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LITERATURHINWEIS

Zum Erlernen des Stoffes und zur Bearbeitung der Ubungsaufgaben reicht das Skript
vollig aus. Die Biicher [Bl [Fl [Kl, W] kénnen aber eventuell zur Ergénzung und Vertiefung
hilfreich sein. Hierbei steht das Buch von Forster [E] dem Skript am néchsten.
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KONVENTIONEN UND DEFINITIONEN AUS DER MENGENLEHRE

Wir geben in der Vorlesung Analysis I eine axiomatische Einfiihrung in die Analysis. Die
einzigen Begriffe, welche wir nicht definieren werden, sind die folgenden:

(1) der Mengenbegrift,

(2) die Menge der natiirlichen Zahlen N := {1,2,3,...} sowie Ny :={0,1,2,3...},

(3) die Menge der ganzen Zahlen Z und der rationalen Zahlen Q.
Fiir Mengen verwenden wir hierbei die folgenden iiblichen Schreibweisen:

(1) @ bedeutet die leere Menge, d.h. die Menge ohne Elemente.

(2) a € A bedeutet, dass a ein Element der Menge A ist.

(3) A C B bedeutet, dass A eine Teilmenge von B ist.

(4) Seien Ay, ..., Ay Mengen, dann schreiben wir

Ay x -+ x A, = {(al,...,ak)|a1 €A1,...,ak€Ak}.
Beispielsweise ist
{1.2,3} x{A,B} = {(1,A4),(1,B),(2,4),(2,B),(3,4),(3,B)}

und RxR xR = {(a,a9,a3)|a,as,a3 € R}

ist die Menge der Vektoren im R®.
Eine Abbildung f: A — B von einer Menge A zu einer Menge B ordnet jedem Element in
A genau ein Element in B zu[l| Beispielsweise ist

N —» Z
n — n>—5tm-+2

eine Abbildung von der Menge N zur Menge Z. Hierbei bezeichnet die erste Zeile, dass wir

eine Abbildung von N nach Z betrachten, wihrend die zweite Zeile die Abbildungsvorschrift

angibt, d.h. in diesem Fall wird dem Element n € N das Element n® — 5n + 2 zugeordnet.
Ein weiteres Beispiel ist gegeben durch {41} — Z

A — =5
1 - 3
* = —0.

Dies ist eine Abbildung von der Menge {A4, 1, *} zur Menge Z der ganzen Zahlen.
Wir werden oft folgende grundlegende Aussage aus der Logik verwenden.

Satz 0.1. (Prinzip der Kontraposition) Wenn A und B zwei Aussagen sind, dann ist
die Aussage “aus A folgt B” dquivalent zur Aussage “aus micht B folgt nicht A”. Oder
anders ausgedriickt

A= B ist dquivalent zu Negation von A <= Negation von B.

Man kann eine Abbildung A — B auch definieren als Teilmenge S C A x B mit der Eigenschaft, dass
es zu jedem a € A genau ein b € B mit (a,b) € S gibt. Aber diese Definition ist zu Anfang des Studiums
vielleicht nicht sehr hilfreich.



1. DER KORPER DER REELLEN ZAHLEN

1.1. Die Korperaxiome. In der Analysis I beschéftigen wir uns mit dem “Korper der
reellen Zahlen”. Hierbei miissen wir erst einmal den Begriff des “Korpers” einfiihren.
Definition. Ein Koérper ist eine Menge K zusammen mit zwei Abbildungenﬂ

KxK — K “Addition” and KxK — K “Multiplikation”

(a,b) — a+0b, (a,b) — a-b,
welche folgende Eigenschaften erfiillen:
(A1) Fiir alle z,y, 2z € K gilt
(z+y)+2z = z+ (y+2) (Assoziativgesetz).
(A2) Fiir alle z,y € K gilt
r+y = y+«zx (Kommutativgesetz).
(A3) Es existiert ein Element N € K, so dass fiir alle z € K gilt:
r+N = x (Existenz eines additiv neutralen Elements).

(A4) Zu jedem x € K existiert ein Element y € K, so dass

z+y = N (Existenz von additiven Inversen).
(M1) Fir alle z,y, z € K gilt
(x-y)-z = x-(y-2) (Assoziativgesetz).
(M2) Fir alle z,y € K gilt
Ty = y-x (Kommutativgesetz).
(M3) Es existiert ein Element £ € K, so dass N # E, und so dass fiir alle z € K gilt:
z-E = x (Existenz eines multiplikativ neutralen Elements).
(M4) Zu jedem z € K mit x # N existiert ein Element z € K, so dass
z-z = FE (Existenz von multiplikativen Inversen).
(D) Fiir alle z,y, 2z € K gilt
z-(y+z2) = z-y+x-z (Distributivgesetz).

Wir nennen die Eigenschaften (A1)-(A4) die Aziome der Addition und die Eigenschaften
(M1)—(M4) die Aziome der Multiplikation. Die Eigenschaften (A1)-(A4), (M1)—-(M4) sowie
(D), welche zusammen einen Korper definieren, werden Kérperariome genannt.

Beispiel.
(1) Die Eigenschaften kommen uns natiirlich bekannt vor, beispielsweise erfiillt K = Q

mit der iiblichen Addition und Multiplikation alle Kérperaxiome, wobei N = 0 und
E = 1. Mit etwas nachdenken sieht man auch, dass K = {a +b-v2]a,b € Q}

2Eine Abbildung K x K — K ordnet je zwei Elementen a und b in K ein Element in K zu. In diesem
Fall bezeichnen wir das a und b zugeordnete Element mit a + b beziehungsweise a - b.
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mit der iiblichen Addition und Multiplikation alle Kérperaxiome erfﬁlltﬂ Anders
ausgedriickt, K = Q und K = {a +b- /2] a,b € Q} sind Kérper.

(2) Wenn wir K = Z mit der iiblichen Addition und Multiplikation betrachten, dann
gelten die Axiome der Addition mit N = 0, zudem gelten die Axiome (M1) bis
(M3) mit £ = 1 und das Distributivgesetz. Das Axiom (M4) gilt allerdings nicht,
beispielsweise gibt es fiir 2 € Z kein z € Z, so dass 2- z = 1.

(3) Neben den Kérpern K = Q, welcher aus der Schule bekannt ist, gibt es noch an-
dere Korper. Betrachten wir beispielsweise Fo = {N, E'}, d.h. die Menge mit zwei
Elementen {N, E}. Wir definieren die Addition folgendermafen{]

FQ X FQ — FQ FQ X FQ — FQ
(N,N) = N+ N:=N und wir definieren (N,N) —» N-N:=N
(N,E) — N+E:=E  die Multiplikation =~ (N,E) +— N-E:=N
(E,N) — E+N:=F zudem wie folgt: (E,N) — E-N:=N
(E,E) — E+E:=N (E,E) — E-E:=E.

Wir kénnen diese Abbildungen auch etwas salopper, aber dafiir iibersichtlicher, mit
folgender Additions- und Multiplikationstabelle beschreiben:

+| N E - | N E
N|N E und N|N N
E|E N E'N E

Wir miissen nun zeigen, dass alle Korperaxiome gelten. Beispielsweise sind die
Definitionen der Addition und der Multiplikation symmetrisch, also gelten die Kom-
mutativgesetze (A2) and (M2). Es ist auch relativ elementar nachzupriifen, dass (A3)
und (A4) sowie (M3) und (M4) gelten. Es ist hingegen eine etwas umsténdliche Fie-
selarbeit zu nachzuweisen, dass die {ibrigen Korperaxiome ebenfalls erfiillt sind. Fiir
(A1) muss man beispielsweise acht verschiedene Fille verifizieren. Im Laufe der li-
nearen Algebra Vorlesung werden Sie sehen, dass die Definition der Addition und
Multiplikation auf F5 nicht willkiirlich sind, sondern sich ganz natiirlich aus der Ad-
dition und Multiplikation auf 7Z herleitenﬁ

(4) Es gibt noch sehr viele weitere Beispiele von Korpern, beispielsweise ist

K = Menge der rationalen Funktionen = {28 ‘ p(t),q(t) # 0 Polynome in t}

3SWarum ist (M3) erfiillt?

“In diesem Fall ist Fy x Fy die Menge bestehend aus {(N, N), (N, E), (E, N), (E, E)}. Eine Abbildung
Fy x F; — Fy ordnet also jedem Element in {(N, N), (N, E), (E,N),(E, E)} entweder das Element E oder
das Element N in Fy zu.

SEs stellt sich nun die Frage, ob man auf jeder Menge X geschickt eine Addition und Multiplikation
definieren kann, so dass alle Axiome gelten. In der Algebravorlesung wird normalerweise gezeigt, dass man
dies fiir eine endliche Menge durchfiihren kann, genau dann, wenn die Anzahl der Elemente in X eine
Primpotenz ist, d.h. von der Form p™ wobei p eine Primzahl ist und n € N.



mit der iiblichen Addition und Multiplikation ein Kérperﬁ

1.2. Folgerungen aus den Axiomen der Addition. In diesem Kapitel beweisen wir
verschiedene Aussagen, welche aus den Korperaxiomen folgen. Die Aussagen sind fiir K = Q
aus der Schule vertraut. Indem wir diese jetzt direkt aus den Korperaxiomen herleiten,
erhalten wir diese Aussagen fiir alle Korper, beispielsweise fiir den Korper Fs.

Satz 1.1. (Eindeutigkeit des additiv neutralen Elements) Sei K ein Kdorper. Dann
existiert genau ein Element k € K, so dass fir alle x € K gilt

r+k=z.
Beweis. [1

In der Universitdtsmathematik muss jede Aussage bewiesen werden. Was heifit das in
diesem Fall? Wir miissen nur aus der Voraussetzung zusammen mit elementarer Logik
die gewiinschten Aussagen herleiten. In diesem Fall diirfen wir also nur verwenden,
dass K ein “Korper” ist, d.h. wir diirfen nur die Axiome (A1)-(A4) und (M1)-(M4)
und (D) verwenden.
Die Aussage “es existiert genau ein Element mit einer Eigenschaft X sind genau genom-
men zwei Aussagen auf einmal:

(1) Es gibt ein Element, welches die Eigenschaft X besitzt.

(2) Es gibt nicht mehr als ein Element, welches die Eigenschaft X besitzt. Mit anderen
Worten, wenn zwei Elemente k& und £’ die Eigenschaft X besitzen, dann muss k& = £’
gelten.

Wir miissen nun also beide Aussagen beweisen:

(1) Wegen Axiom (A3) wissen wir, dass es mindestens ein Element k € K gibt, ndmlich
k = N, so dass fiir alle x € K gilt v 4+ k = z.

(2) Wir miissen nun noch zeigen, dass es nicht mehr als ein Element gibt, welches die Ei-
genschaft erfiillt. Es seien also & und &’ zwei Elemente mit der genannten Eigenschaft,
d.h. es gilt

(a) x + k = x fiir jedes z € K,
(b) z + k' = z fiir jedes z € K.
Wir miissen zeigen, dass k& = £’. In der Tat gilt

Kommutativgesetz (A2)

¢
k = k+k = kKF+k = K.
0 0
folgt aus (b) angewandt auf =~k folgt aus (a) angewandt auf z =k’ |
61 : - . S
Beispielsweise gilt in K, dass EE 22 1 3P40 —1) P45 —i41
2+t 3+t2 T (241t)(3+¢2) T t342t243t46"

D.h. die Summe von zwei rationalen Funktionen ist wiederum eine rationale Funktion.
7Blauer, abgesetzter Text in einem Beweis ist nicht Teil des offiziellen Beweises, sondern der Versuch zu
erklaren, was die Problemstellung ist, und eventuell den Beweisansatz zu motivieren.
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Definition. Es sei K ein Korper. Satz besagt, dass es genau ein Element k£ € K gibt,
so dass fiir alle x € K gilt x + k = x. Wir schreiben “0” fiir dieses Element und nennen es
die Null des Korpers. Man beachte, dass fiir alle z € K aus dem Kommutativgesetz (A2)
folgt, dass O+ z =2+ 0 = =z.

Satz 1.2. (Kiirzungsregel der Addition) Fs sei K ein Kdrper und es seien x,y € K.
Wenn es ein a € K gibt, so dass x +a =y + a, dann qilt x = y.

Beweis. Es sei K ein Korper und es seien x,y,a € K mit x+a = y+ a. Wir miissen zeigen,
dass r = y.
Der Beweisansatz ist erstmal ganz einfach: wir fangen “links” mit x anfingt und
versuchen geschickt umzuformen, so dass man am Ende bei y landet. Die Idee ist nun
die Umformungen so vorzunehmen, so dass wir unsere Voraussetzung x +a =y + a
einbringen kénnen.

Wir fiihren also folgende Rechnung durch:
Eigenschaft der 0 Assoziativgesetz (Al)

+ +
r =2+4+0 = z+(a+k) = (r4+a)+k = (y+a)+k
A A

nach Axiom (A4) gibt esein k € K,sodassa+ k=0 nach Voraussetzung ist z +a=y+a
= y+(a+k) = y+0 = .
0 4 4
Assoziativgesetz (A1) Wahl von k Eigenschaft der 0 [ |

Satz 1.3. (Eindeutigkeit des additiven Inversen) Sei K ein Kérper und sei x € K.
Dann existiert genau ein Element y € K, so dass

z+y=0.

Beweis. Sei x € K. Wegen Axiom (A4) wissen wir, dass es ein Element y € K gibt mit
x+y = 0. Wir miissen nun wiederum die Eindeutigkeit von y zeigen. Es seien also y,y’ € K
gegeben, mit x +y = 0 und x + ' = 0. Wir miissen zeigen, dass y = ¢/. Es gilt
y+x =ax4+y =0 =z+y =y +u
4 + 4 +
Kommutativgesetz (A2) Voraussetzung Kommutativgesetz (A2)

Es folgt nun aus Satz dass y = v/'. |

Definition. Sei K ein Kérper.

(1) Esseiz € K. Nach Satz[l.3]existiert genau ein Element in K, welches zu z addiert null
ergibt. Wir bezeichnen dieses Element mit “—x”, gesprochen minus x. Mit anderen
Worten —z ist das einzige Element in K mit = + (—x) = 0.

