
b→∞

− bx · e−b︸ ︷︷ ︸
= 0, nach l’Hôpital

siehe Seite 171

+ x ·
∞∫
0

tx−1 · e−t dt

= x ·
∞∫
0

tx−1 · e−t dt = x · Γ(x).

Wir haben damit die zweite Aussage bewiesen.
Die letzte Aussage des Satzes folgt nun aus (1) und (2) durch Induktion. �
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19. Funktionenfolgen (∗)

19.1. Punktweise und gleichmäßige Konvergenz von Funktionenfolgen.

Beispiel. Für jedes n ∈ N betrachten wir die Funktion fn : [0, 1] → R
x 7→ xn.

Für jedes einzelne x ∈ [0, 1] erhalten wir also die Folge fn(x) = xn. Hierbei gilt

lim
n→∞

fn(x) = lim
n→∞

xn =
{

0, wenn x ∈ [0, 1),
1, wenn x = 1.↑

Los Alamos Satz 3.9

Wir bezeichnen die Funktion rechts mit Θ.

��

f3(x) = x3

f1(x) = x

f2(x) = x2

f4(x) = x4

die Funktionenfolge
fn(x) = xn konvergiert
punktweise gegen die
folgende Funktion Θ

1 1

1 1

Dieses Beispiel führt uns zu folgender Definition.

Definition. Es sei D ⊂ R eine Teilmenge und es sei (fn : D → R)n∈N eine Folge von Funk-
tionen. Wir sagen die Funktionenfolge (fn)n∈N ist punktweise konvergent, wenn für jedes
x ∈ D die Zahlenfolge (fn(x))n∈N konvergiert. In diesem Fall nennen wir die Funktion

D → R
x 7→ f(x) := lim

n→∞
fn(x)

die Grenzfunktion der Funktionenfolge (fn)n∈N.

Beispiel.

(1) Wir hatten gerade gesehen, dass die obige Funktionenfolge fn(x) = xn auf dem
Intervall [0, 1] punktweise konvergiert. Die Grenzfunktion ist die Funktion Θ, welche
gegeben ist durch Θ(x) = 0 für x ∈ [0, 1) und Θ(1) = 1.

(2) Für jedes n ∈ N betrachten wir die Funktion fn : R → R

x 7→
n∑
k=0

xk

k!
.

Die Funktionenfolge (fn)n∈N konvergiert punktweise gegen die Funktion

R → R

x 7→ lim
n→∞

n∑
k=0

xk

k!
=

∞∑
k=0

xk

k!
= exp(x).
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Wir sehen also, dass die Funktionenfolge (fn)n∈N punktweise gegen die Exponential-
funktion konvergiert.

Es sei (fn)n∈N eine Funktionenfolge, welche punktweise konvergiert. Das erste Beispiel
zeigt, dass aus der Stetigkeit der Funktionen fn nicht notwendigerweise folgt, dass auch die
Grenzfunktion stetig ist. Unser Ziel ist nun ein Kriterium für Funktionenfolgen zu finden,
welches garantiert, dass die Grenzfunktion einer Folge von stetigen Funktionen wiederum
stetig ist. Wir führen dazu folgende Definition ein:

Definition. Es sei ∅ 6= D ⊂ R und es sei f : D → R eine Funktion. Wir bezeichnen 105

‖f‖ := sup
{
|f(x)|

∣∣x ∈ D} ∈ R≥0 ∪ {∞}
als die Supremumsnorm von f .
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‖f‖ = 2
Graph von f
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Lemma 19.1. Es seien ϕ, ψ : D → R Funktionen und λ ∈ R. Dann gilt

(1) ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ (Dreiecksungleichung)
(2) ‖λ · ϕ‖ = |λ| · ‖ϕ‖

zudem gilt für jedes x ∈ D, dass

(3) |ϕ(x)| ≤ ‖ϕ‖.

Beweis. Das Lemma folgt ziemlich leicht aus den Definitionen und wir überlassen den
Beweis als freiwillige Übungsaufgabe. �

Beispiel. Es seien g, h : D → R zwei Funktionen und d ≥ 0. Wenn ‖g − h‖ ≤ d, dann
“bewegt” sich der Graph h in dem “±d-Band” um den Graphen der Funktion g.
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Graph von g
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2

Graph einer Funktion h mit ‖g − h‖ = 1
2

“±1
2
-Band” um den Graphen von g

105Für eine nach oben unbeschränkte Menge M schreiben wir hier sup(M) =∞.
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Zur Erinnerung, auf Seite 32 hatten wir für eine Folge (an)n∈N von reellen Zahlen folgende
Definition eingeführt:

(an)n∈N konvergiert gegen a ∈ R :⇐⇒ ∀
ε>0
∃
N∈N
∀

n≥N
|an − a| < ε.

Mit fast der gleichen Definition führen wir nun ganz analog den Begriff der gleichmäßigen
Konvergenz einer Folge von Funktionen ein.

Definition. Es sei (fn)n∈N eine Folge von Funktionen fn : D → R. Wir definieren

(fn)n∈N konvergiert gleichmäßig gegen f : D → R :⇐⇒ ∀
ε>0
∃
N∈N
∀

n≥N
‖fn − f‖ < ε.

Beispiel.

(1) Für n ∈ N betrachten wir die Funktion fn(x) = 1
n
· sin(x) auf R. Es gilt ‖fn‖ = 1

n
,

und wir sehen, dass die Funktionenfolge (fn)n∈N gleichmäßig gegen die Nullfunktion
konvergiert.

(2) Wir betrachten noch einmal die Funktionen fn(x) = xn auf [0, 1]. Diese Funktio-
nenfolge konvergiert punktweise gegen die Funktion Θ. Aber für jedes n ∈ N ist
‖fn −Θ‖ = 1, also konvergiert die Funktionenfolge nicht gleichmäßig gegen Θ.

Lemma 19.2. Jede gleichmäßig konvergente Funktionenfolge konvergiert auch punktweise.

Beweis. Es sei (fn)n∈N eine Folge von Funktionen fn : D → R, welche gleichmäßig gegen f
konvergiert. Wir müssen zeigen, dass (fn)n∈N punktweise gegen f konvergiert. Es sei also
x ∈ D. Wir müssen also zeigen

∀
ε>0
∃
N∈N
∀

n≥N
‖fn − f‖ < ε =⇒ ∀

ε>0
∃
N∈N
∀

n≥N
|fn(x)− f(x)| < ε.

Diese Implikation folgt leicht aus folgender Beobachtung:

|fn(x)− f(x)| = |(fn − f)(x)| ≤ ‖fn − f‖.
↑

folgt aus Lemma 19.1 (3) angewandt auf ϕ = fn − f �

Der folgende Satz zeigt nun, dass sich gleichmäßig konvergente Funktionenfolgen “im
Grenzwert” deutlich besser verhalten als beliebige Funktionenfolgen.

Satz 19.3. Es sei (fn)n∈N eine Funktionenfolge stetiger Funktionen auf D ⊂ R. Wenn diese
Funktionenfolge gleichmäßig gegen f : D → R konvergiert, dann ist die Grenzfunktion f
ebenfalls stetig

Beweis. Es sei also (fn)n∈N eine Funktionenfolge stetiger Funktionen, welche gleichmäßig
gegen f : D → R konvergiert. Wir müssen zeigen, dass f stetig ist. Es sei also x0 ∈ D und
es sei zudem ε > 0 gegeben. Wir müssen nun zeigen, es existiert ein δ > 0, so dass

|f(x)− f(x0)| < ε für alle x ∈ (x0 − δ, x0 + δ) ∩D.
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Die Voraussetzungen besagen, dass wir Kontrolle über |f(x)− fn(x)| für alle x ∈ D
zugleich haben (hier benützen wir die gleichmäßige Konvergenz und Lemma 19.1
(3)), und dass wir für jedes n ∈ N Kontrolle über |fn(x) − fn(x0)| erhalten (wegen
der Stetigkeit der Funktionen fn). Mithilfe folgender Abschätzung können wir dann
diese Informationen auf unsere Problemstellung anwenden:

|f(x)− f(x0)| ≤ |f(x)− fn(x)| + |fn(x)− fn(x0)| + |fn(x0)− f(x0)|.
Die Idee ist nun, n ∈ N und δ > 0 so geschickt zu wählen, dass alle drei Terme jeweils
kleiner als ε

3
sind.

Wegen der gleichmäßigen Konvergenz von (fn)n∈N existiert ein n ∈ N, so dass

(A) |f(y)− fn(y)| < ε
3

für alle y ∈ D.

Wegen der Stetigkeit von fn existiert zudem ein δ > 0, so dass

(B) |fn(x)− fn(x0)| < ε
3

für alle x ∈ (x0 − δ, x0 + δ) ∩D

Dann gilt für alle x ∈ (x0 − δ, x0 + δ) ∩D, dass

|f(x)− f(x0)| ≤ |f(x)− fn(x)|︸ ︷︷ ︸
< ε

3
wegen (A)

+ |fn(x)− fn(x0)|︸ ︷︷ ︸
< ε

3
wegen (B)

+ |fn(x0)− f(x0)|︸ ︷︷ ︸
< ε

3
wegen (A)

< ε.

�

19.2. Kriterien für die gleichmäßige Konvergenz von Funktionenfolgen. Wir ha-
ben also gesehen, dass es wichtig ist, mit gleichmäßig konvergenten Funktionenfolgen zu
arbeiten. Allerdings wollen wir eher ungern für eine gegebene Funktionenfolge “per Hand”
überprüfen, ob diese tatsächlich gleichmäßig konvergiert. Wir werden deshalb im Folgenden
verschiedene Kriterien beweisen, welche garantieren, dass eine gegebene Funktionenfolge
gleichmäßig konvergiert.

Folgende Definition ist ein Analogon der Definition auf Seite 51.

Definition. Es sei (fn)n∈N eine Folge von Funktionen auf D ⊂ R. Wir definieren

(fn)n∈N ist eine Cauchy-Folge :⇐⇒ ∀
ε>0
∃
N∈N

∀
n,m≥N

‖fn − fm‖ < ε.

Satz 19.4. (Cauchy-Kriterium für gleichmäßige Konvergenz)

(1) Jede gleichmäßig konvergente Funktionenfolge ist eine Cauchy-Folge.
(2) Jede Cauchy-Folge (fn)n∈N von Funktionen D → R konvergiert gleichmäßig gegen

eine Funktion f : D → R.

Beweis.