(2) Fiir z,y € K schreiben wir z — y := x + (—y).
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Satz 1.4. Sei K ein Korper. Es gelten folgende Aussagen:

(1) —0 = 0.

(2) Fiir allex € K gilt —(—z) = =.

(3)  Firalex,ye K gilt —(x+y) = —x—uy.
Beweis.

(1) Zur Erinnerung: fiir @ und b in K gilt —a = b genau dann, wenn a + b = 0. Wenn wir
also zeigen wollen, dass —0 = 0, dann miissen wir zeigen, dass 0 + 0 = 0. Aber dies
folgt sofort aus der Eigenschaft der 0.

(2) Sei x € K. Wir miissen zeigen, dass —(—z) = . Wie in Teil (1) miissen wir also
zeigen, dass (—x) + x = 0. Aber es gilt in der Tat, dass

(—x)+2z = z+(—x) = 0.
4 4
Kommutativgesetz (A2) Definition von —z.

(3) Der dritte Teil ist eine Ubungsaufgabe im 1. Ubungsblatt. [

1.3. Folgerungen aus den Axiomen der Multiplikation. In diesem Teilkapitel be-
handeln wir nun die Axiome der Multiplikation. Die Axiome der Multiplikation sind ganz
ghnlich zu den Axiomen der Addition. Beispielsweise gilt sowohl fiir Addition als auch fiir
Multiplikation das Assoziativgesetz, das Kommutativgesetz und die Existenz eines neutra-
len Elements. Das Multiplikationsaxiom (M4) hingegen ist nicht mehr ganz analog zum
Axiom (A4), denn in der Multiplikation fordern wir nicht mehr die Existenz eines inversen
Elements fiir N. Die Symmetrie zwischen Addition und Multiplikation wird dann durch
das Distributivgesetz vollig aufgebrochen.

Satz 1.5. (Eindeutigkeit des neutralen Elements der Multiplikation) FEs sei K ein
Korper. Es existiert genau ein Element k € K, so dass fiir alle x € K g¢ilt

z-k = x.

Beweis. Der Beweis verlduft ganz analog zum Beweis von Satz Man muss nur die
Axiome der Addition (A2) und (A3) durch die entsprechenden Axiome der Multiplikation
(M2) und (M3) ersetzen. |

Definition. Es sei K ein Korper. Wir nennen das durch den obigen Satz eindeutig bestimmte
Element die Fins des Korpers, welche wir mit “1” bezeichnen. Man beachte, dass fiir alle
x € K wegen dem Kommutativgesetz (M2) gilt, dass 1z =z-1==z .

Satz 1.6. (Kiirzungsregel der Multiplikation) Sei K ein Kérper und zudem seien
z,y € K. Wenn es eina # 0 € K g¢ibt, so dass x-a =y - a, dann gilt v = y.

Beweis. Der Beweis ist ganz analog zum Beweis von Satz [1.2] wir miissen nur die Additi-
onsaxiome (A1) und (A4) durch die Multiplikationsaxiome (M1) und (M4) ersetzen. W
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Satz 1.7. (Eindeutigkeit des multiplikativ Inversen) Es sei K ein Kdrper und es sei
x € K mit x # 0. Dann existiert genau ein Element y € K, so dass

xz-y=1.

Beweis. Der folgende Satz wird dhnlich bewiesen wie Satz [1.3| [ |

Definition. Es sei K ein Korper. Fiir z # 0 in K bezeichnen wir mit !, gesprochen z
hoch minus eins, das durch Satz eindeutig bestimmte Element, welches z - 27! = 1
erfijlltﬁAuS dem Kommutativgesetz (M2) folgt dann auch, dass ! -z =z 271 = 1.

Satz 1.8. Es sei K ein Korper. Es gelten folgende Aussagen:
(1) 1t = 1.
(2) Fir allex € K\ {0} gilt (z7')™' = =z.
(3)  Firallex,y € K\ {0} gilt (x-y)™' = z7'.y7 1

Beweis. Der Beweis verlduft ganz analog zum Beweis von Satz [1.4] n

Satz 1.9. Es sei K ein Korper. Fir alle x € K gilt -0 = 0.

Beweis.

Obwohl wir den Satz natiirlich so erwarten, ist er doch etwas iiberraschend: Die 0
wurde definiert durch die Axiome der Addition. Aber der Satz macht eine Aussage
iiber das multiplikative Verhalten der 0. Das einzige Axiom, welches die Addition mit
der Multiplikation verbindet, ist das Distributivgesetz. Wir werden dieses dement-
sprechend im Beweis verwenden.

Es sei x € K. Dann gilt
O+z-0 = -0 = z-(040) = z-0+z-0.

+ + +
Definition von 0 Definition von 0 Distributivgesetz (D)

Vergleichen wir nun die linke und die rechte Seite, so sehen wir, dass nun aus Satz folgt,
dass 0 =z - 0. [ |

Wir beschlieflen das Kapitel mit folgendem Satz, in dem wiederum sowohl die Addition
als auch die Multiplikation verwendet werden.

Satz 1.10. Es ser K ein Korper. Fiir alle x,y € K gilt
(1) (—z)-y = —(z-y)
(2) (=-y = -y,
(3) (—z)-(-y) = z-y.

8Hierbei ist “z~1” im Moment nur eine Notation und “z hoch minus eins” nur ein feststehender Begriff.
Wir haben nicht eingefiihrt, was “x hoch irgendwas” heiflen soll.
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Beweis. Wir beweisen die Aussagen (1) und (3) in Ubungsblatt 1. Aussage (2) folgt leicht
mit z = 1 aus Aussage (1). [

1.4. Weitere Definitionen.
Definition. Es sei K ein Korper.
(1) Fir aq,...,as € K definieren wir
a;+as+---+as = (...((a1 +a2) +az)+...)+as.

Es folgt aus dem Assoziativgesetz (A1), dass a; + - - - + a, nicht von der Reihenfolge
der Klammern abhingt[Wir verwenden auch die iibliche Summennotation, d.h. wir

schreiben
S S
Yoa; == a1+ -+ as, fiir s = 0 definieren wir zudem » a; := 0.
i=1 i=1

(2) Fiir z,y € K schreiben wir ab sofort

Yy = x-y.
Zudem, wenn y # 0, dann schreiben wir
g = xzfy = zy L.
Fiir aq,...,as € K definieren wir
aj-ag-----as = (...((ag-az)-az)-...) - as.
Ganz analog zu oben folgt aus dem Assoziativgesetz (M1), dass aq - - - - - as nicht von

der Reihenfolge der Klammern abhéngt. Wir verwenden zudem die iibliche Produkt-
notation, d.h. wir schreiben

S S
[Ta; == a;----- as, fiir s = 0 definieren wir zudem []a; := 1.
i=1 =

Beispiel. Es sei K ein Koérper und es seien {z;;}i=1. =1 s Elemente von K. Dann ist

Summand fiir =1 Summand fiir =2 Summand fiir i=7r
r s s s s
v o= wy 4 Yy o Yy
i=1j=1 j=1 7=1 7j=1

= (T4t )+ (T + o F @)+ (@ T,

Folgender Satz wird immer wieder verwendet ohne explizit erwidhnt zu werden.

9Das Assoziativgesetz fiir s = 4 besagt beispielsweise, dass
((a1 + az2) +az) + a4 = (a1 + az) + (a3 + a4) = a1 + (a2 + (a3 + a4)),

d.h. es ist vollig egal, wie wir die Klammern setzen. Wir kénnen diese dementsprechend weglassen. Je nach
Spitzfindigkeit des Mathematikers muss man wirklich noch beweisen, dass das Assoziativgesetz impliziert,
dass man Klammern weglassen kann. Ein vollsténdiger Beweis ist gegeben in [DF] Seite 19].
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Satz 1.11. Es sei K ein Kérper. Fiir ay,...,a, € K und by,...,bs € K gilt

Beweis. Die Gleichheit folgt aus mehrfacher Anwendung des Distributivgesetzes. [ |

Definition. Es sei K ein Korper. Fiir x € K und n € N definieren wir

Zudem definieren wir 2° := 1 (auch fiir = 0!) und fiir n € Ny und @ # 0 definieren wirlJ

" = 1/(z") = (z™)7..
Wir bezeichnen x™ als  hoch n oder auch als n-te Potenz von x.
Der folgende Satz fasst einige elementare Eigenschaften von Potenzen zusammen.

Satz 1.12. Es seien x,y € K mit x,y # 0 und es seien m,n € Z, dann gilt

(1) A L L
? @y = o
(3) "yt = (ay)"

Beweisskizze. Die beiden ersten Aussagen folgen aus dem Assoziativgesetz (M1). Die dritte
Aussage bendtigt das Assoziativgesetz (M1) und auch das Kommutativgesetz (M2). [

Wir haben in den letzten Kapiteln gesehen, dass fiir Koérper die “iiblichen” Rechen- und
Umformungsregeln gelten. Im Folgenden werden wir nun die verwendeten Korperaxiome
nicht mehr explizit auffithren und wir werden die obigen Sétze nicht mehr explizit zitie-
ren. Zudem verwenden wir ab sofort die iiblichen Rechenregeln, ohne diese im Einzelnen
herzuleiten.

Bemerkung. Zum Abschlufl der Diskussion der Korperaxiome, wollen wir noch kurz der
Frage nachgehen, warum die Axiome so formuliert sind, wie sie sind. Beispielsweise hatten
wir noch folgendes Axiom formulieren kénnen

(A5) fiir alle x,y, 2 € K gilt, dass o + (y + 2) = y + (z + 2).
Aber man kann sich leicht davon iiberzeugen, dass (A5) schon aus dem Assoziativgesetz
und dem Kommutativgesetz folgt. Das Ziel ist, einen Korper iiber moglichst wenige Axiome
zu charakterisieren, und dann ist (A5) tiberfliissig, nachdem es schon aus (A1) und (A2)

folgt. Jetzt stellt sich die Frage, ob man nicht vielleicht eines der anderen Axiome weglassen
konnte. Wir hatten gesehen, dass Z alle Axiome bis auf (M4) erfiillt. Nachdem (M4) jedoch

OHier sieht man schén den Unterschied zwischen “:=" und “=". Wir verwenden “:=" fiir eine Definition
und “=” fiir eine Gleichheit von gegebenen Objekten. Beispielsweise hatten wir fiir « # 0 schon 1/(2™)
und (z")~! eingefiihrt, und es gilt 1/(z") = (z™)~!. Wir fithren nun =™ neu ein, in dem wir es als

2™ :=1/(z") definieren.
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nicht fiir Z gilt, kann (M4) nicht aus den anderen Axiomen folgen. Wir kénnen Axiom (M4)
also nicht weglassen.

Es ist eine amiisante Aufgabe, sich fiir jedes Axiom ein Beispiel zu iiberlegen, fiir welches
alle anderen Axiome gelten, aber das gewihlte Axiom gilt nicht. Beispielsweise gibt es auf R*
eine Multiplikation, welche zusammen mit der iiblichen Addition auf R* alle Kérperaxiome
bis auf (M2) erfiillt. Diese Struktur nennt man die Quaternionenmultiplikation, siehe [El
Kapitel 7.1] und

http://de.wikipedia.org/wiki/Quaternion.

1.5. Angeordnete Korper. Wir wollen uns an die Eigenschaften der rationalen und re-
ellen Zahlen rantasten. Die rationalen und reellen Zahlen, wie wir sie aus der Schule ken-
nen, besitzen neben der Addition und Multiplikation auch noch eine weitere Struktur,
nédmlich man kann zwei reelle Zahlen x,y “vergleichen”, d.h. wir kénnen davon reden, dass
x “grofler” als y ist. Dies fiihrt uns nun zu folgender Definition.

Definition. Ein angeordneter Kdrper ist ein Kérper K zusammen mit einer Relatior:El“>”,
welche folgende Ordnungsaxiome erfiillt:

(O1) Fiir alle z,y € K gilt genau eine der folgenden drei Aussagen:
x>y oder y>z oder x=uy.
(02) Fir alle x,y,z € K gilt: z>yundy >z = x>z (Transitivitat).
(03) Fir alle z,y,a € K gilt: x>y = v+a>y+a.
(04) Fiir alle z,y,a € K gilt: z>yunda>0 = z-a>y-a.

Beispiel.
(1) Es sei K = Q der Korper der rationalen Zahlen mit der iiblichen Bedeutung von
“>” dann ist Q ein angeordneter Korper.

(2) Hier ist ein etwas komplizierteres Beispiel von einem angeordneten Korper. Wie in
Kapitel sei K der Korper der rationalen Funktion, d.h.

K = Menge der rationalen Funktionen = {28 ‘ p(t), q(t) # 0 Polynome in t}.

Fiir f,g € K schreiben wir dann
f>g <= Es existiert ein € > 0, so dass f(x) > g(z) fiir alle z € (0,¢).

Beispielsweise gilt —5 > 23, weil diese Ungleichheit gilt fiir alle x € (0, %) Man kann
nun zeigen, dass K mit dieser Ordnung > in der Tat die Ordnungsaxiome (O1) bis
(O4) erfullt. Wir werden dieses Beispiel nicht weiter verfolgen.

(3) Es stellt sich nun die Frage, ob man nicht auch auf anderen Kérpern eine Ordnung
“>" einfiithren kann, welche die Axiome (O1) bis (O4) erfiillt. Beispielsweise, ist dies
fiir den Korper Fy moglich? Wir werden diese Frage spéter noch beantworten.

Hgtrenggenommen ist eine Relation in K eine Teilmenge V von K x K. Wir schreiben dann
a > b genau dann, wenn (a,b) € V.

Diese genaue Definition kann uns jetzt aber egal sein.


http://de.wikipedia.org/wiki/Quaternion
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Definition. Es sei K ein angeordneter Korper. Fiir x,y € K definieren wir |E|

T <y & y>uw, . . . x positiv & z > 0,
£>y & x>y oderz =y, und fiir x € K definieren wir )
r<y & x<yoderx =y,

Der zweite Teil von folgendem Satz ist das Gegenstiick zu (O4) fir a < 0.