(1) Es sei (fn)n∈N eine Folge von Funktionen, welche gleichmäßig gegen eine Funktion f
konvergiert. Mithilfe von Lemma 19.1 (1) und (2) können wir wort-wörtlich den
Beweis von Satz 4.1 übernehmen, um zu zeigen, dass (fn)n∈N eine Cauchy-Folge ist.
Der Vollständigkeit halber führen wir das Argument. Wir müssen also zeigen:

∀
µ>0
∃
N∈N
∀

n≥N
‖fn − f‖ < µ =⇒ ∀

ε>0
∃
N∈N

∀
n,m≥N

‖fn − fm‖ < ε.
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Es sei also ε > 0. Wir wählen ein N ∈ N, welches für µ = ε
2

die linke Eigenschaft
besitzt. Dann gilt für alle m,n ≥ N , dass

‖fn − fm‖ = ‖fn − f + f − fm‖ ≤ ‖fn − f‖+ ‖fm − f‖ <
ε

2
+

ε

2
= ε.

↑ ↑
folgt aus Lemma 19.1 (1) und (2) denn m,n ≥ N

(2) Es sei nun (fn)n∈N eine Cauchy-Folge von Funktion auf D ⊂ R. Ganz analog zum
Beweis von Lemma 19.2 sieht man, dass dann für jedes x die Folge (fn(x))n∈N eine
Cauchy-Folge von reellen Zahlen ist. Insbesondere existiert für jedes x der Grenzwert
f(x) := lim

n→∞
fn(x). Wir zeigen nun, dass (fn)n∈N gleichmäßig gegen diese Grenzfunk-

tion f konvergiert.
Sei also ε > 0. Nach Voraussetzung existiert ein N ∈ N, so dass für alle n,m ≥ N

gilt ‖fn − fm‖ < ε
2
. Insbesondere gilt für alle n ≥ N , dass

‖f − fn‖ = sup
{∣∣f(x)− fn(x)

∣∣ ∣∣x ∈ D}
= sup

{∣∣∣ lim
m→∞

(fm(x) − fn(x))︸ ︷︷ ︸
für m≥N gilt nach Lemma 19.1 (3)
|fm(x)− fn(x)| ≤ ‖fm − fn‖ < ε

2

∣∣∣ ∣∣∣x ∈ D} ≤ ε

2
< ε.x

folgt aus f(x) = lim
m→∞

fm(x) �

Ganz analog zum Begriff der Reihen von reellen Zahlen, welchen wir auf Seite 47 ein-
geführt hatten, definieren wir nun den Begriff der Reihen von Funktionen ein.

Definition. Es sei (gk)k≥w eine Folge von Funktionen auf D ⊂ R. Wir bezeichnen mit∑
k≥w

gk := die Folge der Partialsummen
n∑

k=w

gk mit n = w,w + 1, . . .

als die zugehörige Funktionenreihe.

Wir erhalten nun folgendes Kriterium für die gleichmäßige Konvergenz von Reihen.

Satz 19.5. (Majoranten-Kriterium für Funktionenreihen) Es sei (gk : D → R)k≥w
eine Folge von Funktionen. Wenn es eine konvergente Reihe

∑
k≥w

bk von reellen Zahlen gibt,

so dass
‖gk‖ ≤ bk für alle k ≥ w,

dann konvergiert die Funktionenreihe
∑
k≥w

gk gleichmäßig.

Beweis. Der Beweis dieser Aussage ist Wort für Wort fast der Gleiche wie der Beweis des
Majoranten-Kriteriums 6.8. Der Vollständigkeit halber führen wir das Argument jedoch
aus.

Um die Notation zu vereinfachen nehmen wir an, dass w = 0. Für n ∈ N0 betrachten wir
die Partialsummen

sn :=
n∑
k=0

gk und tn :=
n∑
k=0

bk.
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Nachdem eine (Funktionen-) Reihe genau dann konvergiert, wenn die Partialsummen eine
Cauchy-Folge bilden müssen wir also folgende Aussage beweisen:

‖gn‖ ≤ bn für alle n ∈ N0 und ∀
ε>0
∃
N∈N

∀
n,m≥N

|tn−tm| < ε =⇒ ∀
ε>0
∃
N∈N

∀
n,m≥N

‖sn−sm‖ < ε.

Es sei also ε > 0 gegeben. Nach Voraussetzung existiert ein N ∈ N0, so dass für alle
n ≥ m ≥ N gilt |tn − tm| < ε. Dann gilt aber auch für alle n ≥ m ≥ N , dass

‖sn − sm‖ =
∥∥∥ n∑
k=m+1

gk

∥∥∥ ≤
n∑

k=m+1

‖gk‖ ≤
n∑

k=m+1

bk = |tn − tm| < ε.
↑ ↑ ↑ ↑

alle anderen Terme Dreiecksungleichung nach Voraussetzung Wahl von N
heben sich weg siehe Lemma 19.1 (1)

�

Wir können jetzt einen neuen Beweis von Satz 7.8 geben.

Satz. 7.8. Die Exponentialfunktion exp: R → R

x 7→
∞∑
k=0

xk

k!
ist stetig.

Beweis. Wir müssen also zeigen, dass die Exponentialfunktion in jedem beliebigen Punkt
x0 ∈ R stetig ist. Wir wählen ein a > 0, so dass x0 ∈ (−a, a). Es genügt zu zeigen, dass die
Einschränkung von exp auf das Intervall (−a, a) stetig ist. Nachdem alle Partialsummen
n∑
k=0

xk

k!
stetig sind, folgt nun aus Satz 19.3, dass es genügt folgende Behauptung zu beweisen.

Behauptung. Die Funktionenreihe
∑
k≥0

xk

k!
konvergiert gleichmäßig auf (−a, a).

Wir setzen gk(x) = xk

k!
. Wir wollen nun mithilfe des Majoranten-Kriteriums 19.5 zeigen,

dass die Funktionenreihe
∑
k≥0
gk auf dem Intervall (−a, a) gleichmäßig konvergiert.

Wir wählen ein K ∈ N, so dass K ≥ 2|a|. Dann gilt für alle k ≥ K und x ∈ (−a, a), dass

|gk(x)| = |gK(x)| ·
∣∣∣∣ gk(x)

gK(x)

∣∣∣∣ =

∣∣∣∣xKK!

∣∣∣∣ ∣∣∣∣xk ·K!

xK · k!

∣∣∣∣ ≤ aK

K!

∣∣∣∣ xk−K

(K+1) · · · · · k

∣∣∣∣ =
aK

K!
· |x|
K + 1︸ ︷︷ ︸
≤ a
K
< 1

2

· · · · |x|
k︸︷︷︸

≤ a
K
< 1

2
<

aK

K!
·
(

1

2

)n−K ↑
denn |x| < a

Daraus folgt insbesondere, dass ‖gk‖ ≤ aK

K!
· (1

2
)k−K . Da die geometrische Reihe

(
1
2

)k−K
konvergiert, folgt nun aus dem Majoranten-Kriterium 19.5, dass die Funktionenreihe

∑
k≥K

gk

gleichmäßig konvergiert. Also konvergiert auch die Funktionenreihe
∑
k≥0
gk gleichmäßig. �
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19.3. Integrale und Funktionenfolgen. Es sei fn : [a, b] → R eine Folge von integrier-
baren Funktionen, welche punktweise gegen eine integrierbare Funktion f : [a, b]→ R kon-
vergiert. Es stellt sich die Frage, ob dann ganz allgemein gilt, dass

b∫
a

lim
n→∞

fn(x)︸ ︷︷ ︸
=f(x)

dx
???
== lim

n→∞

b∫
a

fn(x) dx.

Mit anderen Worten, kann man Grenzwertbildung und Integral vertauschen? Das folgende
Beispiel zeigt, dass das im Allgemeinen nicht der Fall ist.

Beispiel. Wir betrachten die Funktionenfolge (fn)n∈N, welche in der Abbildung unten skiz-

ziert wird. Jede dieser Funktionen ist stetig mit Integral
∫ 2

0
fn(x) dx = 1. Andererseits

konvergiert diese Funktionenfolge (fn)n∈N punktweise gegen die Funktion f(x) = 0. In die-
sem Fall gilt also, dass

2∫
0

f(x) dx = 0 6= 1 = lim
n→∞

2∫
0

fn(x) dx.

3

1

2
Folge von Funktionen fn

wobei
∫ 2

0
fn(x) dx = 1

für alle n f

1 2

3

1

2

f3

f2

f1

1 2

die Funktionenfolge
konvergiert punktweise
gegen die Nullfunktion

Der folgende Satz besagt nun, dass dieses Problem wiederum dadurch umgangen werden
kann, dass man sich auf gleichmäßig konvergente Funktionenfolgen einschränkt.

Satz 19.6. (Konvergenz-Satz für Integrale) Es sei fn : [a, b]→ R eine Folge von Funk-
tionen, welche gleichmäßig gegen f : [a, b] → R konvergiert. Wenn alle Funktionen fn in-
tegrierbar sind, dann ist auch f integrierbar, und es gilt

b∫
a

f(x) dx = lim
n→∞

b∫
a

fn(x) dx.

Im Beweis von Satz 19.6 werden wir folgendes Lemma verwenden.

Lemma 19.7. Es sei g : [a, b]→ R eine beschränkte Funktion. Dann gilt für jede Zerlegung
Z von [a, b], dass

|O(g, Z)| ≤ ‖g‖ · (b− a).

Zudem, wenn g integrierbar ist, dann gilt∣∣∣ b∫
a

g(x) dx
∣∣∣ ≤ ‖g‖ · (b− a).
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Beweis von Lemma 19.7. Für x∈ [a, b] gilt nach Lemma 19.1 (3), dass g(x)∈ [−‖g‖, ‖g‖ ].
Die erste Aussage folgt nun leicht aus den Definitionen. Die zweite Aussage folgt direkt aus
der ersten Aussage. �

Wir können jetzt Satz 19.6 beweisen.

Beweis von Satz 19.6.

Nach Satz 15.2 genügt es, eine Folge von Zerlegungen (Zk)k∈N von [a, b] zu finden,

so dass die dazugehörigen Unter- und Obersummen von f gegen lim
n→∞

∫ b
a
fn(x) dx

konvergieren. Die Idee ist nun für jedes k eine Zerlegung “für fk” zu nehmen, so dass
für große k die Zerlegungen “immer besser werden”.