Satz 1.13. Es sei K ein angeordneter Korper.

(1) Fir alle x € K gilt: >0 << —x<0.
(2) Fir alle x,y,a € K gilt: ®>yunda<0 = z-a<vy-a.

Bemerkung. Die Tatsache, dass die Implikation in (O4) nur gilt, wenn a > 0, gehort zu den
grofiten Fehlerquellen der Analysis.

Beweis. Es sei K ein angeordneter Korper.
(1) Es sei # € K. Dann gilt

x>0 <¢:> r4+(—z)>0—x <¢:> 0> —x <¢:> —z < 0.

Ordnungsaxiom (03) Definition von —z und 0 Definition von < 0

(2) Es seien also z,y,a € K mit a < 0. Dann gilt

=ya =xa
A A

x>y ? z-(—a) > y-(—a) ?x-z—a)+xa+y(;>&-(—a)—I—anrya ? ya > xa.

es folgt aus (1), mit z = —a,  folgt aus (O3) folgt durch Vereinfachen
dass —a > 0, die Ungleichung
folgt nun aus (O4) |

Satz 1.14. Es sei K ein angeordneter Korper. Fir jedes x € K mit x # 0 gilt

22 > 0.

Beweis. Nachdem x # 0 folgt aus Axiom (O1), dass entweder x > 0 oder 0 > x. Wir
beweisen jetzt den Satz fiir die beiden Félle getrennt.
1. Fall: > 0. In diesem Fall gilt 2 — 4+.., > 0.2 = 0.

/I\
folgt aus dem Ordnungsaxiom (04), da z >0  Satz [L9l

2. Fall: 0 > x. Es sei also 0 > x. Dann gilt
der Vollsténdigkeit halber, dies folgt aus Satz
4
? = z-x = (—z)-(—z) > 0.
/T\

aus Satz folgt, dass —x > 0, also folgt die Ungleichung aus dem 1. Fall [ |

2Dje Notation :< bedeutet hierbei, dass die linke Seite durch die rechte Seite definiert wird. Beispiels-
weise bedeutet x < y :& y > z, dass wir genau dann x < y schreiben, wenn y > z.
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Korollar 1.15. Es sei K ein angeordneter Kdorper. Fiir jedes x € K mit x>0 gilt i > 0.

Beweis. Es sei x € K mit z > 0. Es gilt

da z > 0 und da nach Satzgilt (%)2 >0

erhalten wir die Ungleichung aus dem Ordnungsaxiom (O4) |

Korollar 1.16. In jedem angeordneten Kérper gilt: 1 > 0.

Beweis. Es ist 1 =1-1 =12 > 0.
/I\

Satz [L.14] |
Satz 1.17. Sei K ein angeordneter Korper.
(1) Fiir alle a,b,c,d € K gilt: a>bundc>d = a+c>b+d.
(2) Fiir alle a,b € K gilt: a>b>0 = %>%>O
(3) Fiir alle a,b,c,d € K gilt: a>b>0undc>d>0 = a-c>b-d.
Beweis. Der Satz wird in Ubungsblatt 1 bewiesen. [

Korollar 1.18. FEs sei K ein angeordneter Korper. Fiir jedes n € N gilt:

14+---+1 >0, insbesondere gilt 1+---+1 # 0.
1 Mal
n—Ma n—Mal

Beweis.

(a) Nach Korollar wissen wir, dass 1 > 0.

(b) Wenn wir Satz auf 1 > 0 und 1 > 0, erhalten wir 1 +1 > 0.

(¢) Aus 1> 0 und 1+ 1 > 0 erhalten wir mithilfe von Satz[1.17, dass 1+ 1+1 > 0.
(d) Indem wir so fortfahren erhalten wir die erste Aussage.

(e) Die zweite Aussage folgt nun sofort aus (O1). |

Bemerkung. In dem Korper Fo mit zwei Elementen gilt 1 + 1 = 0. Das Korollar [I.1§]
besagt also insbesondere, dass der Korper Fy kein angeordneter Korper sein kann, d.h.
man kann auf Fy keine Ordnung “>" definieren, welche alle Axiome (O1) bis (O4) erfillt.
Das gleiche Argument zeigt auch noch eine stérkere Aussage: ein angeordneter Korper ist
immer unendlich.

Definition. Es sei K ein angeordneter Korper und x € K. Wir definieren den Absolutbetrag

von x als o x, fallsz >0,
= = —x, falls xz <0.
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Satz 1.19. Es sei K ein angeordneter Korper und es seien x,y € K, dann gilt:

(1) [z > 0,

(2) |lz] =0 < z=0,

(3) | x| = |z

(4) z -yl = 2]y,

(5) lz+y| < |z|+ |yl (Dreiecksungleichung).

(1) Die Aussage folgt aus einer Fallunterscheidung und Satz [1.13]

(2) Die Aussage folgt aus dem Ordnungsaxiom (O1).

(3) Die Aussage folgt sofort aus den Definitionen.

(4) Wir schreiben x = o - xp mit 9 > 0 und o € {£1} und y = 7 - 2y mit yo > 0 und
7 € {£1}. Dann ist

lzyl = o1 209 = l|ro-wl = x0-yo = |z|- |yl
4 4 4
folgt aus (3), denn o -7 € {—1,1} aus 29 >0 & yo>0 denn xg = |z| und yo = |y|
und (04) folgt xg-yo >0
(5) Es ist
vy = lel+lgl wnd - —(way)=—e -y < el 4yl
dies folgt aus Satz dies folgt aus Satz
denn x < |z| und y < |y denn —z < |z| und —y < |y|

Per Definition von | — | gilt |z +y| = 2 4+ y oder |z + y| = —(z + y) erhalten wir aus
den beiden Ungleichungen die gewiinschte Ungleichung |z + y| < |z| + |y|- [

Wir haben uns jetzt davon iiberzeugt, dass in einem angeordneten Korper die iiblichen
Regeln fiir > gelten. Wie bei den Korperaxiomen werden wir daher im Folgenden auch die
Ordnungsaxiome (O1) bis (O4) nicht mehr explizit angeben, und wir werden auch nicht
mehr explizit auf die Sitze in diesem Kapitel verweisen.

1.6. Der Satz iiber die reellen Zahlen.

Definition. Sei K ein Korper, x € K und n € N. Wir definieren[™]

e gy 8= 48 099 S b
—_——
n—Mal
Beispielsweise gilt fir £ € Fy = {N,E} undn=3,dass3- E=F+E+E=N+FE=FE.

I3Wenn ein Beweis mit * markiert ist, dann bedeutet dies, dass wir den Beweis nicht in der Vorlesung
behandelt haben und dieser auch nicht Teil des Stoffes ist. Meistens handelt es sich um Beweise, welche
nicht besonders interessant sind. Man darf diese Beweise gerne lesen, es gibt aber keinerlei Verpflichtung.
Die Beweise fehlen in der Kurzversion des Skripts.
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Wir fithren nun noch ein 5. Ordnungsaxiom ein, welches auf den ersten Blick etwas
eigenwillig ist.

Definition. Wir sagen ein angeordneter Korper erfiillt das archimedische Aziom, wenn gilt
(N) fiir alle # > 0 und y > 0 existiert ein n € N, so dass

n-xr>y.

Bemerkung. Das archimedische Axiom ist “so offensichtlich richtig” fiir K = Q, dass man
sich kaum vorstellen kann, dass es nicht immer erfiillt ist. Wenn wir aber zum vorerst letzten
Mal den Korper K der rationalen Funktionen mit der auf Seite 14| definierten Ordnung “>”
betrachten, dann sehen wir, dass “>" alle Axiome (O1) bis (O4) erfiillt. Aber “>" erfiillt
nicht das archimedische Axiom. In der Tat, fiir die rationalen Funktionen p =1 und ¢ =z
gilf?] 1 > z, aber es gilt auch fiir alle n € N, das{"1 > n - z.

Bemerkung. Man kann das archimedische Axiom beispielsweise fiir K = Q wie in Abbil-
dung [1| veranschaulichen. Wenn wir eine Strecke der Lange = > 0 gegeben haben, und einen
Punkt y auf dem Strahl, dann kann man den Punkt y iibertreffen, indem man die Strecke
der Lange x geniigend oft abtragt.

positive x-Achse

/ Y

Y ~./ /ji//::////

Strecke der Lange z > 0

L
—_ T~
~

~

viermaliges Abtragen der Strecke tibertrifft y

ABBILDUNG 1. Veranschaulichung des archimedischen Axioms.

Wir fithren nun noch ein letztes Ordnungsaxiom ein, ndmlich das Vollstandigkeitsaxiom.

Definition. Ein angeordneter Korper heifit vollstindig, wenn das Vollstandigkeitsaxiom gilt:
(V) Jede Cauchy-Folge in K konvergiert.

Die Definitionen von “Cauchy-Folge” und “Konvergenz einer Cauchy-Folge” werden in
Kapitel [ nachgereicht. Wir werden dann auch sehen, dass Q das Vollstandigkeitsaxiom
nicht erfiillt. Mit diesen Definitionen kénnen wir aber nun folgenden Satz formulieren:

Satz 1.20. (Existenz und Eindeutigkeit der reellen Zahlen FEs g¢ibt (bis auf einen
eindeutig bestimmten Isomarphismusﬂgenau einen angeordneten Kdrper, welcher das ar-
chimedische Axiom erfillt und welcher vollstandig ist.

HMMan kénnte denken, dass es da doch nichts zu definieren gibt, weil wir doch schon eine Multiplikation
auf dem Korper besitzen. Aber diese gibt uns nur das Produkt von zwei Elementen des Korpers K, es gibt
uns nicht das Produkt einer natiirlichen Zahl n mit einem Element k£ aus K.

1510 der Tat, denn fiir 2 € (0,1) gilt, dass 1 > .

1611 der Tat, denn fiir z € (0, =) gilt, dass 1 > naz.

1
n
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Beweisskizze (x). Es gibt verschiedene Methoden den Satz zu beweisen. Wir skizzieren eine
Moglichkeit. Ein Dedekindschnitt ist ein Paar (U, V') von Teilmengen von Q mit folgenden
Eigenschaften:

(1) U und V sind nicht leer.

(2)Esist UUV = Q.

(3) Fiir jedes z € U und y € V gilt = < y.

(4) V besitzt kein minimales Element, d.h. es gibt kein y € V, so dass y < z fiir alle
zeV.

Wir bezeichnen mit K die Menge alle Dedekindschnitte. Wir fithren folgende Definitionen
durch:

(1) Fur (Uy, V1), (Us, Vo) € K definieren wir
(U, Vi) + (U, Vo) = ({z1 4+ 2| 21 € Ur, 20 € Ush, {th +y2 | y1 € Vi, y2 € Va}).

(2) Man kann relativ leicht zeigen, dass (K,+) die Axiome (A1) bis (A4) erfillt mit
0={ze€Qlxz<0},{reQ|x>0}).

(3) Wir schreiben (Uy, Vi) < (Us, V2), wenn Uy C Us und Uy C Us.

(4) Fir (U, V1), (Us, V) € K mit (U, V1) > 0 und (Us, V) > 0, definieren wir

(U, Vi) - (U2, Va) i= ({z1- 22| 21 € Ur, 22 € Un}, {y1 - y2 | 1 € V1,42 € Va}).
Die Multiplikation in den anderen Féllen ist etwas aufwéndiger zu definieren, siehe
[EL S. 32].
In [L] und [E, Kapitel 1.4] wird nun gezeigt, dass alle Axiome erfiillt sind. Die Existenz
von einem solchen Korper wird in [El Kapitel 1.2-1.3] auch durch zwei weitere Methoden
bewiesen. Die Eindeutigkeit wird auf [El p. 42] bewiesen. [ |

Definition. Wir nennen den durch den Satz eindeutig bestimmten Kérper den Koérper der
reellen Zahlen und bezeichnen ihn mit R.

Dieser Korper der reellen Zahlen ist natiirlich nichts anderes als die reellen Zahlen, wel-
che Sie schon aus der Schule kennen. Allerdings werden diese in der Schule in der Regel
etwas schwammig definiert (“Zahlen mit unendlich vielen Ziffern hinter dem Komma”).
Wir werden in der Vorlesung nur verwenden, dass die reellen Zahlen die Korperaxiome
(A1)—(A4), (M1)—(M4) und (D), sowie die Ordnungsaxiome (O1)—(0O4), das archimedische
Axiom (N) und das mysteriose Vollstandigkeitsaxiom (V) erfillen. Wir werden aus diesen
Axiomen alle weiteren Aussagen herleiten.

1"Den Ausdruck “bis auf einen eindeutig bestimmten Isomorphismus” kénnen Sie erst einmal ignorieren.
Der vollsténdigkeit halber ist hier noch die Definition: Ein Isomorphismus f: K — K’ zwischen zwei
angeordneten Korper K und K’ ist eine bijektive Abbildung f: K — K’ mit folgenden Eigenschaften:

(1) Fiir alle z,y € K ist f(z +y) = f(z) + f(y)-

(2) Fiir alle z,y € K ist f(z-y) = f(z) - f(y).

(3) Fiir alle z,y € K gilt « >y = f(z) > f(y).
Der Satz besagt also, dass wenn K und K’ zwei vollsténdige angeordnete Korper sind, dann gibt es genau
einen Isomorphismus f: K — K’.
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1.7. Reelle Zahlen und natiirliche Zahlen. Wir wollen nun den Zusammenhang zwi-
schen den natiirlichen Zahlen, und den abstrakt eingefiihrten reellen Zahlen kldaren. Dazu
benotigen wir noch folgende Definition.