Wir konstruieren nun eine Folge von Zerlegungen (Zk)k∈N wie folgt. Es sei k ∈ N. Nachdem
fk integrierbar folgt aus Satz 15.2, dass es eine Zerlegung Zk von [a, b] gibt, so dass∣∣∣O(fk, Zk)−

b∫
a

fk(x) dx
∣∣∣ < 1

k
und

∣∣∣U(fk, Zk)−
b∫
a

fk(x) dx
∣∣∣ < 1

k
.

Nach Satz 15.2 genügt es nun folgende Behauptung zu beweisen.

Behauptung. Es ist
lim
k→∞

U(f, Zk) = lim
k→∞

O(f, Zk) = lim
n→∞

b∫
a

fn(x) dx.

Wir werden jetzt zeigen, dass lim
k→∞

O(f, Zk) = lim
n→∞

b∫
a

fn(x) dx. Die Aussage über den

Grenzwert der Untersummen wird dann ganz analog bewiesen.
Wir beginnen mit einer Abschätzung. Für beliebiges k ∈ N0 ist∣∣∣∣O(f, Zk)− lim

n→∞

b∫
a

fn(x) dx

∣∣∣∣
≤

∣∣∣∣O(f, Zk)−O(fk, Zk)

∣∣∣∣+

∣∣∣∣O(fk, Zk)−
b∫
a

fk(x) dx

∣∣∣∣+

∣∣∣∣ b∫
a

fk(x) dx− lim
n→∞

b∫
a

fn(x) dx

∣∣∣∣
=

∣∣∣∣O(f − fk, Zk)
∣∣∣∣︸ ︷︷ ︸

≤ ‖f − fk‖ · |b− a|
nach Lemma 19. 7

+

∣∣∣∣O(fk, Zk)−
b∫
a

fk(x) dx

∣∣∣∣︸ ︷︷ ︸
< 1

k

+ lim
n→∞

∣∣∣∣ b∫
a

fk(x)− fn(x) dx

∣∣∣∣︸ ︷︷ ︸
≤ ‖fn − fk‖ · |b− a|

nach Lemma 19. 7

.

Es sei nun ε > 0. Wir wollen jetzt zeigen, dass für genügend große k alle drei Summanden
< ε

3
sind.

Nachdem die Funktionenfolge fn : [a, b]→ R gleichmäßig gegen f : [a, b]→ R konvergiert,
gibt es ein K1, so dass ‖f − fk‖ < ε

6|b−a| für alle k ≥ K1. Nach Satz 19.4 gibt es zudem ein

K2 ∈ N, so dass ‖fn − fk‖ < ε
6|b−a| für alle n, k ≥ K2. Für alle k ≥ max{K1,

3
ε
, K2} gilt
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dann, dass∣∣∣∣O(f, Zk)− lim
n→∞

b∫
a

fn(x) dx

∣∣∣∣
=

∣∣∣∣O(f − fk, Zk)
∣∣∣∣︸ ︷︷ ︸

≤ ε
6 , da k ≥ K1

+

∣∣∣∣O(fk, Zk)−
b∫
a

fk(x) dx

∣∣∣∣︸ ︷︷ ︸
< ε

3 , da k ≥ 3
ε

+ lim
n→∞

∣∣∣∣ b∫
a

fk(x)− fn(x) dx

∣∣∣∣︸ ︷︷ ︸
≤ ε

6 , da k ≥ K2

≤ ε

6
+

ε

3
+

ε

6
< ε

Wir haben also gezeigt, dass lim
k→∞

O(f, Zk) = lim
n→∞

b∫
a

fn(x) dx. �
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20. Potenzreihen

20.1. Definition von Potenzreihen.

Definition. Es sei w ∈ N0 und es sei (cn)n≥w eine Folge von komplexen Zahlen und es sei
a ∈ C. Eine Potenzreihe ist ein formaler Ausdruck von der Form∑

n≥w
cn · (z − a)n,

wobei z eine Variable ist.
Wir interessieren uns im Folgenden für die Menge der komplexen Zahlen z ∈ C, für

welche eine gegebene Potenzreihe konvergiert.

Beispiel.

(1) Wir betrachten die Potenzreihe
∑
n≥0
zn. Für z ∈ C gilt:

(a) Wenn |z| < 1, dann konvergiert die Reihe
∑
n≥0
zn nach dem Quotientenkriterium.

(b) Wenn |z| ≥ 1, dann ist (zn)n∈N, keine Nullfolge, das heißt die Reihe divergiert.

(2) Betrachten wir die Reihe
∑
n≥1

zn

n
. Es sei z ∈ C.

(a) Wenn |z| < 1 dann konvergiert die Potenzreihe nach dem Quotientenkriterium.
(b) Wenn |z| > 1 dann divergiert die Reihe, nachdem zn

n
keine Nullfolge ist.

(c) Für z = 1 erhalten wir die harmonische Reihe, welche nach Satz 6.5 divergiert.
(d) Für z = −1 konvergiert die Potenzreihe nachdem Leibniz-Kriterium 6.7.
(e) Für z = i ist es eine schöne Übungsaufgabe zu zeigen, dass die Reihe konvergiert.
(f) Die Reihe konvergiert sogar für jedes z ∈ C mit |z| = 1 und z 6= 1. Der Beweis

dieser allgemeineren Aussage ist allerdings etwas kniffelig.
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Punkte bei denen die Potenzreihe
∑
n≥1

zn

n

konvergiert beziehungsweise
divergiert

Notation. Es sei a ∈ C und r ∈ R. Wir bezeichnen

D(a, r) := {z ∈ C | |z − a| ≤ r} als die abgeschlossene Scheibe von Radius r um a
D(a, r) := {z ∈ C | |z − a| < r} die offene Scheibe von Radius r um a.
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a

bei der offenen
Scheibe D(a, r) ist der
Randkreis nicht dabei

a

bei der abgeschlossenen

Scheibe D(a, r) ist
der Randkreis dabeir r

Auf Seite 204 hatten wir die Supremumsnorm einer Funktion f : D → R definiert. Die
Definition überträgt sich problemlos auf komplexe Funktionen:
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Definition. Für D ⊂ C und eine Funktion f : D → C definieren wir die Supremumsnorm

‖f‖ := sup{|f(z)| | z ∈ D} ∈ R≥0 ∪ {∞}.
Der Begriff der gleichmäßigen Konvergenz von Funktionenfolgen, welchen wir auf Seite 205
eingeführt hatten, überträgt sich wort-wörtlich auf komplexe Funktionen.

Satz 20.1. Es sei
f(z) =

∑
n≥w

cn · (z − a)n

eine Potenzreihe, welche für ein z0 ∈ C konvergiert. Für jedes 0 ≤ r < |z0 − a| konvergiert
die Potenzreihe auf der abgeschlossenen Scheibe

D(a, r) = {z ∈ C
∣∣∣ |z − a| ≤ r}

gleichmäßig.
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a
∑
n≥w

cn · (z − a)n konvergiert gleichmäßig auf D(a, r)

z0
die Potenzreihe

∑
n≥w

cn · (z − a)n konvergiert am Punkt z0
r

Beweis. Um die Notation etwas zu vereinfachen, betrachten wir nur den Fall a = 0 und

w = 0. Es sei also f(z) =
∑
n≥0
cn ·zn eine Potenzreihe, welche für ein z0 6= 0 ∈ C konvergiert.

Es sei 0 ≤ r < |z0|. Wir müssen zeigen, dass die Reihe auf D(0, r) = {z ∈ C | |z| ≤ r}
gleichmäßig konvergiert.

Es folgt aus Satz 3.16 und der offensichtlichen Verallgemeinerung des Majoranten-Kri-
terium 19.5 auf komplexe Funktionen-Folgen, dass es genügt folgende Behauptung zu be-
weisen.

Behauptung. Es gibt ein C ∈ R und ein θ ∈ [0, 1), so dass für alle n ∈ N0 gilt:

‖ cn · zn︸ ︷︷ ︸
als Funktion
auf D(0, r)

‖ ≤ C · θn mit anderen Worten |cn · zn| ≤ C · θn alle z ∈ D(0, r).

Für z ∈ D(0, r) und n ∈ N0 ist |cn · zn| = |cn · zn0 | · | zz0 |
n. Wir wollen jetzt also den

ersten Faktor durch eine feste Zahl C abschätzen und den zweiten Term durch einen
Term θn, wobei θ ∈ [0, 1).

Nachdem die Reihe
∑
n≥w

cn · zn0 konvergiert, folgt aus Satz 6.3 zusammen mit Satz 3.3, dass

die Folge (cn · zn0 )n∈N0 beschränkt ist. Es existiert also ein C ∈ R, so dass

|cn · zn0 | ≤ C

für alle n ∈ N0. Setzen wir zudem θ := | r
z0
|, dann gilt für alle z ∈ D(0, r) und alle n ∈ N0,

dass
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|cn · zn| = |cn · zn0 | ·
( |z|
|z0|

)n
≤ |cn · zn0 | ·

∣∣ r
z0

∣∣︸︷︷︸
=θ

n ≤ C · θn.
↑

denn z∈D(0, r) �

20.2. Der Konvergenzradius einer Potenzreihe.

Definition. Es sei f(z) =
∑
n≥w

cn · (z − a)n eine Potenzreihe. Wir bezeichnen

R := sup
{
|z − a|

∣∣ ∑
n≥w

cn · (z − a)n konvergiert
}
∈ R≥0 ∪ {∞}

als den Konvergenzradius der Potenzreihe f(z).

In folgendem Lemma bestimmen wir einige interessante Konvergenzradien.

Lemma 20.2.

(1) Der Konvergenzradius der Reihen
∑
n≥0
zn und

∑
n≥1

zn

n
ist eins.

(2) Der Konvergenzradius der Exponentialreihe
∑
n≥0

zn

n!
ist ∞.

Beweis.

(1) Auf Seite 212 hatten wir gesehen, dass beide Reihen für alle z ∈ C mit |z| < 1
konvergieren. Also ist der Konvergenzradius mindestens 1. Andererseits hatten wir
auch gesehen, dass beide Reihen für alle z ∈ C mit |z| > 1 divergieren, also ist der
Konvergenzradius höchstens 1.

(2) Der Beweis von Satz 6.17 zeigt, dass die Exponentialreihe
∑
n≥0

zn

n!
für jedes z ∈ C

konvergiert, also ist der Konvergenzradius ∞. �

Lemma 20.3. Es sei f(z) =
∑
n≥w

cn · (z − a)n eine Potenzreihe mit Konvergenzradius R.

Für jedes z ∈ C gilt |z − a| < R =⇒ f(z) konvergiert,
|z − a| > R =⇒ f(z) divergiert.
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die Potenzreihe divergiert außerhalb der geschlossenen Scheibe D(a,R)

a

Konvergenzradius der Potenzreihe
∑
n≥w

cn · (z − a)n

die Potenzreihe konvergiert auf der offenen Scheibe D(a,R)

es gibt keine allgemeine Aussage für die
Konvergenz auf dem Kreis |z − a| = R
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Bemerkung. Am Beispiel der Reihe
∑
n≥1

zn

n
auf der Seite 212 hatten wir schon gesehen, dass

wir keine allgemeine Aussage über die Konvergenz einer Reihe für komplexe Zahlen z mit
|z − a| = R treffen können.

Beweis.

(1) Es sei also z ∈ C mit |z−a| < R. Dann existiert per Definition des Konvergenzradius
ein z0 ∈ C mit |z − a| < |z0 − a|, und so dass die Potenzreihe f(z0) konvergiert. Es
folgt dann aus Satz 20.1, angewandt auf r := |z − a|, dass die Potenzreihe f(z)
ebenfalls konvergiert.

(2) Die zweite Aussage folgt aus der Definition von R. �
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a Konvergenzradius der Potenzreihe
∑
n≥w

cn · (z − a)n

z0
z

Den Begriff von Stetigkeit kann man wort-wörtlich auch für komplexe Funktionen über-
nehmen. Genauer gesagt, wir haben folgende Definition.

Definition. Es sei D ⊂ C eine Teilmenge, es sei f : D → C eine Funktion und es sei z ∈ D.
Wir definieren

f ist stetig im Punkt z :⇐⇒ ∀
ε>0
∃
δ>0

∀
z ∈ D mit
|w − z| < δ

|f(w)− f(z)| < ε.

Wir sagen f : D → C ist stetig, wenn f in jedem Punkt des Definitionsbereichs stetig ist.

Wir können nun folgendes Lemma formulieren und beweisen.

Lemma 20.4. Es sei f(z) =
∑
n≥0
cn · (z−a)n eine Potenzreihe mit Konvergenzradius R. Die

Funktion
D(a,R) → C

z 7→ f(z)

ist stetig.

Beispiel. Lemma 20.4, zusammen mit Lemma 20.2, gibt uns einen weiteren Beweis der
Stetigkeit der Exponentialfunktion. Zudem kann mit Lemma 20.4 problemlos beweisen,
dass die Sinus- und die Kosinusfunktion stetig sind.

Beweis. Es sei also z ∈ C mit |z− a| < R. Wir wollen zeigen, dass f im Punkt z stetig ist.
Per Definition des Konvergenzradius existiert ein z0 ∈ C mit |z− a| < |z0− a|, und so dass
die Potenzreihe f(z0) konvergiert. Wir wählen ein r mit |z − a| < r < |z0 − a|. Es folgt
aus Satz 20.1, angewandt auf r, dass die Potenzreihe f(z) auf der abgeschlossenen Scheibe

D(a, r) gleichmäßig konvergiert. Es folgt dann aus der offensichtlichen Verallgemeinerung
von Satz 19.3 auf komplexe Funktionen, dass f stetig ist auf der abgeschlossenen Scheibe
D(a, r) ist. Nachdem z ∈ D(a, r) folgt, dass die Funktion f im Punkt z stetig ist. �
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z0

R D(a, r)

z z

Im nächsten Kapitel wird folgendes etwas technische Lemma eine wichtige Rolle spielen.

Lemma 20.5. Es sei f(z) =
∑
n≥w

cn · (z − a)n eine Potenzreihe und es sei k ∈ Z. Es gilt:

Konvergenzradius von
∑
n≥w

nk · cn · (z − a)n = Konvergenzradius von
∑
n≥w

cn · (z − a)n.

Beispiel. Wir hatten schon auf Seite 212 gesehen, dass die beiden Reihen
∑
n≥1

1
n
· zn und∑

n≥1
zn den gleichen Konvergenzradius 1 besitzen. An diesem Beispiel sieht man auch, dass

sich die Konvergenz auf dem Kreis |z − a| = r durchaus ändern kann.

Beweis (∗). Um die Notation etwas zu vereinfachen, betrachten wir wieder den Spezialfall

a = 0 und w = 0. Der allgemeine Fall wird ganz analog bewiesen. Es sei also f(z) =
∑
n≥0
cn·zn

eine Potenzreihe und es sei k ∈ Z.

Behauptung 1. Es sei (dn)n∈N0 eine Folge von reellen Zahlen, so dass für alle θ ∈ [0, 1) gilt,
dass lim

n→∞
dn · θn = 0. Dann gilt für jede Folge (sn)n∈N0 von komplexen Zahlen, dass

Konvergenzradius von
∑
n≥0

dn · sn · zn ≥ Konvergenzradius von
∑
n≥0

sn · zn.

Es folgt aus der Definition des Konvergenzradius, dass es genügt zu beweisen, dass wenn

die Potenzreihe
∑
n≥0
sn · zn für ein z0 ∈ C konvergiert, dann konvergiert die Potenzreihe∑

n≥0
dn · sn · zn für jedes z ∈ C mit |z| < |z0|. Es sei also solch ein z0 ∈ C gegeben und es sei

zudem z ∈ C mit |z| < |z0|. Wir wählen v, w ∈ C mit |z| < |v| < |w| < |z0|. Dann gilt∑
n≥0

dn · sn · zn =
∑
n≥0

dn ·
(z
v

)n · sn · wn · ( v
w

)n
.

Da θ :=
∣∣ z
w

∣∣ < 1 folgt aus der Voraussetzung, dass lim
n→∞

∣∣dn · ( zw)n∣∣ = lim
n→∞

dn ·
∣∣ z
w

∣∣n = 0.

Zudem konvergiert nach Voraussetzung die Reihe
∞∑
n=0
sn · wn, also ist auch |sn · wn| eine

Nullfolge. Da | v
w
| < 1 sehen wir nun, wie im Beweis von Satz 20.1, dass die Reihe

∑
n≥0
dn·sn·zn

konvergiert. �

Behauptung 2. Die Voraussetzung von Behauptung 1 ist erfüllt für die Folge dn = nk.

Es sei s ∈ [0, 1).

(1) Wenn k ≤ 0, dann folgt aus Satz 3.9 und Lemma 3.12, dass lim
n→∞

nk · sn = 0.
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(2) Wenn k ≥ 0, dann folgt aus Regel von l’Hôpital, angewandt wie auf Seite 171,
zusammen mit Lemma 14.9, dass lim

n→∞
nk · sn = 0. �

Wir erhalten nun folgende Gleichheit:

Konvergenzradius von
∑
n≥0

nk · cn · zn = Konvergenzradius von
∑
n≥0

cn · zn.
↑

≥ folgt aus Behauptung 1, angewandt auf dn = nk und sn = cn
≤ folgt aus Behauptung 1, angewandt auf dn = n−k und sn = nk · cn �

20.3. Ableitungen und Stammfunktionen von Potenzreihen. Im Folgenden betrach-
ten wir Ableitungen und Stammfunktionen von Funktionen, welche durch Potenzreihen
definiert werden. Nachdem wir den Begriff der Ableitung und der Stammfunktion von
komplexen Funktionen noch nicht definiert haben, werden wir von jetzt an nur noch reelle
Reihen betrachten.

Der folgende Satz besagt, dass man durch Potenzreihen definierte Funktionen “naiv”
ableiten und aufleiten kann.

Satz 20.6. Es sei (cn)n∈N eine Folge von reellen Zahlen und es sei a ∈ R. Wir nehmen

an, dass es ein R > 0 gibt, so dass die Reihe
∑
n≥0
cn · (x − a)n für alle x ∈ (a − R, a + R)

konvergiert. Dann gilt auf dem Intervall (a−R, a+R):

(1)
d

dx

∞∑
n=0

cn · (x− a)n =
∞∑
n=1

n · cn · (x− a)n−1 “gliedweise Ableitung”

(2)
∫ ∞∑

n=0

cn · (x− a)n dx
.
=

∞∑
n=0

cn
n+ 1

· (x− a)n+1 “gliedweise Aufleitung”.

Insbesondere konvergieren die Reihen auf der rechten Seite für alle x ∈ (a−R, a+R).

Beispiel.

(1) Wir betrachten die Exponentialfunktion. Es gilt

d

dx
exp(x) =

d

dx

∞∑
n=0

xn

n!
=

∞∑
n=1

n · x
n−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
k=0

xk

k!
= exp(x).

↑ ↑ ↑
folgt aus Satz 20.6 denn n

n! = 1
(n−1)! Substitution k = n− 1

Wir haben also noch einmal gezeigt, dass die Ableitung der Exponentionalfunktion
wiederum die Exponentialfunktion ist.

(2) Es ist sehr amüsant mithilfe von Satz 20.6 zu zeigen, dass d
dx

sin(x) = cos(x), und

dass d
dx

cos(x) = − sin(x).

Beweis. Es sei (cn)n∈N eine Folge von reellen Zahlen und R der Konvergenzradius der

Potenzreihe
∑
n≥0
cn · (x− a)n. Es folgt aus Lemmas 20.3 und 20.5, dass die beiden Reihen∑
n≥1

n · cn · (x− a)n−1 und
∑
n≥0

1

n+ 1
· cn · (x− a)n+1
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ebenfalls auf (a−R, a+R) konvergieren.
Wir beweisen nun zuerst Aussage (2). Per Definition einer Stammfunktion müssen wir

also zeigen, dass auf (a−R, a+R) folgende Gleichheit gilt:

d

dx

(
x 7→

∞∑
n=0

cn
n+ 1

· (x− a)n+1

)
=

(
x 7→ f(x) :=

∞∑
n=0

cn · (x− a)n
)
.

In der Tat gilt für alle x ∈ (a−R, a+R):

∞∑
n=0

cn · (x− a)n = f(x) =
d

dx

x∫
a

f(t) dt =
d

dx

x∫
a

lim
k→∞

k∑
n=0

cn · (t− a)n dt
↑ ↑

per Definition die Funktion f(x) =
∞∑
n=0

cn · (x− a)n ist stetig nach Lemma 20.4, die Gleichheit

folgt also aus dem Hauptsatz 16.3 der Differential- und Integralrechnung

=
d

dx
lim
k→∞

x∫
a

k∑
n=0

cn · (t− a)n dt =
d

dx
lim
k→∞

[
k∑

n=0

cn
n+ 1

· (t− a)n+1

]x
a↑ ↑

nach Satz 20.1 konvergiert die Funktionenfolge
∑k
n=0 cn ·(t−a)n übliche Integration von Polynomen

auf dem abgeschlossenen Intervall von a bis x gleichmäßig, es folgt
also aus Satz 19.6, dass wir “den Grenzwert rausziehen können”

=
d

dx
lim
k→∞

k∑
n=0

cn
n+ 1

· (x− a)n+1 =
d

dx

∞∑
n=0

cn
n+ 1

· (x− a)n+1.