Satz 1.21. Es bezeichne 1 das Fins-Element des Korpers R. Wir betrachten die Abbildung
p:Nyg —- R
n = 1+---+1l=n-1
Mal

Fiir ay,as € Ng mit a1 # ag gilt auch p(ay) # @(ag)ﬁ

Beweis. Es sei ay,as € Ny mit a; # as. Nach (O1) gilt also entweder a; > ay oder ay > a;.
Ohne Beschrinkung der Allgemeinheit (0.B.d.A.) kénnen wir annehmen, dass a; > as.
(Andernfalls gilt eben as > a1 und der folgende Beweis funktioniert genauso, nur mit den
Rollen von a; und as vertauscht.) Es folgt, dass ein z € Ny existiert mit a; = ag+ 2. Daraus
wiederum folgt, dass

> 0 nach Korollar [[.18]

—
olar) = plag+z) =1+... 41 = 14+.. +1+ 1+ ... 41 = plag)+ 1+...+1 > p(as).
(a2+x)—Mal az—Mal z—Mal T

folgt aus ¢(x) > 0 und dem Ordnungsaxiom (O3)
Wir haben also gezeigt, dass ¢(a1) > ¢(az). Es folgt nun aus (O1), dass ¢(a1) # ¢(az). W

Es folgt aus Satz [1.21] dass wir n € Ny mit ¢(n) € R gleichsetzen kénnen. Wir fassen
daher von nun an Ny als Teilmenge der reellen Zahlen auf. Wir fithren zudem folgende
Definitionen ein:

Z = NoUu{-neR|neN} CR (die Menge der ganzen Zahlen),

Q = {&lpgeZmit¢g#0} CR (der Korper der rationalen Zahlen).

Wir beschliefen das Teilkapitel mit folgendem Satz. Dieser erscheint “ganz offensichtlich’,
aber wir wollen diesen wiederum nur aus den Axiomen herleiten.

Satz 1.22. Fiir jedes € > 0 in R existiert etn n € N, so dass

1
— < €.
n

Beweis. Es sei also € > 0. Wir miissen zeigen, dass es ein n € N gibt, so dass % < €.

Wir miissen also zeigen, dass es ein n € N gibt, welches eine gewisse Ungleichung
erfiillt. Das einzige Axiom, und die einzige Aussage, welche wir von diesem Typ
haben, ist das archimedische Axiom:

(N) Fiir alle z > 0 und y > 0 existiert ein n € N, so dass n -z > y.

Wir miissen also das archimedische Axiom auf geschickt gewéhlte x und y anwenden.

BEine Abbildung ¢: A — B zwischen zwei Mengen bei der gilt, dass aus a; # ao immer folgt, dass
w(a1) # p(az), heiflt injektiv. Wir werden diesen Begriff spéter noch ausfiihrlicher diskutieren. Der Begriff
wird auch in der linearen Algebra verwendet.
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Aus Korollar folgt, dass % > 0. Nach dem archimedischen Axiom (N), angewandt auf
r = e und y = 1, existiert ein n € N, so dass n-€ > 1, also n > % Es folgt nun aus
Satz dass + <. [

1.8. Notationen. Wir fithren noch einige Notationen ein. Die meisten davon sind wohl
aus der Schule gelaufig.

Notation. Im Folgenden seien a, b zwei reelle Zahlen gegeben, wir definieren: m

[a,b] = {zx€R|a<x<b}, (geschlossenes Intervall)
(a,b) = {xreR|a<xz<b}, (offenes Intervall)

(a,b) == {xeR|a<x<b}, (halboffenes Intervall)
[a,b) = {z€R|a<xz<b}, (halboffenes Intervall)

Eckige Klammen | und | bedeuten also, dass der Endpunkt enthalten ist, runde Klammern
( und ) bedeuten, dass der Endpunkt nicht enthalten ist. Die Notation unterscheidet sich
also von der an der Schule geldufigen Notation, dort wir beispielsweise das offene Intervall
(a,b) oft als |a, b[ geschrieben. Dariiber hinaus definieren wir

la,00) = {z€R|a<Lz}
(a,0) = {reR|a<zx}
(—o0,a] = {reR|z<a}
(—o0,a) = {zeR|z<a}
R.o := {z€R|z>0} (die Menge der positiven reellen Zahlen)
Rso := {z €R|z>0} (die Menge der nicht-negativen reellen Zahlen)

Notation. Fiir eine endliche Menge M C R bezeichnen wir mit max M das maximale
Element von M und wir bezeichnen mit min M das minimal Element von M

Beispiel. Es ist max{1, —5,7} = 7 und min{—%, 3,—3}=-3.

Zum Abschlufl wollen wir noch den Begriff des ab- und aufrundens einfithren. Dazu
benotigen wir folgendes Lemma ]

Lemma 1.23.

(1) Fir jede reelle Zahl r € R existiert ein m € Z mit m > r.
(2) Fiir jede reelle Zahl s € R existiert einn € 7 mit n < s.

2OHierbei bezeichnet beispielsweise {z € R|a < z < b} die Menge aller reellen Zahlen, welche die
FEigenschaft besitzen, dass a < x <.

20Wir erlauben auch explizit den Fall, dass a > b. Beispielsweise ist (3, —2) die leere Menge, weil es keine
reelle Zahl z gibt mit x > 3 und z < —2.

21Ein “Lemma” ist, wie ein “Satz” oder “Theorem” eine mathematische Aussage. Der Name “Lemma”
wird normalerweise fiir etwas uninteressantere Aussagen verwendet. Aber das ist reine Geschmackssache.
Ich hitte die Aussage auch wieder als Satz bezeichnen kénnen.
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Beweis ().
(1) Die Aussage folgt aus dem archimedischen Axiom angewandt auf z =1 und y = r.
(2) Wir wenden (1) auf r = —s und erhalten ein m € Z mit m > —s. Dann gilt aber
—m < —(—s) = s. Also hat n := —m die gewiinschte Eigenschaft. [ |
Definition. Fiir eine reelle Zahl z € R definieren wir?]
[z2] = min{n € Z|n >z} = minimalesn € Zmit n >z “z aufgerundet”, sowie
lz] = max{n €Z|n <z} = maximalesn € Zmit n <z “z abgerundet”.

Die kleinen horizontalen Striche geben also an, ob man ab- oder aufrundet.

22Es folgt aus Lemma |1.23] dass es ein n € Z mit n > z gibt. Deswegen ist [2] in der Tat definiert. Das
gleiche Argument gilt auch fiir |z].
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2. DIE VOLLSTANDIGE INDUKTION

Im néchsten Kapitel fithren wir Folgen von reellen Zahlen und die Konvergenz von reellen
Folgen ein. In diesem Kapitel unterbrechen kurzzeitig die Diskussion der reellen Zahlen, und
fithren die vollstandige Induktion als Beweismethode ein. Wir verwenden diese um mehrere
Aussagen herzuleiten, welche in spéteren Kapiteln hilfreich sein werden.

Das ganze Kapitel beruht auf folgendem, eigentlich offensichtlichen Satz, aus der Logik.

Satz 2.1. (Prinzip der vollstindigen Induktion) Fir jedes n € Ny sei eine Aussage
A(n) gegeben. Nehmen wir an, dass Folgendes gilt:

(1) A(0) ist wahr,

(2) fiir jedes beliebige n > 0 gilt: Falls A(n) wahr ist, dann ist auch A(n + 1) wahr.
Dann folgt aus (1) und wiederholter Anwendung von (2), dass A(n) wahr ist fir allen € Ny.

Ein typischer Induktionsbeweis verlauft nun wie folgt. Wir wollen zeigen, dass fiir jedes
n € Ny eine bestimmte Aussage A(n) gilt. Wir fithren folgende drei Schritte durch:

(1) Induktionsanfang: Man zeigt, dass A(0) gilt.

(2) Induktionsvoraussetzung: Man nimmt an, dass A(n) gilt fiir ein beliebiges n > 0.

(3) Induktionsschritt: Man zeigt, dass unter der Induktionsvoraussetzung auch A(n + 1)
wahr ist.

Es folgt nun aus dem Prinzip der vollstandigen Induktion, d.h. aus Satz 2.1} dass die Aus-
sage A(n) wahr ist fiir alle n.

Wir werden jetzt eine ganze Reihe von Sétzen mithilfe von Induktion beweisen. Wir
beginnen mit folgendem Satz, den wir in Zukunft immer mal wieder verwenden werden.
Satz 2.2. Fir alle x € R\ {1} und n € Ny gilt:

1— anrl

- k
];):E - 11—z

Beweis. Es sei € R\ {1}. Fiir n € Ny ist

1 — gt

1—2x

A(n) definiert als folgende Aussage > L
k=0

Wir miissen zeigen, dass A(n) wahr ist fiir alle n > 0.
Induktionsanfang. Wir miissen also zeigen, dass die Aussage A(0) wahr ist. Dies kénnen
wir leicht verifizieren, denn es ist

0 1—2

I‘k = gjo = ]_ —= i
Z 1—x
k=0

d.h. A(0) ist wahr.



24

Induktionsvoraussetzung. Wir nehmen an, dass A(n) fiir ein n € Ny wahr ist, d.h. wir
nehmen an, dass
L 1— gntl

=0 1—2x

Induktionsschritt. Wir miissen nun zeigen, dass auch A(n + 1) wahr ist.

n+1
Wir miissen also Y z¥ bestimmen. Die Idee ist nun, diese Summe aufzuspalten, in
k=0

die ersten n Summanden und den letzten Summanden. Die Summe der ersten n
Summanden kennen wir schon per Induktionsvoraussetzung.

Wir fithren nun folgende Berechnung durch:

+1 ;
Wb 2k e L 0 e (et 1
=0 =0 T 1—x T 1—=x T 1—=z

Verwenden der Induktionsvoraussetzung Zusammenfassen Vereinfachen

Nach Induktion folgt nun, dass A(n) wahr ist fiir alle n, d.h. wir haben den Satz bewiesen.
|

Satz 2.3. (Satz vom kleinen Gauss) Fir alle n € Ny gilt

(1) zi:k = %n(n—i—l) und (2) zi:kz = %n(n+1)(2n+1).

Beweis (x). Man kann Aussage (1) problemlos per Induktion beweisen. Ein anderer Ansatz
ist die Aussage mithilfe des “Tricks vom kleinen Gauss” zu zeigen. Dies ist eine Aufgabe
im 2. Présenziibungsblatt.

Wir wollen im Folgenden nun Aussage (2) beweisen. Fiir n € Ny sei nun A(n) die Aussage

M=

B = con(n+1)(2n+1).

k=1

Wir miissen also zeigen, dass A(n) wahr ist fiir alle n € Ny.
Induktionsanfang. Wir kénnen leicht verifizieren, dass die Aussage A(0) richtig ist. In der

Tat ist
0
S =0 = 2-0-(0+1)-(2-0+1).
k=1 » 6
siehe Definition auf Seite [[2]

Induktionsvoraussetzung. Wir nehmen nun an, dass A(n) wahr ist fiir ein n € Ny, d.h. wir
nehmen an, dass fiir ein n € Ny gilt:

Sk = Zn(n+1)(2n+1).
k=1
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Induktionsschritt. Wir miissen nun zeigen, dass auch A(n+ 1) wahr ist. Wir verfahren ganz
analog zum Beweis von Satz [2.2] ndmlich wir fithren folgende Rechnung durch:

folgt aus der Induktionsvoraussetzung

n+1 n \If
S = SR 4+ (n+1)? = cn(n+1D)En+1) + (n+1)?
k=1 k=1

1
= 6(n +1)(n+2)(2(n+1)+1).
/I\
folgt durch Ausmultiplizieren auf beiden Seiten und Vergleichen der Terme [ |

Bemerkung. In Beweisen wird die Induktionsvoraussetzung oft ausgelassen, allerdings emp-
fehle ich diese am Anfang immer noch aufzufithren, weil es im Induktionsschritt hilfreich
ist, diese vor Augen zu haben.

Satz 2.4. (Bernoullische Ungleichung). Es sei x > —1 eine reelle Zahl. Fiir jedes
n € Ny gilt folgende Ungleichung:

(1+2)" > 1+nx.
Beweis. Es sei > —1. Fiir n € Ny sei A(n) die Aussage, dass
(14+x)" > 1+nax.

Induktionsanfang. Man kann leicht nachrechnen, dass die Aussage A(0) wahr ist.
Induktionsvoraussetzung. Wir nehmen an, dass A(n) fiir ein n € Ny wahr ist, d.h. wir
nehmen an, dass fiir ein n € Ny gilt:

(1+2)" > 1+ na.
Induktionsschritt. Es gilt
A+z)"=0+2)" - (14+2)> 1+nr)(1+z) =1+ n+1)r+nz®>> 1+ (n+1)z.

0 +
aus der Induktionsvoraussetzung folgt (1 + x)™ > 1 + nz, die Ungleichung folgt denn nz? > 0
nun aus dem Ordnungsaxiom (O4) und der Voraussetzung, dass 1 +x >0 [ |

Das folgende Korollar besagt insbesondere, dass die Potenzen von einer Zahl b > 1
“beliebig grofl” werden konnen.

Korollar 2.5. Es sei b > 1. Fiir jedes C' € R existiert ein ng € N, so dass fiir alle n > ng
qilt b* > C.

Beispiel. Wir wollen die Zahl der Viruserkrankten mit folgendem grob vereinfachten Modell
studieren:

(1) Wir nehmen an, dass es zu Beginn der ersten Woche genau m > 0 Infizierte gibt.
(2) Jeder Infizierte bleibt eine Woche lang krank und ansteckend und ist danach nicht
mehr krank und nicht mehr ansteckend.
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(3) Wir nehmen an, dass jeder Virusinfizierte innerhalb von einer Woche im Durchschnitt
wiederum R Menschen ansteckt. Am Ende der ersten Woche sind also R-m Menschen
krank. Am Ende der zweiten Woche sind dann R? - m krank und am Ende der n-ten
Woche sind R™ - m-Menschen krank [

(4) Nehmen wir an, dass der Anteil derer, die auf einer Intensivstation behandelt werden
miissen, € € (0, 1] ist. Mit anderen Worten, in Woche n liegen € - R™ - m Patienten
auf der Intensivstation.

(5) Es sei J die Anzahl der Behandlungsplétze auf Intensivstation.

(6) Wir nehmen nun an, dass R > 1. Korollar [2.5|besagt dann, dass es eine Woche ng € N
gibt, so dass R™ > % fiir alle n > ng, d.h. esist e - R™ - m > J fiir alle n > ny. Mit
anderen Worten, ab der ng-ten Woche sind alle Intensivplédtze durchgehend belegt.

Beweis. Essei b > 1 und es sei C' € R.

Wir wollen also insbesondere ein n € Ny finden, so dass die Potenz b™ grofier als
die gegebene Zahl C' wird. Das klingt ein bisschen wie das archimedische Axiom,
allerdings behandelt dies ein Produkt nz und keine Potenz. Andererseits kénnen
wir mithilfe der Bernoullischen Ungleichung eine Potenz durch einen Ausdruck der
Form 1 + nx abschéitzen. Die Idee des Beweises ist also, das Korollar mithilfe der
Bernoullischen Ungleichung auf das archimedische Axiom zuriick zu fiihren.

Wir miissen den Ausdruck " in die Form (1 + )" bringen. Wir setzen daher x = b — 1.
Es folgt aus Satz[2.4] dass fiir ein beliebiges n gilt:

v* = (1+2)" > 1+nz.

Nachdem z = b — 1 > 0 besagt das archimedischen Axiom, dass es ein ng € N mit

ng-x > C
gibt. Fassen wir beides zusammen, dann erhalten wir fiir n > ng, dass
o= (I1+x)" > 1+n-z > n-x > ny-xz > C.
+ 0 + +
aus b > 1 folgt = > 0, also folgt dal>0 dan>ng Wahl von ng
die Ungleichung aus der und x > 0
Bernoullischen Ungleichung [ |

Wir beschliefen das Kapitel mit ein paar Definitionen und Aussagen, welche vielleicht
schon aus der Schule bekannt sind.

Definition. Fiir ng € N definieren wir o= B svedien Yo BoliE,

Aus der Definition auf Seite [12] folgt, dass 0! :
auBerdem den Binomialkoeffizienten

1. Fir 0 < k < n in Ny definieren wir
n n! «“ 9
( ) = oRTH gesprochen “k aus n

k

23R ist also grob der Reproduktionsfaktor.
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Fiir £ = 0 oder k£ = n betrigt dieser Ausdruck gerade 1.
Lemma 2.6. Fir 0 <k <n gilt

(") = )+ (2)

Beweis (x). Es ist

n n n! n!
(k>+<k—1> - (n—k)!k!+(n—k+1)!(k—1)!
(n+1—k)n! nl k
m+1-kKMn—-kK'k  (h-—k+D!(k-1)k

_ (n+1-k)n! nlk

1=k E (n—k+1) R

o n! o (n+1)! _ (n+1

o ((n+1_k)+k)(n+1—k)!k!  (n+1-k)'E ( k > m

Mithilfe von diesem Lemma kénnen wir jetzt folgenden Satz beweisen.

Satz 2.7. (Binomischer Lehrsatz) Fir beliebige a,b € R und n € Ny gilt

(a+b)" = Zn: <Z>akb"*k.

k=0

Beispiel. Der Satz kann als Verallgemeinerung der iiblichen binomischen Formel betrachtet
werden. In der Tat besagt der Satz fiir n = 2, dass

(a+b)? = <§>a0b2+<i>a1bl+<;>a2b0 = b* + 2ab+ a®.

Fiir n = 3 sieht man zudem, dass

@+ = (§)a®+ (7)a't?+ (5 )a* + (5 )a™ = b+ 3ab? + 3a% + a”

Beweis (x). Seien a,b € R. Fiir n € Ny sei A(n) die Aussage:
(a+d)" = > (Z)akb"_k.
k=0

Induktionsanfang. Die Aussage A(0) gilt trivialerweiseE]
Induktionsvoraussetzung. Wir nehmen an, dass A(n) wahr ist, d.h. wir nehmen an, dass

(a+b)" = Zn: (Z)akb”_k.

k=0

24Hier “trivial” heifit, dass man es leicht durch Einsetzen zeigen kann. Das Ganze ist so langweilig, dass
man es sich sparen kann, dazu etwas zu schreiben.
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Induktionsschritt. Wir fithren folgende Rechnung durch:

(a+b)" ™t = (a+b)(a+b)" . (a+b)-§(2)akb"—’f P %(Z)df“b”’f + é(Z)a’“bn—kH.

Induktionsvoraussetzung Distributivgesetz

Wir wenden jetzt den Trick an, dass wir eine Summe wie folgt ganz allgemein umschreiben

konnen:
n+1

n
Yok = D k-
k=0 k=1

Wir wenden jetzt diesen Trick auf die erste Summe an. Wir rechnen nun wie folgt weiter:

n+l s n krn—k+1 (n krn—k+1
(a+b) = Z(k-—l)ab +Z<k>ab
/ k=0

k=1

. =

_ Y\ n+1;0 n n kpn—k+1 Y 0pn+l

= () + El«k—l)*(k))“b + (e
—_——— . —~ ” —_———
k=n+1 Summand hierauf wenden wir Lemma an k=0 Summand

n n+1
_ o ontl n+1> kpn—k+l | pntl <n+1) kpn—k+1
= a +kz_:1< L )a b +b = kz::(] L )a b .

Der Satz folgt nun also per Induktion. [ |
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3. FOLGEN UND REIHEN

Nach der Einfiihrung in das Prinzip des Induktionsbeweises kehren wir jetzt zuriick zu
den reellen Zahlen. In diesem Kapitel fithren wir “Folgen” und “Reihen” ein und werden
deren “Konvergenzverhalten” studieren. Diese Begriffe werden uns durch die ganze Analysis
begleiten.

3.1. Quantoren. Bevor wir uns den Folgen und Reihen zuwenden ist es sinnvoll noch
schnell eine einfache, aber hilfreiche Notation einzufithren. Wenn man sich die vorherigen
Kapitel noch mal anschaut, dann merkt man nédmlich, dass immer wieder Formulierungen
der Form “fiir alle x € X” und der Form “es existiert ein y € Y” auftauchen. Nachdem
diese Ausdriicke im Folgenden eine noch viel wichtigere Rolle spielen werden ist es hilfreich
folgende Abkiirzungen einzufiihren:

V... bedeutet “fiir alle z gilt ...”

x

3...  bedeutet “es gibt ein z, so dass ...” ]

x

Die Symbole V und 3 nennen wir Quantoren.

Beispiel. Im Folgenden schreiben wir drei der Kérperaxiome um in Quantorenschreibweise:

urspriingliche Formulierung ‘ Formulierung mit Quantoren

Axiom (A3) | Es existiert ein Element N € K, so 3 V 24 N=ux

dass fiir alle z € K gilt: x + N =« NeK zeK
Axiom (A4) Zu jedem x € K existiert ein B
Element y € K,sodassz +y =N x\ZKyelex+y_N
Axiom (N) | Fiir alle z > 0 und y > 0 existiert V 3 nexs
einn €N,sodassn-z >y 2>0,y>0 neN nrE=y

Als weiteres Beispiel erinnern wir uns an folgendes etwas uniibersichtliche Korollar.

Korollar. FEs sei b > 1. Fiir jedes C' € R existiert ein ng € N, so dass fiir alle n > ny
qilt b* > C.
Mithilfe von Quantoren kénnen wir das nun wie folgt umschreiben.

Korollar. Es sei b > 1. Dann gilt:
v 3 Vr>cC.

CeR ngeN n>ngp

Wir sehen also, dass man mithilfe von Quantoren Formulierungen abkiirzen kann. Was
aber viel wichtiger ist, ist dass bei Quantorenschreibweise die logische Struktur einer Aus-
sage viel offensichtlicher ist.

2Der Ausdruck “es gibt ein 2” bedeutet, dass es mindestens ein solches 2 gibt, es kann aber beliebig
viele geben. Wenn man sagen will, dass die Anzahl solcher x’s gerade eins betriigt, dann sagt man “es gibt
genau ein x”.
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Als letztes Beispiel fithren wir noch folgende Definition ein, welche immer wieder einmal
eine Rolle spielen wird.

Definition. Es sei M C R eine beliebige Teilmenge und f: M — R eine Funktion. Wir
definieren:

fist beschrinkt < 3 VYV |f(z)] <C.

CeR zeM
Wenn eine Funktion nicht beschrankt ist, dann sagen wir, dass f unbeschrdnkt ist.

C SN —— Graph von f: M — R
/\\ . . \\ e Definitionsbereich M
o \/ / die Funktion f ist beschrankt

ABBILDUNG 2. Illustration der Definition einer beschrankten Funktion.

In vielen Féllen miissen wir eine Aussage negieren. Es sei beispielsweise M eine Menge
und fiir jedes x € M sei A(z) eine Aussage, welche wahr oder falsch sein kann. Dann ist

Negation von “fiir alle € M, gilt A(x)” = “esgibteinze M, so dass A(z) falschist”.
Fiir eine Funktion f: M — R gilt beispielsweise
Negation von “fiirallex € Mist f(z) > 1”7 = “es gibt ein x € M, so dass f(x) < 1”
\‘./—/
oder in Quantorenschreibweise I\I(J/J%(aﬂ;)loél T
Negation von xe\v’M flz)>1 = er]M flz) <1

Die gleiche Logik funktioniert auch mit den Rollen von V und 3 vertauscht. In der Tat, es
gilt

Negation von “esgibteinz € M, sodass A(x) gilt” = “fiir alle z€ M ist A(x) falsch”.
Fiir eine Funktion f: M — R gilt beispielsweise
Negationvon “esgibteinz € M mit f(z) = 3" = “firallex € M ist f(z)#3 "7
—
Negation von
oder in Quantorenschreibweise flz)=3
Negation von acEElM flx)=3 = TZM f(z) # 3.

Wir sehen also, dass wir die Negation dadurch erhalten, dass wir V und 3 vertauschen,
und die jeweilige Aussage A(x) negieren. Dies funktioniert ganz analog, fiir Verkettungen
von Quantoren. Beispielsweise gilt fiir eine Funktion f: M — R:

Negation von “f: M — R ist beschrankt” = Negation von CE]R VM lflx)] <C
€ e

= V 3 |f(x)|>C.

CeR  zeEM N ——

Negation von
[f(z) <C
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3.2. Folgen. Jetzt wenden wir uns dem eigentlichen Thema des Kapitels zu.

Definition. Eine Folge von reellen Zahlen (oder kurz “Folge”) ist eine Abbildung

N —-— R
n = ap

Eine solche Folge wird oft auch mit (ay,as,as,...), oder mit (a,)neny oder mit (a,)n>1
oder, noch knapper, mit (a,) bezeichnet. @Die einzelnen Zahlen a, werden Folgenglieder
genannt.

Beispiel. Wir betrachten jetzt eine ganze Reihe von Folgen, damit wir ein Gefiihl dafiir
kriegen, wie Folgen ausschauen kénnen. Wir wollen dabei auch “qualitativ” beschreiben,
wie sich die jeweilige Folge verhélt:

Definition der Folge die ersten Folgenglieder qualitatives Verhalten

(a) (£)nen L1555 die Folge geht gegen 0

(b) (nL)nEN 1, % %, %, %, die Folge strebt gegen 0

(c) (3)nen 3,3,3,3,3, .. die Folge ist immer gleich 3

(d) (3+ Z)nen 5,33, 32, 3=, 3% ... die Folge ndhert sich immer mehr der 3

(e) (=1)")nen -1,1, -1, 1, -1, die Folge springt zwischen 1 und —1 hin und her
(f) (%)neN %, }l, %, 1—16, 312, die Folge strebt gegen 0

(g) (n*)nen 1,8,27,64,125,216,... die Folge geht ins “Unendliche”

Es gibt aber auch noch kompliziertere Folgen, welche man nicht mit einem einzigen mathe-
matischen Ausdruck definieren kann. Beispielsweise gibt es folgende schone Folgen:

L falls n gerade
(h) {_L” const & —1,%, %4, 3¢~ die Folge strebt gegen 0
n27
l .
(i) {g’ iilxllss: prm 5, %, %, 5, %, 5, %, 5,5,... die Folge ist “zumeist” 5, aber nicht immer
<
() {91’ izllllsstn =10 9,...,9, ﬁ, %, 1—13, - fiir grofle n geht die Folge gegen 0

(k) Zahl der Coronafélle am Tag 15. Februar +n 777

Wir sehen also, dass der Fantasie bei der Definition von Folgen keine Grenzen gesetzt sind.

Folgende Definition ist eigentlich nur ein Spezialfall der Definition auf Seite [30]

26Manchmal betrachten wir auch Abbildungen Ny — R, welche wir ebenfalls als Folgen bezeichnen. Die
Notationen dndern sich dann auf die offensichtliche Weise.
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ABBILDUNG 3. Coronafille in Deutschland ab dem 15. Februar.

Definition. Es sei (a,)nen eine Folge von reellen Zahlen. Wir definieren:

(@n)nen ist beschrinkt <= C%R TEN la,| < C.

Andernfalls heifit die Folge unbeschrainkt.
Beispiel.
(1) Alle Folgen (a),...,(j) mit Ausnahme von (g) sind beschrinkt. Betrachten wir bei-
spielsweise die Folge (d), d.h. die Folge a,, = 3 + n—22 Wir behaupten, dasﬂ C =6
die gewiinschte Eigenschaft besitzt. In der Tat gilt fiir alle n € N, dass

3+ %] = 3+ 2 % 342 = 5 = C.
aus n > 1 folgt n* > 1 und damit - < 2

(2) Die Folge (g), d.h. die Folge (n3),en = 1,8,27,64,125, ..., ist unbeschrinkt.
(3) Wir hoffen auch, dass die Folge (k) beschriankt bleibt.

Wir wenden uns jetzt einer deutlich interessanteren Definition zu. Wir haben in den
Beispielen gesehen, dass viele der Folgen “gegen einen Wert streben”. Wir wollen nun dieses
“gegen einen Wert streben” mathematisch préazise formulieren. Wir fithren dazu folgende
Definition ein. Diese ist eine der wichtigsten Definitionen der Analysis. Sie ist leider auch
zu Anfang eine der am schwersten zu verdauenden Definitionen.