Wir beweisen nun Aussage (1). Wir müssen also beweisen, dass ganz allgemein gilt:

(a)
d

dx

∞∑
n=0

dn · (x− a)n =
∞∑
n=1

n · dn · (x− a)n−1.

Mit anderen Worten, wir müssen beweisen, dass

(b)
∞∑
n=0

dn · (x− a)n
.
=
∫ ∞∑

n=1

n · dn · (x− a)n−1 dx.

Aber die umformulierte Aussage folgt sofort aus (2), angewandt auf cn = n · dn. �

Beispiel.

(1) Aus der Satz 3.16, angewandt auf z = −x, folgt, dass

1

1 + x
=

∞∑
n=0

(−1)n · xn für alle x ∈ (−1, 1).

Wir betrachten jetzt Stammfunktionen dieser Funktion. Aus d
dx

ln(x) = 1
x
, aus Satz 20.6

und aus Lemma 16.1 folgt, dass es ein C ∈ R gibt, so dass

ln(1 + x) =
∞∑
n=0

(−1)n · x
n+1

n+ 1
+ C für alle x ∈ (−1, 1).

Indem wir x = 0 einsetzen, sehen wir, dass C = 0. Also ist

ln(1 + x) =
∞∑
n=0

(−1)n · x
n+1

n+ 1
für alle x ∈ (−1, 1).
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Es folgt aus dem Leibniz-Kriterium 6.7, dass die Reihe auf der rechten Seite für x = 1
konvergiert. Es stellt sich die Frage, ob die obige Gleichheit auch für x = 1 gilt. Wir
werden die Fragen im nächsten Teilkapitel beantworten.

(2) Aus Satz 3.16, angewandt auf z = −x2, folgt auch, dass

1

1 + x2
=

∞∑
n=0

(−1)n · x2n für alle x ∈ (−1, 1).

Wir betrachten jetzt Stammfunktionenen dieser Funktion. Aus d
dx

arctan(x) = 1
1+x2

,
aus Satz 20.6 und aus Lemma 16.1 folgt, dass es ein C ∈ R gibt, so dass

arctan(x) =
∞∑
n=0

(−1)n · x
2n+1

2n+ 1
+ C für alle x ∈ (−1, 1).

Indem wir wiederum x = 0 einsetzen, sehen wir, dass C = 0. Also ist

arctan(x) =
∞∑
n=0

(−1)n · x
2n+1

2n+ 1
für alle x ∈ (−1, 1).

Es folgt wiederum aus dem Leibniz-Kriterium 6.7, dass die Reihe auf der rechten
Seite für x = −1 und x = 1 konvergiert. Auch hier stellt sich die Frage, ob die
obige Gleichheit auch für x = ±1 gilt, und auch dieses Mal werden wir die Frage im
nächsten Teilkapitel beantworten.

20.4. Der abelsche Grenzwertsatz und seine Anwendungen.

Satz 20.7. (Abelscher Grenzwertsatz) Es sei (cn)n∈N eine Folge von reellen Zahlen
und a ∈ R. Es sei

f(x) =
∑
n≥0

cn · (x− a)n

die dazugehörige Potenzreihe. Wenn die Potenzreihe f für ein x0 > a konvergiert, dann ist
die Funktion x 7→ f(x) auf dem Intervall [a, x0] stetig.

Beweis. Es sei x0 > a, so dass die Potenzreihe f(x) =
∑
n≥0
cn ·(x−a)n für x = x0 konvergiert.

Um die Notation etwas zu vereinfachen, nehmen wir an, dass a = 0 und x0 = 1. Der
allgemeine Fall wird ganz analog bewiesen.

Wir müssen zeigen, dass die Funktion x 7→
∞∑
n=0
cn · xn auf dem abgeschlossenen Intervall

[0, 1] stetig ist. Es folgt aus Lemma 20.4, dass die Funktion auf dem halb-offenem Intervall

[0, 1) stetig ist. Es verbleibt also zu zeigen, dass die Funktion x 7→
∞∑
n=0
cn ·xn auch im Punkt

x = 1 stetig ist.
Es sei also ε > 0. Wir müssen zeigen, dass es ein δ > 0 gibt, so dass |f(1) − f(x)| < ε

für alle x ∈ (1− δ, 1]. Folgende Behauptung wird es uns erlauben f(1)− f(x) in den Griff
zu kriegen.

Behauptung. Für jedes x ∈ [0, 1) gilt

f(1)− f(x) = (1− x) ·
∞∑
n=0

(s− sn) · xn, wobei sk :=
k∑

n=0

cn und s := f(1) =
∞∑
n=0

cn.
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Wir setzen zudem s−1 := 0. Für x ∈ [0, 1) gilt dann, dass
elementare Umformung

↓
f(x) =

∞∑
n=0

cn · xn = lim
k→∞

k∑
n=0

cn · xn = lim
k→∞

k∑
n=0

(sn − sn−1)︸ ︷︷ ︸
=cn

· xn =

= lim
k→∞

(
sk · xk + (1− x) ·

k−1∑
n=0
sn · xn

)
= (1− x) ·

∞∑
n=0

sn · xn.
↑

wir hatten vorausgesetzt, dass die Potenzreihe bei x = 1 konvergiert,
die Folge der Partialsummen (sk) ist daher konvergent, insbesondere beschränkt,

da x ∈ [0, 1) ist (xk) eine Nullfolge, also ist nach Satz 3.5 auch sk · xk eine Nullfolge

Es folgt nun, dass für jedes x ∈ [0, 1) gilt:

f(1)− f(x) = s · (1− x) ·
∞∑
n=0

xn︸ ︷︷ ︸
= 1, nach Satz 3.16

− (1− x) ·
∞∑
n=0

sn · xn︸ ︷︷ ︸
= f(x), siehe oben

= (1− x) ·
∞∑
n=0

(s− sn) · xn.

�

Nachdem lim
n→∞

(s− sn) = 0 existiert ein N ∈ N, so dass |s− sn| < ε
2

für alle n ≥ N . Für

alle x ∈ [0, 1) gilt dann:

obige Behauptung Lemma 6.2
↓ ↓∣∣∣f(1)− f(x)

∣∣∣ =
∣∣∣(1− x)·

∞∑
n=0

(s−sn)·xn
∣∣∣ =

∣∣∣(1− x)·
N−1∑
n=0

(s−sn)·xn + (1− x)·
∞∑
n=N

(s−sn)·xn
∣∣∣

≤ (1− x) ·
N−1∑
n=0

|s− sn|·xn︸ ︷︷ ︸
≤ C: =

N-1∑
n=0
|s–sn|

+ (1− x) ·
∞∑
n=N

ε

2
·xn︸ ︷︷ ︸

≤ ε
2 ·
∞∑
n=0

xn = ε
2

1
1–x

≤ (1− x) · C +
ε

2
.x

Satz 6.10

Für x ∈ (1− ε
2C
, 1) gilt dann also wie erhofft, dass

|f(1)− f(x)| ≤ (1− x) · C +
ε

2
<

ε

2
+

ε

2
= ε.

↑
denn x ∈ (1− ε

2C , 1) �

Beispiel.

(1) Auf Seite 218 hatten wir gesehen, dass

ln(1 + x) =
∞∑
n=0

(−1)n · x
n+1

n+ 1
für alle x ∈ (−1, 1).

Es folgt aus dem Leibniz-Kriterium 6.7, dass die Reihe auf der rechten Seite für x = 1
konvergiert. Aus der Stetigkeit der Logarithmusfunktion und aus Satz 20.7 folgt nun,
dass beide Seiten stetig auf dem Intervall [0, 1] sind. Die obige Gleichheit setzt sich
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also auf x = 1 fort.106 Wir sehen also, dass

ln(1 + x) =
∞∑
n=0

(−1)n · x
n+1

n+ 1
für alle x ∈ (−1, 1].

↑
Insbesondere erhalten wir also:

ln(2) =
∞∑
n=0

(−1)n · 1

n+ 1
.

Wir können die rechte Seite noch etwas umformen, und wir erhalten, dass

− ln(2) =
∞∑
n=1

(−1)n · 1

n
.

Wir haben jetzt also den Wert eine der Reihen, welche wir mit am längsten kennen,

explizit bestimmt. Die Graphen von ln(1 + x) und der Reihe
∞∑
n=0

(−1)n · xn+1

n+1
können

zudem hier betrachtet werden:

https://www.desmos.com/calculator/7sfr2txfwd

(2) Auf Seite 219 hatten wir gesehen, dass

arctan(x) =
∞∑
n=0

(−1)n · x
2n+1

2n+ 1
für alle x ∈ (−1, 1).

Es folgt aus dem Leibniz-Kriterium 6.7, dass die Reihe auf der rechten Seite für
x = −1 und x = 1 konvergiert. Aus der Stetigkeit der Arkustangensfunktion und aus
Satz 20.7 folgt nun, dass beide Seiten auf [−1, 1] stetig sind. Die obige Gleichheit gilt
also auch für x = −1 und x = 1. Wir sehen also insbesondere, dass

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
.

Zur annäherungsweisen Berechnung von π ist diese Darstellung allerdings ungeeignet,
weil die Reihe nur “langsam” konvergiert. Beispielsweise, wenn Sie π

4
bis auf sechs

Stellen berechnen wollen, dann müssen Sie die Summe
n∑
k=0

(−1)k
2k+1

für n = 500.000

berechnen.

106Wir verwenden hierbei folgende Tatsache: es seien f, g : [a, b] → R zwei Funktionen. Wenn f und g
auf [a, b) übereinstimmen, und wenn f und g stetig sind, dann gilt auch f(b) = g(b).

https://www.desmos.com/calculator/7sfr2txfwd
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21. Das Taylorpolynom

21.1. Höhere Ableitungen und C∞-Funktionen. Wir erinnern zuerst an folgende harm-
lose Definition, welche wir auf Seite 154 eingeführt hatten.

Definition. Es sei f : I → R eine differenzierbare Funktion auf einem offenen Intervall.

(1) Wenn die Ableitung f ′ differenzierbar ist, dann schreiben wir

f (2) := f ′′ := (f ′)′, genannt die 2. Ableitung von f .