Definition. Es sei (a,)nen eine Folge von reellen Zahlen.
(1) Es sei a € R. Wir definierenf

a konvergiert gegen .
(an)nex BICTL 08 = lima,=a <= V 4 V J|a,—a|<e.
den Grenzwert a n—o0 >0 NeN n>N s~—

/T\
mit anderen Worten, es ist a,, € (a — €,a + €)

2TWir hitten genauso gut C' = 5 oder eine beliebige reelle Zahl > 5 wihlen kénnen.
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(2) Wenn (a,,)nen gegen 0 konvergiert, dann sagen wir, dass (a,)nen eine Nullfolge ist.
(3) Wir sagen die Folge konvergiert, wenn sie gegen ein a € R konvergiert.

Bemerkung. Die Namen (a,)nen, @, €, N und n sind vollig irrelevant. Beispielsweise gilt
ganz genauso:

(by)ven konvergiert gegen

den Grenzwert y : kh_globk —Y V. 3 YV |-yl <p

pu>0 mzeN t>mg

Bemerkung. Es sei (a,)nen eine Folge. Wir konnen die Definition der Konvergenz noch mal
mit anderen Worten ausdriicken: eine Folge (a,),en konvergiert gegen a € R, wenn es zu
jedem e-Intervall (a —e€,a+€) um a ein N € N gibt, so dass ab N alle Folgenglieder in dem
e-Intervall (a — €,a + €) liegen.

Bemerkung. Im Folgenden stellen wir zwei Moglichkeiten vor mit denen Folgen zu illustriert
werden konnen. Wir verwenden beide Moglichkeiten um die Konvergenz von Folgen zu
illustrieren.

(1) Wir konnen uns Folgen als Punkte auf der “Gerade” R vorstellen. Dieser Ansatz wird
in Abbildung (4| gewéhlt um die Konvergenz von Folgen zu illustrieren.

ab diesem N liegen alle Folgenglieder in dem Intervall (a — €, a + €)

|

. 1 5 38 7 6 4 2
Folgengheder (079 ° ° ®o 00000 0 ° °

o R

e N

ABBILDUNG 4. Erste Illustration der Definition der Konvergenz von Folgen.

Grenzwert a Intervall (a — €,a + ¢€)

(2) Ganz ahnlich wie in Abbildung [3| kénnen wir uns eine Folge (ay,)nen, auch mithilfe
von Punkten in R? vorstellen. In diesem Fall ist die logische Reihenfolge der Folgen-
glieder klar, aber es ist schwieriger die Folgenglieder zu vergleichen. In Abbildung
verwenden wir diesen Ansatz um die Konvergenz von Folgen zu illustrieren.

Wir werden Bilder nie verwenden um Aussagen zu beweisen. Aber Bilder kénnen hilfreich
sein um ein Gefiihl fiir Folgen zu erhalten und um Ideen fiir Beweise zu erarbeiten.

Betrachten wir das vierte Beispiel von Seite , d.h. wir betrachten die Folge (3 + %)n N
Wir haben den Eindruck, dass die Folge gegen 3 strebt. Wenn unsere Definition von Kon-
vergenz Sinn machen soll, dann muss diese Folgen gegen 3 konvergieren. Wie wir jetzt sehen
werden ist dies in der Tat der Fall.

Behauptung. Es ist
lim 3+ %) = 3.

n—oo

28Mit anderen Worten, die Folge konvergiert gegen a € R, falls es zu jedem € > 0 ein N € N gibt, so
dass fiir alle n > N gilt |a, —a| < e.
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R die Folgenglieder a,, R e-Intervall (a — €,a + €) um a
. ) » ’ . ° . a
0 ° Y - . R H
N -
(1,01) (7, n) __— N

ab diesem N liegen alle Folgenglieder
in dem Intervall (a —€,a + €)

ABBILDUNG 5. Zweite Illustration der Definition der Konvergenz von Folgen.

Beweis. Wir miissen also zeigen, dass

V 3 OV [3+2)-3 <
0 NeN n>N L

=2
Es sei also € > 0 eine beliebige reelle Zahl gréffer Null. Wir miissen ein N € N finden, so
dass fiir alle n > N gilt n% < €.

Nach Satz gibt es zu jedem v > 0 ein N € N, so dass
1,

Wenn wir den Satz auf v = § an erhalten wir ein NV € N, so dass

1 €
N 2°
Wir wollen nun zeigen, dass dieses N die richtige Eigenschaft besitzt. Es sei also n > N,

dann gilt

11 1 1
5 =2 -- < 2.~ < 2.2 < 2-% = e
n n n 4 n 4 4
dal<1 dal<l  Wahlvon N u

Bemerkung. Ein ganz dhnlicher (oder noch einfacherer) Beweis wie in der Behauptung
zeigt, dass
(a) lim — = 0, (b) lim 120 ud (¢) lim3 = 3.

n—oo N n—o00 n2 n—00

Viele der weiteren oben genannten Folgen werden wir dann noch in den Ubungsbléttern 2
und 3 behandeln.

Der Ausdruck der Grenzwert legt natiirlich nahe, dass wenn es einen Grenzwert gibt,
dann ist dieser eindeutig. Dies ist in der Tat der Fall, wie der néchste Satz zeigt.

Satz 3.1. (Satz vom eindeutigen Grenzwert) Jede konvergente Folge von reellen Zah-
len konvergiert gegen genau eine reelle Zahl.
In dem Beweis von Satz|3.1| vom eindeutigen Grenzwert verwenden wir folgendes Lemma.
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Lemma 3.2. Es sei z € R. Wenn fiir alle e > 0 gilt, dass |z| < €, dann ist z = 0.

Beweis von Lemma (%). Es sei z € R. Wir miissen also folgende Aussage beweisen:

V |z| < e — z = 0.
e>0

Wir verwenden das Prinzip der Kontraposition, d.h. wir verwenden folgende allgemeine
Aussage aus der Logik:

Aussage A = Aussage B  ist dquivalent zu  Negation von B = Negation von A.

In unserem Fall geniigt es also zu zeigen:

z # 0 = 3 1z > e
e>0
Es sei also z # 0. Wir setzen € := % > 0. Dann ist offensichtlich |z| > e. |

Beweis von Satz[31 . Es sei (a,)nen eine konvergente Folge. Es seien x und y zwei Grenz-
werte der Folge. Wir miissen zeigen, dass x = y. Lemma [3.2] besagt, dass es geniigt folgende
Behauptung zu beweisen.

Behauptung. Fir jedes p > 0 gilt | — y| < p.

Es sei also g > 0. Zur Erinnerung, die Tatsache, dass x und y Grenzwert der Folge
(an)nen sind bedeutet, dass folgende Aussagen gelten:

1 V 3 V Ja,—2|<e und 2 V 4 a, —y| <e.
e>0 NyeN n>N, e>0 NyeN n>Ny
Es folgt aus (1) und (2), angewandt auf e = £, dass
3V ja,—z|<t und 3V Ja,—y| <t
NzEN n>N, 2 NyEN n>N, 2
Es sei nun n > max{N,, Ny}ﬁ Dann gilt
Dreiecksungleichung Definition von €
' Wt
p—yl = l@—a)—(-a) < fp-al + ly-al < L+t D
—_—— ~——

T <e, dan>Ng <€, dan>N,y

wir fithren hier eine Nullergéinzung aus, d.h. wir fiigen die Terme —a,, und —(—a,,) hinzu,
der Vorteil dieser Umformung ist, dass nun a,, — « und a,, — y auftauchen [ |

Satz 3.3. Jede konvergente Folge ist beschrdnkt.

Beweis. Es sei (a,)nen eine konvergente Folge. Wir bezeichnen mit a den Grenzwert. Es
gilt also:

(%) V 3 V Ja,—a|l<e

e>0 NeN n>N

29Wir bezeichnen mit max{N,, Ny} das Maximum der beiden Zahlen N, und Ny.



36

Wir miissen zeigen, dass die Folge (a,)nen beschrinkt ist, d.h. wir miissen zeigen, dass es
ein C' € R gibt, so dass fiir alle n € N gilt |a,| < C.

Jetzt sind schon ein paar subtile erste Schritte im Beweis passiert: Wir haben der
Folge und dem Grenzwert einen Namen gegeben. Damit kann man gleich viel besser
arbeiten. Zudem haben wir noch einmal explizit die Definition von “Konvergenz”
und von “beschrénkt” hingeschrieben. Wir miissen also ein C' € R mit einer gewissen
Eigenschaft finden. Das einzige, was wir wissen ist, dass es fiir jedes € > 0 eine
Aussage gibt. Wir konnen ja mal schauen, was passiert wenn wir ein beliebiges € > 0,
z.B. e =1, wahlen.

Es folgt aus (%), angewandt auf ¢ = 1, dass es ein N € N gibt, so dass fiir alle n > N gilt
la,, — a| < 1. Wir setzen nun

¢ = max{lail,...,Jay-1],|a| + 1},

Maximum der Zahlen |a1|,...,|an-1],]a| +1

Wir wollen nun zeigen, dass C' die gewiinschte Eigenschaft besitzt, d.h. wir wollen zeigen,
dass fiir alle n € N gilt: |a,| < C.

(1) Es ist offensichtlich, dass dies wahr ist fiir n € {1,..., N — 1}.
(2) Es sei nun n > N. Dann sehen wir, dass folgende Ungleichung gilt:

jan| = lan—a+tal < fap—a[+l]a] < 1+4]a < C.
0 A A

sogenannte “Nullergénzung” Dreiecksungleichung dan > N Definition von C 1
Folgenglieder a,, . . e ccocce . .
o R

Grenzwert a

> Intervall (a — 1,a + 1)
ab einem gewissen N liegen alle Folgenglieder in dem Intervall (a — 1,a + 1)
ABBILDUNG 6. Skizze fiir den Beweis von Satz [3.3]
Der folgende Satz gibt uns nun einige hilfreiche Rechenregeln fiir konvergente Folgen.

Satz 3.4. Es seien (ay)nen und (by)nen konvergente Folgen von reellen Zahlen und es sei
A € R. Dann gilt:

(1) lim (a, +b,) = lima, + limb,
n—00 n—00 n—00
(2) lim (a, -b,) = lima, - limb,
(3) limA-a, = X lima,.
n— oo n—oo

Wenn fiir alle n € N gilt b, # 0 und wenn lim b,, # 0, dann gilt zudem
n—ro0

" ¥ an, ILm an
im = = =

( ) n—o00 bn lim bn
n—oo
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Beweis. Es seien (a,)neny und (by,)nen konvergente Folgen von reellen Zahlen.

Es ist eine gute Idee, den Grenzwerten einen Namen zu geben, und die Definition der
Konvergenz der Folgen (a,,)neny und (b, )neny noch einmal hinzuschreiben. Nachdem es
am Ende viele €’s geben wird, ist es auch weise, diese unterschiedlich zu bezeichnen.

Wir schreiben a := lim a,, und b := lim b,. Es gilt also
n—oo n—oo

(%) V 34 VYV Ja,—al < e und V 3 VYV |b,—0b< e

€a>0 NN n>Ng >0 NyeN n>N,

Wir wenden uns jetzt dem Beweis der vier Aussagen zu.
(1) (%) Wir miissen also jetzt zeigen, dass lim (a,+0b,) = a+b. Es sei also € > 0 gegeben.
n—00

Wir miissen zeigen, dass es ein N € N gibt, so dass fiir alle n > N gilt:
|(an +b,) — (a+b)| < e

Wir miissen also ein N € N finden, ab dem |(a,, + b,) — (a + b)| < € gilt. Aus
(%) folgt, dass wir |a,, — a| und |b,, — b| “unter Kontrolle” kriegen kénnen. Wir
miissen daher |(a, + b,) — (a + b)| so umschreiben, dass |a,, — a| und |b, — b|
auftauchen. Wir machen dies durch folgende Ungleichung, welche aus der Drei-
ecksungleichung folgt:

l(a, +b,) — (a+b)| = |[(a, —a)+ (b, —b)| < |a, —a|+|b, — 0|

Wir setzen jetzt ¢, = 5 und ¢, = 5. Aus (x) folgt, dass es N, € N und N, € N gibt,
so dass gilt:
€

(a) furallen > N, ist |a, —a|] < g (b) fiir alle n > Ny ist [b, — b < 3

Wir setzen N = max{N,, N,}. Wir wollen zeigen, dass dieses N die gewiinschte
Eigenschaft besitzt. Es sei also n > N. Dann gilt in der Tat:

(@ +02) = (@+0)| = |(an —a) = (b=by)] < |an—al+]b =] <;+5=¢
0 0
Dreiecksungleichung dies folgt aus (a) und (b), da
n>N>N, und n>N>N,

(2) Es sei also € > 0.
Wir wollen zeigen, dass die Folge (a,b,) gegen ab konvergiert. In diesem Fall
miissen wir also |a,b, — ab| mithilfe von |a, — a| und |b, — b| abschétzen. In
diesem Fall braucht das aber etwas mehr Phantasie als in (1). Um auf die Idee
zu kommen beginnen wir mit einer kleinen Abschétzung.
Fiir jedes n € N gilt:
\a,b, —ab| = |a,b, —ab, + ab, —ab| < |a,b,—aby,| + |ab, —ab| = |by,|-|a, —a| + |a|-|b, —b|.
+ +
Nullergdnzung Dreiecksungleichng
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Wir kénnen |a,, — a| und |b, — b| “beliebig klein” machen. Aber um zu errei-
chen, dass |a,b, —ab| kleiner als € wird miissen wir auch die Zahlen |b,|, n € N
in den Griff kriegen.
Nach Satz existiert ein C' € R, so dass |b,| < C fiir alle n € N. Wir setzen
D := max{C, |al|, 1} | Wir setzen nun ¢, = % und €, = % Aus (x) folgt, dass es
N, € Nund N, € N gibt, so dass gilt:

(a) fur alle n > N, ist |a, —a| < % (b) fiir alle n > Ny ist [b, — b| < %
Wir setzen N = max{N,, N;}. Es sei nun n > N. Dann gilt
obige Abschiitzung dies folgt aus (a) und (b), dan>N>N, und n>N >N,
+ 4 P P
lab — ayb,| < @-\an—al—l—@- b, — b < D-E—i—D-E = e
<Cc<D <D

(3) Diese Aussage erhalten wir indem wir (2) auf die konstante Folge b, = A anwenden.
(4) (¥) Wir nehmen nun also an, dass b, # 0 fiir alle n € N, und dass lim,,_,, b, # 0. Um
auf eine Beweisidee zu kommen fithren wir fiir beliebiges n € N folgende Abschéatzung

durch:
a a a,b — ab anb — ab+ ab — ab 1 a
7774 _ — n n — n n il . . _ . b o b .
b, b byb oD < i la, — a| + b b, — b

Nachdem b = lim,,_,o, b, # 0 gibt es ein N’ € N, so dass |b,| > @ fiir alle n > N’
Wir wahlen nun ein C' € Ryg mit C' > ‘%| und mit C > i—§| Aus (x) folgt, dass es
N, € Nund N, € N gibt, so dass gilt:

(a) furalle n > N, ist |a, —a| < % (b) fiir alle n > N, ist |b, — b] < %
Wir setzen N = max{N’, N,, N;}. Es sei nun n > N. Dann gilt
obige Ungleichung dan>N2>N’
: '
Qay, a 1 a 2 2a
5 b < E-Mn—a\—k‘m‘-ﬂ)n—b] < ‘5’-|an al + o |b,, — b
2 € 2a € 2 € 2a € € €
B P D RN [ I
vl 20 Tl a0 N RPIE R 2 R TE RT
dan>N2>N,und n>N > N, da02|%’und02’%§’ [ ]

Der folgende Satz besagt, dass Produkt einer Nullfolge mit einer beschrankten Folge
wiederum eine Nullfolge ist.