(2) Wenn die (n− 1)-te Ableitung von f differenzierbar ist, dann definieren wir die n-te
Ableitung von f als

f (n) := (f (n−1))′

und wir sagen, f ist n-fach differenzierbar.
(3) Wir erweitern die Notation f (n) und schreiben manchmal f (0) := f und f (1) := f ′.
(4) Wir sagen f ist eine C∞-Funktion, wenn f beliebig oft differenzierbar ist.107

Beispiel.

(1) Es sei n ∈ N. Man kann problemlos zeigen, dass die Funktion

f : R → R

x 7→
{ −xn+1, wenn x ≤ 0,

xn+1, wenn x > 0

n-fach differenzierbar ist mit f (n)(x) = (n+ 1)! · |x|. Nachdem f (n)(x) nicht differen-
zierbar ist, sehen wir, dass f nicht (n+ 1)-fach differenzierbar ist.

(2) Es folgt aus Lemma 12.1 und den Ableitungsregeln 12.4, dass Polynomfunktionen
C∞-Funktionen sind.

(3) Es folgt aus Satz 12.6, dass die Exponentialfunktion, die Sinusfunktion sowie die
Kosinusfunktion C∞-Funktionen sind.

(4) Es folgt aus den Ableitungsregeln 12.4, der Kettenregel 12.7 und der Umkehrre-
gel 12.9, dass beliebige Summen, Produkte, Quotienten, Verknüpfungen und Umkeh-
rungen von C∞-Funktionen wieder C∞-Funktionen sind.

21.2. Approximationen von Funktionen.

Definition. Es sei f : I → R eine Funktion auf einem offenen Intervall und es sei x0 ∈ I.
Wir sagen eine Funktion a : I → R ist eine Approximation von f am Punkt x0 von n-ter
Ordnung, wenn

lim
x→x0

f(x)− a(x)

(x− x0)n
= 0.

Bemerkung.

(1) Die Intuition bei der Definition von “Approximation” ist wie folgt. Für x “nahe” bei
x0 wird der Nenner (x − x0)k “sehr klein”. Damit der Grenzwert des Bruchs 0 ist,

107Für n ∈ N0 bezeichnet man in der Literatur eine Funktion f als Cn-Funktion, wenn f n-fach diffe-
renzierbar ist, und wenn f (n) stetig ist. Wir werden diesen Begriff nicht verwenden.
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muss auch der Zähler “sehr klein” werden, d.h. die Funktionswerte von a müssen
“nahe” an den Funktionswerten von f liegen.

(2) Wenn a eine Approximation von k-ter Ordnung ist, dann ist a auch für jedes l ≤ k
eine Approximation von l-ter Ordnung.108

Das Ziel ist eine “komplizierte” Funktion f durch einfachere Funktionen zu approximie-
ren. Das folgende Lemma gibt uns ein wichtiges Beispiel einer Approximation.

Lemma 21.1. Es sei f : I → R eine differenzierbare Funktion auf einem offenen Intervall
und es sei x0 ∈ I. Die Linearisierung

p(x) := f(x0) + f ′(x0) · (x− x0)
ist eine Approximation von f am Punkt x0 von erster Ordnung.

Graph von f
Linearisierung
p(x) := f(x0) + f ′(x0) · (x− x0)

x0

Beweis. Das Lemma folgt aus folgender Berechnung:

lim
x→x0

f(x)− p(x)

x− x0
= lim

x→x0

f(x)− (f(x0) + f ′(x0) · (x− x0))

x− x0
= lim

x→x0

f(x)− f(x0)

x− x0︸ ︷︷ ︸
= f ’(x0), per Definition

siehe auch Seite 145

− lim
x→x0

f ′(x0) · (x− x0)

(x− x0)︸ ︷︷ ︸
=f ′(x0)

= f ′(x0)− f ′(x0) = 0.

�

21.3. Taylorpolynome. Wir haben in Lemma 21.1 gesehen, dass wir für eine gegebene
differenzierbare Funktion an jedem Punkt x0 eine Approximation erster Ordnung durch
eine lineare Funktion geben können. Das Ziel ist nun zu zeigen, dass wir allgemeiner Ap-
proximationen n-ter Ordnung durch Polynome von Grad ≤ n geben können.

Um solche Polynome zu finden, beweisen wir erst einmal folgendes Lemma.

Lemma 21.2. Es sei f : I → R eine C∞-Funktionen auf einem offenen Intervall und es
sei x0 ∈ I. Für eine C∞-Funktion a : I → R gilt:

a ist eine Approximation von f
am Punkt x0 von n-ter Ordnung

⇐⇒ für alle k ∈ {0, . . . , n}
gilt a(k)(x0) = f (k)(x0).

108In der Tat, denn wenn l < k, dann gilt

lim
x→x0

f(x)− a(x)

(x− x0)l
= lim

x→x0

f(x)− a(x)

(x− x0)k
· (x− x0)k−l = lim

x→x0

f(x)− a(x)

(x− x0)k︸ ︷︷ ︸
=0

· lim
x→x0

(x− x0)k−l︸ ︷︷ ︸
=0, da k>l

= 0.
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Beweis. Wir zeigen zuerst die “⇐”-Aussage. Wir nehmen also an, dass für k = 0, . . . , n
gilt: f (k)(x0)− a(k)(x0) = 0. Dann gilt:

da f (k)(x0)− a(k)(x0) = 0 für k = 0, . . . , n können wir die Regel 14.5 von l’Hôpital anwenden
↓ ↓

lim
x→x0

f(x)−a(x)
(x−x0)n

l′H
= lim

x→x0

f (1)(x)−a(1)(x)
n·(x−x0)n−1

l′H
= . . .

l′H
= lim

x→x0

f (n−1)(x)−a(n−1)(x)
n!·(x−x0)

l′H
= lim

x→x0

f (n)(x)−a(n)(x)
n! =

f (n)(x0)−a(n)(x0)
n! = 0.

↑
folgt aus Satz 14.1, und der Voraussetzung,

dass f (n) und a(n) differenzierbar, also auch stetig sind

Wir wenden uns nun dem Beweis der “⇒”-Aussage zu.109 Wir setzen r(x) = f(x)−a(x).
Wir nehmen also an, dass

lim
x→x0

r(x)

(x− x0)n
= 0,

und wir müssen folgende Behauptung beweisen.

Behauptung. Für k = 0, . . . , n gilt r(k)(x0) = 0

Es genügt zu zeigen, dass wenn wir ein k ∈ {0, . . . , n} haben, so dass r(i)(x0) = 0 für
i = 0, . . . , k− 1, dann gilt auch r(k)(x0) = 0. Dies folgt in der Tat aus folgender Rechnung:

0 = lim
x→x0

r(x)

(x− x0)k
l′H
= lim

x→x0

r(1)(x)

k · (x− x0)k−1
l′H
= . . .

l′H
= lim

x→x0

r(k−1)(x)

k! · (x− x0)

l′H
= lim

x→x0

r(k)(x)

k!↑ ↑ ↑ ↑ ↑
nach Voraussetzung nach der Regel 14.5 von l’Hôpital, da r(x) = r(1)(x0) = · · · = r(k−1)(x0) = 0
und der Bemerkung

auf Seite 223 =
1

k!
· lim
x→x0

r(k)(x) =
1

k!
· r(k)(x0).

↑
weil r(k) stetig. �

Es sei nun f : I → R eine C∞-Funktion und es sei x0 ∈ I. Zur Erinnerung, wir suchen
ein Polynom p vom Grad n, welches am Punkt x0 eine Approximation von f von n-ter
Ordnung ist. Nach Lemma 21.2 genügt es ein Polynom zu finden, dessen Funktionswert
und dessen erste n Ableitungen am Punkt x0 mit denen von f übereinstimmen.

Die Idee ist nun, Polynome von der Form110111

p(x) =
n∑
i=0

bi · (x− x0)i

zu betrachten. Bevor wir uns der Bestimmung der richtigen Koeffizienten bi zuwenden, wol-
len wir erst einmal die Ableitungen von solch einem Polynom p(x) am Punkt x0 studieren.
Wir beweisen dazu folgendes elementare Lemma.

109Im weiteren Verlauf der Vorlesung benötigen wir nur die “⇐”-Aussage. Wir geben den Beweis der
“⇒”-Aussage nur der Vollständigkeit halber.

110Durch Ausmultiplizieren sieht man leicht, dass
n∑
i=0

bi · (x− x0)i in der Tat ein Polynom ist.

111Die Linearisierung f(x0) + f ′(x0) · (x− x0) ist genau von diesem Typ.
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Lemma 21.3. Es seien b0, . . . , bn ∈ R. Dann gilt für k ∈ N0, dass

k-te Ableitung von x 7→
n∑
i=0

bi · (x− x0)i am Punkt x0 =

{
k! · bk, wenn k ≤ n,
0, sonst.

Beweis. Für ein beliebiges i ∈ {0, . . . , n} gilt:

k-te Ableitung von bi · (x− x0)i =

{
0, wenn i < k,
i·(i−1)...(i−k+1)·bi ·(x− x0)i−k, wenn i ≥ k.

Insbesondere verschwindet die k-te Ableitung am Punkt x0, außer für k = i. Für k = i ist
die Ableitung am Punkt x0 dann gerade k!·bk. Das Lemma folgt nun aus der Summenformel
für Ableitungen. �

Wenn die k-te Ableitung eines Polynoms p(x) =
n∑
i=0

bi · (x− x0)i mit der k-ten Ableitung

von einer gegebenen Funktion f übereinstimmen soll, dann muss nach Lemma 21.3 also
insbesondere bk = 1

k!
· f (k)(x0) gelten. Diese Diskussion führt uns zu folgender Definition.

Definition. Es sei f : I → R eine C∞-Funktion auf einem offenen Intervall und es sei x0 ∈ I.
Wir bezeichnen

pn,x0(f)(x) :=
n∑
k=0

f (k)(x0)

k!
· (x− x0)k

als das n-te Taylorpolynom von f bei x0. Wenn f und x0 aus dem Kontext klar ersichtlich
sind, dann schreiben wir oft einfach auch pn(x).

Bemerkung. Wir können das n-te Taylorpolynom pn(x) := pn,x0(f)(x) natürlich auch wie
folgt ausschreiben:

f(x0)︸ ︷︷ ︸
k=0

+ f ′(x0)(x−x0)︸ ︷︷ ︸
k=1

+
f ′′(x0)

2
· (x−x0)2︸ ︷︷ ︸
k=0

+
f (3)(x0)

3!
· (x−x0)3︸ ︷︷ ︸
k=3

+ · · ·+ f (n)(x0)

n!
· (x−x0)n︸ ︷︷ ︸
k=n

.