Satz 3.5. Fs seien (a,)neny und (a,)nen zwei reelle Folgen. Es gilt:

lima, =0 wund (a,)nen beschrinkt — lima, -a, = 0.
n—oo n—oo

30Dje “1” ist nur Teil der Definition von D um sicherzustellen, dass D # 0.
31Wer es so weit in den Beweis geschafft hat, darf sich iiberlegen, warum es solch ein N’ gibt.
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Beweis. Wir miissen also zeigen:

V 4 V Ja,| < e und 4 Vi <C = V 3V |, a,]< p

e>0 NeN n>N CeR neN u>0 MeN n>M

Es sei also g > 0. Nach Voraussetzung existiert ein C' € R, so dass fiir alle n € N gilt
la,| < C. Wenn C' = 0, dann ersetzen wir dieses durch C' = 1. Nach Voraussetzung
existiert ein N € N, so dass fiir alle n > N gilt |a,| < &. Fiir alle n > M := N gilt dann,
dass

|a’n'a/n| = ’an’ ’ |an‘ < |a’n| O < %C = M
0 +
Wahl von C dan > N n

Wir beschlieflen das Teilkapitel {iber konvergente Folgen mit zwei Aussagen iiber den
Zusammenhang von Grenzwerten und Ungleichungen.

Satz 3.6. Es seien (an)neny und (by)nen 2wei konvergente Folgen von reellen Zahlen. Es
qgilt:
Y a, > b, — lim a, > lim b,

neN n—oo n—00

Beispiel. Es seien (a,)neny und (by,)nen zwei konvergente Folgen. Wir kénnen in Satz
nicht einfach “>” durch “>” ersetzen. Mit anderen Worten, wenn fiir alle n € N gilt

a,>b,, dann gilt nicht notwendigerweise, dass auch lim a,,> lim b,,. Beispielsweise gilt fiir
n—oo n—oo

alle n € N, dass + > 0. Aber lim = =0 = lim 0.

n—o0 n—o0

Der Beweis von Satz [3.6] #hnelt etwas dem Beweis von Satz B.1 Auch in diesem Fall
bendtigen wir ein einfaches Lemma.

Bemerkung. Die Aussage von Satz gilt insbesondere fiir den Fall, dass (a,)nen oder
(bn)nen eine konstante Folge ist. Es sei also beispielsweise (a,)nen eine konvergente Folge

und b eine reelle Zahl, so dass fiir alle n € N gilt a,, > b. Dann ist auch lim a,, > b.
n—oo

Lemma 3.7. Es seien a,b € R. Wenn fiir alle € > 0 gilt, dass a > b — €, dann ist a > b.

Beweis von Lemma[3.7 Es seien a,b € R. Wir miissen also folgende Aussage beweisen:

YV a>b—c¢ — a > b.
e>0

Wie im Beweis von Lemma [3.2] geniigt es nach dem Prinzip der Kontraposition folgende
dquivalente Aussage zu beweisen:

a <b — Jda<b—ec
e>0
Es sei also a < b. Wirsetzen6:b_7a>0. Dannista§a+l’_7“:b—e. [ |

Beweis von Satz[3.0. Es seien (a,)nen und (by,)nen zwei konvergente Folgen, so dass fiir alle

n € N gilt a, > b,. Wir schreiben ¢ = lima, und b = lim b,. Wir wollen zeigen, dass
n—o0 n—0o0

a > b. Nach Lemma [3.7] geniigt es folgende Behauptung zu beweisen.
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Behauptung. Fiir alle p > 0 gilt a > b — p.

Es sei > 0. Es folgt aus der Definition von Grenzwerten, angewandt auf e = £, dass

1 4 V la, —a| < £ und 2) 3V |p.-b <t

Nq.eN n>N, 2 NyeN n>N, 2
—_——— ———

d.h. a € (anfg,an—‘r%) d.h. bne(bfg,b-l—%)
Es sei nun n = max{N,, Ny}. Dann gilt
a > a5 2 b-5 > (0-5)-5% =0b-n
4 4 4
folgt aus (1) nach Voraussetzung folgt aus (2) [

Satz 3.8. (Sandwichsatz) Es seien (a,)nen, (bn)nen und (yn)nen Folgen von reellen Zah-
len und es sei z € R. Dann gilt:

Y oa, <yp <b, und lima,=limb,=2 = limy, =z

neN n—oo n—oo n—o0
Beispiel. Wir betrachten die Folge y,, = (—1)" - =. Fiir allen € N gilt: —+ < (=1)"- L < &
Aus der Bemerkung auf Seite % und aus Satz (3) folgt lim —X =0 und lim = 0.
n—o0

n—oo

Es folgt aus dem Sandwichsatz, dass lim (—1)"- - = 0.

n—oo

Beweis. Es seien (an)nen, (bn)neny und (yn)nen Folgen von reellen Zahlen, so dass fiir alle
n € N gilt a, <y, < b,. Wir nehmen an, dass (a,)neny und (b,)nen gegen den gleichen
Grenzwert z konvergieren. Es gilt also:

1 V 4 V a,€(z—6z4+e und (2) V I V be(z—ez+¢)

>0 N,eN n>N, >0 NeN n>N,
Wir miissen zeigen, dass lim y,, = 2z, d.h. wir miissen zeigen:
n—oo

V 3 V y.€lz—¢2+¢).
e0 MeN n>M

Es sei also € > 0. Aus (1) und (2) folgt, dass es N, € N gibt, so dass fiir alle n > N, gilt
an € (2—€,2z+¢€) und fir alle n > Ny, gilt b, € (2 —€, z2+€). Wir setzen M := max{N,, N, }.
Fiir alle n > M gilt dann also y, € (an,b,) und a, € (z —€,2+¢€) und b, € (z — €,z +¢).
Also ist auch y,, € (z — €,z +¢€). |

3.3. Bestimmte Divergenz.
Definition. Zur Erinnerung, wir sagen, eine Folge von reellen Zahlen (a,),en konvergiert,

wenn die Folge einen Grenzwert besitzt, d.h. wenn die Folge (a,) gegen ein a € R konver-
giert. Wenn die Folge (a,,)nen nicht konvergiert, dann sagen wir die Folge divergiert.

Beispiel. Es ist nicht weiter schwierig zu zeigen, dass beispielsweise die Folgen n — (—1)"
und n — —3zn? divergieren.

Bei divergenten Folgen wollen wir zwei spezielle Typen von divergenten Folgen besonders
betrachten.
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Definition. Es sei (ay,)nen eine Folge von reellen Zahlen. Wir sagenEl

(an) divergiert bestimmt gegen +oo <= V 4 V a,>K
KER NEN n>N

und ganz analog definieren wir

(an) divergiert bestimmt gegen —co <= V 4 V q,<K
KER NeN n>N

Im ersten Fall schreiben wir lim a,, = +00 und im zweiten Fall schreiben wir lim a,, = —o0.
n—oo n—oo

Bemerkung. Mit anderen Worten, eine Folge (a,,)nen divergiert bestimmt gegen 400, wenn
es zu jeder Schranke K ein N € N so dass ab N alle Folgenglieder grofler als K sind. Diese
Formulierung wird in Abbildung [7] illustriert.

ab diesem N sind alle Folgenglieder > K

. 1 5 3 7 6 4 2 8
Folgengheder Qp o o ° ° o oo ° ° ° °
- R
~ K

ABBILDUNG 7. Illustration der Definition von bestimmter Divergenz gegen +oo.

Beispiel.

(1) Die divergente Folge n + (—1)" divergiert nicht bestimmt gegen +oo oder —oo. In
der Tat kann man fiir K = 1 beziehungsweise K = —1 kein geeignetes N finden.

(2) Die divergente Folge n —%nz divergiert bestimmt gegen —oo. Mit anderen Worten,
esist lim in? = —oo. In der Tat: es sei K € R. Wir wihlen ein N € Nmit N > 3-|K],

’I"LA)OO3

z.B. N = [3-|K|+ 1]. Dann gilt fiir alle n > N, dass
2

—5-n? < —3-N? < —3-N < —3-3-|K|] = —-|K|] < K.
* * 4 *
dan>N da k% >k fiir da N>3-|K]| da fiir jedes x €R gilt —z <|z|
jedes k € N

(3) Ganz #hnlich wie in (2) zeigt man, dass fiir d € N gilt, dass lim n?

n—oo

= +00.

Satz 3.9. (Los Alamos Satz) Es sei x € R, dann gilt

0, falls |x| < 1,
Hm 2" — 1, falls = = 1,
n—»co divergiert,  falls x < —1,
~+00, falls x> 1.

32Manchmal wird “bestimmte Divergenz” auch als “uneigentliche Konvergenz” bezeichnet.
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Beweis.

(a) Der Fall |z| < 1 wird wie Ubungsaufgabe 3 (b) in Ubungsblatt 2 bewiesen.
(b) Der Fall z = 1 ist offensichtlich, denn in diesem Fall ist die Folge konstant.
(c¢) Wir iiberlassen den Beweis als freiwillige Ubungsaufgabe.

)

(d) Wenn z > 1, dann miissen wir also zeigen, dass lim 2" = +oo, d.h. wir miissen
n—oo

zeigen, dass die Folge (2") bestimmt gegen +oo divergiert. Aber dies folgt sofort aus
Korollar 2.5l [

Beispiel. Ein Uran 235-Atom zerfillt nach einem Beschufl von einem Neutron in zwei Ato-
me und drei Neutronen und gibt dabei Energie frei. Nehmen wir nun an, dass wir einen
Behalter mit Uran 235 gegeben haben. Die Konstellation sei so, dass von den drei Neu-
tronen, welches ein zerfallendes ***U-Atom freisetzt, im Durchschnitt z € [0, 3] Neutronen
wieder ein 2*°U-Atom treffen. Nehmen wir an, dass zu Beginn ein 2*U-Atom zerfiillt. Die
Zahl der zerfallenden 2**U-Atome nach n Schritten ist also 2™. Fiir beliebiges < 1 erhalten
wir die Lage links in Abbildung [§ Fiir beliebiges z > 1 erhalten wir die Lage rechts in
Abbildung

Los Alamos 16. Juli 1945

Neutron e S 251

ey
92KI‘ O ./ / \\O 141Ba

von den drei Neutronen treffen
z €0, 3] wiederum 23U Atome r € (1,3

ABBILDUNG 8.

Definition. Wir fithren auf der Menge R U {—o00} U {400} folgende partielle Addition und
partielle Multiplikation einﬁl

a>0 0 a<0 400 —00

+ |aeR +oo —o0 b>0| ab 0 a-b +o0 —o0
beR|a+b H4oo —o0 und 0 0 0 0 * *

400 | 400 400 b<0| a-b 0 a-b —oo 400

—00 | —00 *  —00 400 | 00 * —00 +00 —00

—00 | —00 *x 400 —00 400

hierbei bedeutet *, dass die Addition beziehungsweise die Multiplikation nicht definiert ist,
d.h. wir haben oo + (—o0) und (—o0) + oo nicht definiert und wir haben auch 0 - (+00)
nicht definiert.

33Die Addition und die Multiplikation ist dabei definiert, wie man es sich “naiv” denken wiirde. Wenn
eine Verkniipfung “naiv” nicht klar ist, z.B. —0co + 0o, dann ist diese in unserem Falle auch nicht definiert.
Wir behaupten hier in keinsterweise, dass die Korperaxiome erfiillt sind.
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Der folgende Satz ist nun eine Erweiterung von Satz (1) und (2).

Satz 3.10. Es seien (an)nen und (by)nen Folgen von reellen Zahlen, welche konvergieren
oder welche bestimmt divergiereny*|Dann gilt

(1)  lim (a, +b,) = lima, + lim b,, wenn die Summe “+” auf der rechten Seite
e e e in der obigen Tabelle definiert wurde.
(2) lim (a, - b,) = lim a, - lim b, wenn die Multiplikation “” auf der rechten

n—o0 n—o0 n—oo

Seite in der obigen Tabelle definiert wurde.

Beispiel. Es ist

. 1 : 1
hm( —— - n? +2+7-—> = —o0o+2 = —oo
n—o0 3 n3 4
~—— —
divergiert bestimmt konvergiert folgt aus Satz da —oo + 2
gegen -0o gegen 2 in der Tabelle definiert ist

Beweis (x). Wenn (a,,)nen und (b, )nen konvergente Folgen sind, ist dies gerade die Aussage
aus Satz[3.4 Wir beweisen im Folgenden noch (1) fiir den Fall, dass (a,)nen eine konvergente
Folge ist, und dass (b,)neny bestimmt gegen +oo divergiert. Alle weiteren Aussagen des
Satzes werden dann ganz &hnlich bewiesen. Diese sind eine freiwillige Ubungsaufgabe.
Wir miissen nun also zeigen, dass die Folge (a,, + b,)nen bestimmt gegen +oo divergiert.
Wir machen folgende Vorbemerkungen:
(a) Satz besagt, dass jede konvergente Folge beschréinkt ist. Es gibt also insbesondere
ein R > 0, so dass fiir alle n € N gilt, dass |a,| < R.