Insbesondere sehen wir, dass das erste Taylorpolynom

p1(x) = f(x0) + f ′(x0) · (x− x0)

nichts anderes als die Linearisierung ist, welche wir schon auf Seite 146 eingeführt hatten.
Die Graphen der Taylorpolynome bis fünfter Ordnung für eine beliebige Funktion und ein
beliebiges x0 können hier betrachtet werden:

https://www.desmos.com/calculator/qerqzsmoau

Bevor wir uns den Beispielen zuwenden wollen wir noch schnell folgenden Satz formulie-
ren und beweisen.

Satz 21.4. Es sei f : I → R eine C∞-Funktion auf einem offenen Intervall und es sei
x0 ∈ I. Das n-te Taylorpolynom pn,x0(f) ist eine Approximation zu f am Punkt x0 von
n-ter Ordnung.

https://www.desmos.com/calculator/qerqzsmoau
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Beweis. Es folgt direkt aus Lemma 21.3 und der Definition des n-ten Taylorpolynoms, dass
für k = 0, 1, . . . , n gilt f (k)(x0) = pn,x0(f)(k)(x0). Es folgt also aus Lemma 21.2, dass pn(x)
eine Approximation von f von n-ter Ordnung am Punkt x0 liefert. �

Beispiel. Wir betrachten die Sinusfunktion f(x) = sin(x). Wir wollen die Taylorpolynome
bei x0 = 0 bestimmen. Wir berechnen dazu folgende Tabelle:

k k-te Ableitung von sin(x) k-te Ableitung bei x0 = 0
f (k)(0)

k!

0 f (0)(x) = sin(x) f (0)(0) = 0, 0
1 f (1)(x) = cos(x) f (1)(0) = 1 1
2 f (2)(x) = − sin(x) f (2)(0) = 0 0
3 f (3)(x) = − cos(x) f (3)(0) = −1 −1/3!
4 f (4)(x) = sin(x) f (4)(0) = 0 0
5 f (5)(x) = cos(x) f (5)(0) = 1 1/5!
...

...
...

...
...

...

Beispielsweise ist das 9-te Taylorpolynom der Sinusfunktion sin(x) bei x0 = 0 gegeben
durch:

p9(x) = x − 1

3!
· x3 +

1

5!
· x5 − 1

7!
· x7 +

1

9!
· x9.

Die Graphen von sin(x) und den ersten Taylorpolynomen bei x0 = 0 kann man hier be-
trachten:

https://www.desmos.com/calculator/gftfx6hrys.

Wir sehen insbesondere, dass die Taylorpolynome von sin(x) =
∞∑
k=0

(−1)k · x2k+1

(2k+1)!
bei x0 = 0

gerade den Partialsummen der Reihe entsprechen. Wir werden gleich sehen, dass das kein
Zufall ist.

Beispiel. Wir betrachten die Logarithmusfunktion f(x) = ln(x). Wir wollen die Taylorpo-
lynome bei x0 = 1 bestimmen. Wir berechnen dazu folgende Tabelle:

k k-te Ableitung von ln(x) k-te Ableitung bei x0 = 1
f (k)(1)

k!

0 f (0)(x) = ln(x) f (0)(1) = 0, 0
1 f (1)(x) = x−1 f (1)(1) = 1 1
2 f (2)(x) = −1 · x−2 f (2)(1) = −1 −1/2
3 f (3)(x) = 2 · x−3 f (3)(1) = 2 1/3
4 f (4)(x) = −3! · x−3 f (4)(1) = −3! −1/4
5 f (5)(x) = 4! · x−4 f (5)(1) = 4! 1/5
...

...
...

...
...

...

https://www.desmos.com/calculator/gftfx6hrys
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Beispielsweise ist das vierte Taylorpolynom von der Logarithmusfunktion ln(x) bei x0 = 1
gegeben durch:

p5(x) = (x−1)− 1

2
· (x−1)2 +

1

3
· (x−1)3 − 1

4
· (x−1)4 =

4∑
k=1

(−1)k+1 · 1

k
· (x−1)k.

Die Graphen der Logarithmusfunktion ln(x) und den ersten Taylorpolynomen bei x0 = 1
kann man hier betrachten:

https://www.desmos.com/calculator/vgf0kmkfy3.

Satz 21.5. Es sei f : I → R eine Funktion auf einem offenen Intervall und zudem sei
x0 ∈ I. Wenn es ein ε > 0 und eine Folge (cj)j∈N0 von reellen Zahl gibt, so dass für jedes
x ∈ (x0 − ε, x0 + ε) gilt:

f(x) =
∞∑
j=0

cj · (x− x0)j,

dann ist das n-te Taylorpolynom von f bei x0 gegeben durch:

pn,x0(f)(x) =
n∑
j=0

cj · (x− x0)j.

Beweis. Ähnlich wie im Beweis von Lemma 21.3 gilt für jedes k ∈ N0:

k-faches Anwenden von Satz 20.6
↓

k-te Ableitung von f(x)=
∞∑
j=0

cj · (x− x0)j =
∞∑
j=k

j . . . (j−k+1) · cj · (x− x0)j−k.

Also folgt:

f (k)(x0) = k! · ck.

Für n ∈ N0 können wir nun das n-te Taylorpolynom berechnen:

pn,x0(f)(x) :=
n∑
k=0

f (k)(x0)

k!
· (x− x0)k =

n∑
k=0

k! · ck
k!
· (x− x0)k =

n∑
k=0

ck · (x− x0)k.
�

Beispiel. Es gilt:
folgt aus Satz 21.5
↓

n-tes Taylorpolynom von exp(x) =
∞∑
k=0

xk

k!
am Punkt x0 =0 =

n∑
k=0

xk

k!
.

Die Graphen von der Exponentialfunktion exp(x) und den zugehörigen ersten Taylorpoly-
nomen bei x0 = 0 kann man hier sehen:

https://www.desmos.com/calculator/tllpm1c7ue.

https://www.desmos.com/calculator/vgf0kmkfy3
https://www.desmos.com/calculator/tllpm1c7ue
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21.4. Die Restgliedformel von Taylor. Es sei f : I → R eine C∞-Funktion und es sei
x0 ∈ I. Wir hatten in Lemma 21.4 gesehen, dass das n-te Taylorpolynom

pn(x) = pn,x0(f)(x) =
n∑
k=0

f (k)(x0)

k!
· (x− x0)k

die ursprüngliche Funktion f im Punkt x0 approximiert, in dem Sinne, dass der Grenzwert

lim
x→x0

f(x)−pn(x)
(x−x0)n verschwindet. Wir wollen jetzt im Folgenden eine genauere Aussage treffen,

wie weit denn nun die ursprüngliche Funktion f(x) und das n-te Taylorpolynom pn(x)
wirklich auseinander liegen.

Wir wollen im Folgenden also die Differenz f(x)− pn(x) besser verstehen. Wir beginnen
mit einer elementaren Vorbemerkung, nämlich für n = 0 können wir die Differenz wie folgt
ausdrücken:

f(x)− p0(x) = f(x)− f(x0) =
x∫
x0

f (1)(t) dt.
↑

folgt aus Satz 16.4.

Der folgende Satz ist nun die Verallgemeinerung dieser Aussage für beliebige n.

Satz 21.6. (Restgliedformel von Taylor) Es sei f : I → R eine C∞-Funktion auf einem
offenen Intervall und es sei x0 ∈ I. Für n ∈ N0 bezeichnen wir mit pn(x) = pn,x0(f)(x) das
n-te Taylorpolynom von f am Punkt x0. Dann gilt für jedes x ∈ I:

f(x)− pn(x) =

x∫
x0

f (n+1)(t)

n!
· (x− t)n dt.

Bemerkung. Die Differenz f(x) − pn(x) wird manchmal das n-te Restglied von f bei x0
genannt.

Graph des n-ten Taylorpolynoms bei x0

Graph von f

x0 x

f(x)− pn(x) =

x∫
x0

f (n+1)(t)

n!
· (x− t)n dt

Beweis. Wir beweisen den Satz mithilfe von Induktion nach n ∈ N0. Den Fall n = 0 hatten
wir oben schon behandelt. Nun nehmen wir an, die Aussage gilt für n − 1. Wir müssen
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dann zeigen, dass sie dann auch für n gilt. Wir führen dazu folgende Berechnung durch:

f(x)− pn(x) = f(x)−
(
pn−1(x) +

f (n)(x0)

n!
· (x− x0)n

)
= f(x)−pn−1(x)︸ ︷︷ ︸

hierauf wenden wir die
Induktionsvoraussetzung an

− f (n)(x0)

n!
· (x− x0)n

=

x∫
x0

f (n)(t)︸ ︷︷ ︸
=u(t)

· (x− t)n−1

(n− 1)!︸ ︷︷ ︸
=:v(t)

dt − f (n)(x0)

n!
· (x− x0)n

p. I.
=

[
f (n)(x)︸ ︷︷ ︸
=u(t)

· −(x− t)n

n!︸ ︷︷ ︸
=V (t)

]t=x
t=x0

−
x∫
x0

f (n+1)(t)︸ ︷︷ ︸
=u′(t)

· −(x− t)n

n!︸ ︷︷ ︸
V (t)

dt − f (n)(x0)

n!
· (x− x0)nx

partielle Integration

=
x∫
x0

(x− t)n

n!
· f (n+1)(t) dt.

�

Wir erhalten folgendes Korollar.

Korollar 21.7. Es sei f : I → R eine C∞-Funktion auf einem offenen Intervall und es sei
x0 ∈ I. Wenn es ein C ∈ R gibt, so dass |f (n+1)(t)| ≤ C für alle t zwischen x0 und x, dann
gilt für alle x ∈ I, dass

|f(x)− pn(x)| ≤ C

(n+ 1)!
· |x− x0|n+1.

Beweis. Wir betrachten zuerst den Fall x > x0. Nach Voraussetzung gilt für alle t ∈ [x0, x]

−C ≤ f (n+1)(t) ≤ C.

Wir führen nun folgende Schritte durch:

(1) Wir multiplizieren alle drei Terme mit der, auf dem Intervall [x0, x] nicht-negative,

Funktion t 7→ (x−t)n
n!

.
(2) Wir bestimmen das Integral von x0 bis x.

Aus der Monotonieeigenschaft 15.5 des Integrals folgt
x∫
x0

(x− t)n

n!
· (−C) dt︸ ︷︷ ︸

=
[−(x−t)n+1

(n+1)!
·(−C)

]t=x
=x0

≤
x∫
x0

(x− t)n

n!
· f (n+1)(t) dt︸ ︷︷ ︸

= f(x)–pn(x) nach Satz 21.6

≤
x∫
x0

(x− t)n

n!
· C dt︸ ︷︷ ︸

=
[−(x−t)n+1

(n+1)!
·C
]t=x
=x0

.

Durch explizites Berechnen der Integrale links und rechts, und durch Anwendung der Rest-
gliedformel 21.6 von Taylor auf das mittlere Integral erhalten wir folgende Ungleichungen:

−C · (x− x0)n+1

(n+ 1)!
≤ f(x)− pn(x) ≤ C · (x− x0)n+1

(n+ 1)!
.
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Aber ist genau die Aussage, welche wir beweisen sollten. Der Fall x < x0 wird ganz ähnlich,
mit nur kleinen Abwandlungen des Arguments, bewiesen. �

Beispiel. Wir wollen jetzt Taylorpolynome verwenden, um die Werte der Sinusfunktion
näherungsweise zu bestimmen. Es folgt aus der Diskussion auf Seite 226, oder aus Satz 21.5,
dass das sechste Taylorpolynom der Sinusfunktion am Punkt x0 = 0 gegeben ist durch

p6(x) = x− x3

3!
+
x5

5!
.

Die siebte Ableitung von der Sinusfunktion ist − cos(x). Der Absolutbetrag der Kosinus-
funktion ist durch C = 1 beschränkt. Es folgt aus dem obigen Korollar 21.7, dass für alle
x ∈ R gilt:

| sin(x)− p6(x)| ≤ 1

7!
· |x|7.

Für kleine x gibt also p6(x) schon einen hervorragenden Näherungswert für sin(x). Bei-
spielsweise folgt, dass

| sin(0,1)− p6(0,1)| < 1

5040 · 107
.

In der Tat ist
sin(0,1) = 0,099833416646828...
p6(0,1) = 0,099833416666666....

21.5. Die Taylor-Reihe. Wir haben im vorherigen Teilkapitel gesehen, dass Taylorpoly-
nome eine Funktion sehr gut approximieren können, und wir haben gesehen: je höher der
Grad des Taylorpolynoms, desto besser ist die Approximation. Es stellt sich also die Frage,
ob man dann nicht vielleicht den “Grenzwert n→∞” über die Taylor-Polynome pn bilden
kann. Dieser Gedanke führt uns zu folgender Definition.

Definition. Es sei f : I → R eine C∞-Funktion auf einem offenen Intervall und es sei x0 ∈ I.
Wir nennen ∑

k≥0

f (k)(x0)

k!
· (x− x0)k

die Taylorreihe von f am Punkt x0.

Beispiel. Wenn eine Funktion f : I → R auf einem offenen Intervall I durch eine konvergente
Reihe der Form

f(x) =
∞∑
k=0

ak · (x− x0)k

gegeben ist, dann folgt aus Satz 21.5, dass die Taylor-Reihe von f im Punkt x0 gerade
durch diese Reihe gegeben ist. Insbesondere sind die Taylorreihen von exp(x), sin(x) und
cos(x) am Punkt x0 = 0 gegeben durch

exp(x) =
∞∑
k=0

xk

k!
, sin(x) =

∞∑
k=0

(−1)k · x2k+1

(2k + 1)!
und cos(x) =

∞∑
k=0

(−1)k · x
2k

(2k)!
.

Es stellen sich in diesem Zusammenhang folgende zwei Fragen:
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Frage 21.8. Es sei f : I → R eine C∞-Funktion auf einem offenen Intervall I und es sei
x0 ∈ I.

(1) Konvergiert die Taylor-Reihe
∑
k≥0

f (k)(x0)
k!
· (x− x0)k für alle x ∈ I?

(2) Wenn die Taylor-Reihe konvergiert, ist der Wert der Taylor-Reihe gerade der Funk-
tionswert von f?

Das folgende Beispiel gibt eine negative Antwort auf Frage 21.8 (1).

Beispiel. Wir betrachten die Funktion f : R → R
x 7→ 1

1 + x2
.

Für |x| < 1 gilt:

f(x) =
1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)n · x2n.
↑

folgt aus |x| < 1 und Satz 3.16

Die Reihe rechts ist also, nach der obigen Bemerkung, auch schon die Taylor-Reihe von f
am Punkt x0 = 0. Aber es folgt aus dem Quotienten-Kriterium 6.11 und dem Nullfolgen-
Kriterium 6.3, dass diese Reihe konvergiert genau dann, wenn x ∈ (−1, 1). Insbesondere
konvergiert die Taylor-Reihe nicht im ganzen Definitionsbereich der ursprünglichen Funkti-
on f . Der Graph von f(x) = 1

1+x2
und seinen ersten Taylorpolynomen kann hier betrachtet

werden:
https://www.desmos.com/calculator/jkq7dfx9ct

Im nächsten Teilkapitel behandeln wir Frage 21.8 (2).

21.6. Eine C∞-Treppenfunktion.

Satz 21.9. Die Funktion
f : R → R

x 7→
{
e−

1
x2 , wenn x > 0,

0, wenn x ≤ 0

ist eine C∞-Funktion und es gilt, dass f (n)(0) = 0 für alle n ∈ N.

alle Ableitungen verschwinden bei x0 = 0

Graph der Funktion

f(x) =

{
e−1/x

2
, wenn x > 0,

0, wenn x ≤ 0

1

Bemerkung. Die Ableitungen von f sind bei x0 = 0 also alle 0. Inbesondere verschwinden
alle Koeffizienten der Taylor-Reihe für f am Punkt 0. Mit anderen Worten, die Taylor-Reihe
definiert die Null-Funktion. Andererseits gilt für alle x > 0, dass f(x) > 0. Wir sehen also,
dass die Taylor-Reihe für kein x > 0 mit der ursprünglichen Funktion übereinstimmt.

https://www.desmos.com/calculator/jkq7dfx9ct
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Insbesondere erhalten wir also eine negative Antwort auf Frage 21.8 (2). Mehr Details kann
man auch hier finden:

https://bar.wikipedia.org/wiki/Taylorreihe

Beweis von Satz 21.9. Ein Induktionsargument zeigt, dass es genügt folgende Behauptung
zu beweisen.

Behauptung. Für jedes k ∈ N0 ist die Funktion

g : R → R

x 7→
{
x−k · e−

1
x2 , wenn x > 0,

0, wenn x ≤ 0

differenzierbar und es gilt

g′(x) =

{
−k ·x−k−1 ·e−

1
x2 + 2·x−k−3 ·e−

1
x2 , wenn x > 0,

0, wenn x ≤ 0.

Für x 6= 0 ist g(x) differenzierbar und es folgt aus der Produktregel, dass die Ableitung
g′(x) für x 6= 0 von der angegeben Form ist. Es verbleibt also zu zeigen, dass g im Punkt
x0 = 0 differenzierbar ist, und dass g′(0) = 0. Es gilt:

lim
x↘0

g(x)− g(0)

x
= lim

x↘0

x−k · e−
1
x2 − 0

x
= lim

x↘0
x−k−1 · e−

1
x2

= lim
x→∞

xk+1

ex2
l′H
= lim

x→∞

(k + 1) · xk

2x · ex2
l′H
= . . .

l′H
= lim

x→∞

(k+1)!

ex2 ·Polynom
= 0.

↑ ↑ ↑
nach Lemma 14.8 nach der Regel 14.5 von l’Hôpital

Zudem gilt auch:
lim
x↗0

g(x)− g(0)

x
= lim

x↗0

0− 0

x
= 0.

↑
für x < 0 gilt g(x) = 0

Wir haben also gezeigt, dass g im Punkt x0 differenzierbar ist mit Ableitung = 0. �

Wir beschließen das Kapitel mit folgendem Satz.

Satz 21.10. (∗) Es gibt eine C∞-Funktion h : R→ R mit folgenden Eigenschaften:

(1) h(x) = 0 für x ≤ 0,
(2) h(x) = 1 für x ≥ 1, und
(3) h ist monoton steigend.

Anders ausgedrückt, die Funktion von Satz 21.10 ist also konstant = 0 für x ≤ 0 und
konstant = 1 für x ≥ 1, aber die Funktion ist trotzdem beliebig oft differenzierbar. Eine
solche Funktion wird manchmal als C∞-Treppenfunktion bezeichnet.

Bemerkung. Die Funktion, welche wir im Beweis von Satz 21.10 konstruieren beschreibt
also eine angenehme Bahn eines Lifts: die Bahn ist konstant für x ≤ 0 und x ≥ 1 und
dazwischen beliebig oft differenzierbar.

https://bar.wikipedia.org/wiki/Taylorreihe
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Funktion ist konstant für x ≤ 0 und x ≥ 1

Funktion ist C∞

1

1

Beweis (∗). Wir betrachten wiederum die Funktion

f : R → R

x 7→
{
e−

1
x2 , wenn x > 0,

0, wenn x ≤ 0.

Wir hatten in Satz 21.9 gezeigt, dass dies eine C∞-Funktion ist. Wir betrachten nun die
durch g(x) := f(x) · f(1−x) definierte Funktion. Nachdem f(x) = 0 für x ≤ 0 folgt sofort,
dass g(x) = 0 für x ≤ 0 und g(x) = 0 für x ≥ 1, sowie g(x) > 0 für x ∈ (0, 1). Der Graph
von g wird auch in Abbildung 21.6 skizziert.

Funktion g ist konstant für x ≤ 0 und x ≥ 1

Funktion ist C∞
1

Wir setzen112 C :=
∫ 1

0
g(t) dt. Wir müssen nun noch folgende Behauptung beweisen.

Behauptung. Die Funktion
h : R → R

x 7→ 1

C
·
x∫
0

g(t) dt

hat die gewünschten Eigenschaften.

Es folgt aus dem Hauptsatz 16.3 der Differential- und Integralrechnung, dass h diffe-
renzierbar ist, mit Ableitung h′(x) = 1

C
· g(x). Nachdem g eine C∞-Funktion ist, ist also

auch h eine C∞-Funktion. Es folgt nun leicht aus der Definition von h und den Eigen-
schaften von f , dass h(x) = 0 für x ≤ 0 und h(x) = 1 für x ≥ 1. Zudem folgt aus dem
Monotoniesatz 13.4, dass h monoton steigend ist. �

112Warum ist das Integral > 0?
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