(b) Da (by)nen bestimmt gegen +oo divergiert gilt: C\Z’R MHEN m\gM b > C.

Wir miissen nun zeigen, dass die Folge (a,, + b,)nen bestimmt gegen +oo divergiert, d.h.
wir miissen zeigen, dass

v 4V (al+bl) > D.

DER LeN I>L
Es sei also D € R beliebig. Aus (b), angewandt auf C' = D + R, folgt nun, dass es ein

M € N gibt, so dass fiir alle m > M gilt, b,, > C' = D + R. Wir setzen L := M. Fiir alle
[ > L gilt dann, dass

a+b > —|ul+b > —-R+b > —R+D+R = D.

* + +
es gilt immer x > —|x| Wahl von R dennl>L=M [ |

Um den den néchsten Satz formulieren zu kénnen, fithren wir folgende Notation ein.

Notation. Fiir eine Folge (a,,)nen von reellen Zahlen schreiben wir

(1) lima, = 07, wenn lima, = 0 und wenn alle Folgenglieder a,, > 0
n—oo n—oo

(2) lima, = 07, wenn lima, = 0 und wenn alle Folgenglieder a, < 0.
n—oo n—oo

34Es ist auch erlaubt, dass eine Folge konvergiert und die andere bestimmt divergiert.
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Der folgende Satz kann als Erweiterung von Satz (4) aufgefasst werden. Etwas sug-
gestiv ist die Aussage, dass i%.o = (0 und 0% = +o00. Wir wollen jedoch in dieser Vorlesung
diese suggestive Notation nicht weiter verwenden.

Satz 3.11. Es sei (ay)nen eine Folge von reellen Zahlen, so dass fir allen € N gilt a,, # 0.

(1) lim a, = 400 oder lima, =—c0o = lim + = 0
n—00 n—o0 n—oo 9n
(2) lima, =0"* = lim = = +o0
n—o0 n—oo ="
(3) lima, =0 = lim - = —o0.
n—o0 n—oo -n"

Beweis (). Wir beweisen zuerst Aussage (1) fiir den Fall lim a,, = +o00. Wir wollen also
n—oo

zeigen
3 V oa,>K = V 4 V |2-0< e
KER NeN n>N e>0 MeN n>M '9n
Es sei also € > 0. Nach Voraussetzung existiert ein N € N, so dass fiir alle n € N gilt
an > K := 2. Fiir alle n > N gilt dann aber auch, dass |i —-0] = ]%| = i <+ =c

Man sieht, diese Aussage beweist sich fast schon mechanisch. Das gilt genauso auch fiir
die anderen Aussagen. Wir werden deswegen die anderen Aussagen nicht mehr explizit
beweisen. [

Lemma 3.12. Es sei d € Z, dann gilt

lim n¢ =
n—oo

1, wennd = 0,

{ +o00, wennd > 0,
0, wennd < O.

Beweis. Die Aussage fiir d > 1 wird fast genauso wie der Fall der Folge —%n2 auf Seite
behandelt. Der Fall d = 0 ist trivial. Der Fall d < 0 folgt aus dem Fall d > 0 zusammen

mit Satz (1). |

Es sei p(n) ein Polynom, also beispielsweise p(n) = 24+3n—7n? oder p(n) = 5n+11n*. Das
folgende Korollar besagt, dass der Grenzwert lim p(n) durch den hochsten Koeffizienten
n—oo

des Polynoms bestimmt ist.
Korollar 3.13. FEs seien cg,...,cq € R mit d > 1 und cq # 0. Dann gilt

{ oo, wenn cqg >0,

lim (cg +c1n+cyn?+ - +cg_1-n?t+cqgn?) =
(0 ! 2 -1 d ) 00, wenn cg < 0.

n—oo

Beispiel. Es ist lim (2 + 3n—7n?) = —co und lim (5n+11n') = +oo.

n—oo n—oo
Beweis.

Die Aussage des Korollars klingt so, als sollte man wohl direkt Satz m (1) an-
wenden. Aber dies ist im Allgemeinen nicht moglich. Beispielsweise divergiert bei
der Folge —3n + 4n? der erste Summand bestimmt gegen —oo und der zweite Sum-
mand divergiert bestimmt gegen +oo. Aber die Summe (—o00) + oo hatten wir nicht
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definiert. Die Idee ist daher, die Folge cy + cin + can? + -+ + cq_1n% ! + cgn? so
umzuschreiben, dass man doch Satz [3.10] anwenden kann. Nachdem man “additiv”
wenig umschreiben kann, werden wir die Folge “multiplikativ’ umschreiben und dann

Satz (2) anwenden.
Wir fiihren folgende Berechnung durch:

Ausklammern von n®

0
lim (co+cr-n4c-n’+-+cg-nt+eg-nt) =

n—oo
es folgt aus Satz[3.4] und Lemma [3.12]
dass diese Folge gegen ¢4 konvergiert
. 7 1 1 1 \ 00, wenn cg >0
:hmnd-<c— Cl—— +Co—— 4+ -+ cq_1— c>: oo-c:{ ’ ’
n—>00 4 Ond+ 1n‘7l—1+ 2nd—2+ taa 1n+ d T(+ ) - —00, wenn c¢g < 0.
nachdem d > 1 folgt aus diese Gleichheit folgt aus Satz [3.10] wir kénnen diesen Satz anwenden,
Lemma dass die Folge n? da wir gerade gezeigt hatten, dass ein Faktor bestimmt divergiert
bestimmt gegen +oo divergiert und der andere Faktor gegen die Zahl ¢4 # 0 konvergiert

Definition. Wir setzen die iibliche Ordnung “>" auf R auf die Menge R U {—o00} U {400}
fort, indem wir fiir alle a € R schreiben

‘00 > a > —o0.
Mit dieser Definition gilt nun folgende Verallgemeinerung von Satz [3.6]

Satz 3.14. Es seien (ay)nen und (by)nen Folgen von reellen Zahlen, welche konvergieren
oder welche bestimmt divergieren. Es gilt:

V a, >0, == lim a, > lim b,.

neN n—00 n—00
Beweis (x). In Satzhaben wir den Fall betrachtet, dass (a,)nen und (b,,),en konvergente
Folgen sind. Wir miissen nun noch die verschiedenen Spezialfille untersuchen bei denen
mindestens eine der beiden Folgen bestimmt divergiert.

Es sei beispielsweise (a,,)nen eine konvergente Folge und es sei (b, ),en eine Folge, welche

bestimmt divergiert, so dass a,, > b, fiir alle n. Es geniigt folgende Behauptung zu beweisen.
Behauptung. Es ist lim b, = —o0.

n—oo

Nachdem (a,)nen konvergiert, ist die Folge (a,)nen nach Satz[3.3) beschrinkt, d.h. es gibt
ein C' € R, so dass fiir alle n € N gilt: C' > |a,| > —C'. Nachdem a,, > b, fiir alle n € N folgt
nun auch, dass C' > |a,| > a, > b, fiir alle n € N. Insbesondere kann die Folge (b,,),en nicht
bestimmt gegen co divergieren. Nachdem die Folge (b,,)nen nach Voraussetzung bestimmt

gegen Foo divergiert bleibt nur noch die Méglichkeit, dass lim b, = —o0. H
n—oo
Die anderen Spezialfille des Satzes werden nun ganz analog bewiesen. [ |

Wir fahren mit folgender harmlosen Definition fort.
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Definition. Es sei (a,)nen eine Folge (a,)nen von reellen Zahlen. Wir definieren:

(@n)nen ist monoton steigend — fiir alle n € N gilt a,, 41 > a,
(an)nen ist streng monoton steigend = fiir alle n € N gilt a,+1 > a,
(@n)nen ist monoton fallend = fiir alle n € N gilt a,+1 <a,
(@n)nen ist streng monoton fallend — fiir alle n € N gilt a, 1 < a,.

Wir sagen (a,)nen ist monoton, wenn die Folge entweder monoton fallend oder monoton
steigend ist.
Beispiel.
1,4,9,25,...... ) ist streng monoton steigend,
11

ist streng monoton fallend,

ist streng monoton steigend,

(4 -

neN —

I

(=D)")pen = (—1,1,-1,...) ist nicht monoton.

5,5,5,...) ist sowohl monoton steigend als auch monoton fallend,

n?) (
) (
(2n+(—=1)")pen = (1,5,5,7,7,...)  ist monoton steigend aber nicht streng monoton steigend
) (
)nEN - (
)

Folgender Satz gibt uns einfaches Kriterium um zu zeigen, dass eine Folge bestimmt
gegen oo divergiert.

Satz 3.15. Es sei (a,)nen eine Folge von reellen Zahlen. Dann gilt:

(1) (@n)nen unbeschrinkt und monoton steigend — lima, = 400,
n—oo

(2) (an)nen unbeschrankt und monoton fallend — lima, = —oo.
n—oQ

Beweis (x). Wir beweisen nur die erste Aussage. Die zweite Aussage wird dann ganz dhnlich
bewiesen. Es sei nun also (a,,),en eine unbeschriankte, monoton steigende Folge. Wir wollen
also zeigen, dass hrn 0 ay, = +00. Es sei also K € R. Wir miissen zeigen, dass es ein N € N

gibt, so dass fiir alle n > N gilt a, > K.
Behauptung. Es gibt ein N € N mit ay > K.

Da die Folge (a,)nen nach Voraussetzung unbeschriankt ist existiert ein m € N mit
|a,,| > K P Nachdem die Folge (a,)nen unbeschriinkt ist gibt es zudem auch noch ein
N € N, so dass |ay| > max{|ai|,...,|an|}. Wir wollen nun zeigen, dass ay > K. Dies
sehen wir wie folgt:

(a) Da insbesondere |ay| > max{|ai|,...,|amn|} sehen wir, dass N > m.

(b) Da die Folge monoton steigend ist, erhalten wir aus (a), dass ay > a,.

(c) Zudem gilt nach Wahl von N auch, dass |ax| > |an].

(d) Die Ungleichungen ay > an, und |ay| > |a,| aus (b) und (c) sind nur erfiillt, wenn

ay > 0.

35Man beachte hierbei den Absolutbetrag, dies ist der Grund, warum wir nicht schon fertig sind.



47

Insbesondere gilt also zusammengefasst: ay = |ay| > |a,| > K. H
Fiir alle n > N folgt nun aus der Monotonie der Folge, dass a,, > ay > K. |
3.4. Reihen. In jedem Korper K macht es Sinn endlich viele Elemente aq, ..., a, zu ad-

dieren, in dem wir iterativ insgesamt n — 1 die Addition verwenden, d.h. wie auf Seite
erklart setzen wir
ar+---+ay, = (..((a1 +az) +az) +...)+ an.

Es macht aber iiberhaupt keinen Sinn unendlich viele Elemente aq, as, ... eines Korpers zu
addieren. Wir fiihren in diesem Teilkapitel den Begriff der Reihe ein, welcher unter streng
geregelten Bedingungen die Rolle davon spielt, was man sich naiv unter einer unendlichen
Summe von reellen Zahlen vorstellt. Wir betrachten ein paar Beispiele und beweisen einige
wenige grundlegende Aussage. Reihen spielen im néchsten Kapitel schon mal eine wichtige
Rolle. Spéater werden wir Reihen noch einmal deutlich ausfiithrlicher behandeln.

Definition. Es sei (ay,)nen, eine Folge von reellen Zahlen.
(1) Fiir k € Ny definieren wir

k
k-te Partialsumme der Folge (a,)nen, == Y. @n = ao+ a1+ -+ ay.
n=0

(2) Wir deﬁniererﬂ

die Reihe > a, := die Folge der Partialsummen der Folge (a,)nen,
n>0

= die Folge (ag, ap+ai, ap+ai;+as, ...) = die Folge aqg
apt+aq
ap+ai+as

Fiir n € Ny nennen wir a,, das n-te Glied der Reihe.

Beispiel.
(1) Wir betrachten die Folge n + a,, = n?. Die zugehorige Reihe ist

Son? = (0%, 02412, 0°+124+22, ...)

n>0

Es ist ziemlich klar, dass die Reihe > n? monoton steigend und unbeschrinkt ist.
n>0

Insbesondere folgt aus Satz[3.15, dass die Reihe Y- n? bestimmt gegen +oo divergiert.

n>0

(2) Es sei z € R. Wir betrachten die Folge n — 2". Die zugehorige Reihe ist

Yot = (1, 14z, 14+z+22% 142422427 ...)
n>0

36Diec Reihe Y ay, ist also eine Folge. Es macht also Sinn zu sagen, dass die Reihe Y ay beschrdnkt
n>0 n>0

ist, konvergiert, divergiert, bestimmt divergiert gegen +0o etc.
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Diese Reihe wird als geometrische Reihe bezeichnet. In Satz werden wir sehen

fiir welche z € R die geometrische Reihe ) 2" konvergiert
n>0

Definition. Es sei (a,)nen, eine Folge von reellen Zahlen. Wenn die Reihe }_ a,, konvergiert

d.h. wenn die Folge der Partialsummen konvergiert, dann schreiben wir
k
Grenzwert der Reihe ) a, lim > a,.
n>0

da, =
n=0
Der Grenzwert der Reihe wird oft auch nur als Wert der Reihe bezeichnet. Zudem schreiben

wir auch kurz:
[e.e]
Yoa, = +oo, wenn die Reihe > a, bestimmt gegen +oo divergiert
n=0 n>0
Bemerkung. Es sei (a,)n,>0 eine Folge von reellen Zahlen. Wir unterscheiden also in der

Notation zwischen folgenden Objekten
dies ist die Reihe iiber die a,, d.h. die Folge der Partialsummen

(1) E Up,

n>0

(2) X a, ist der Grenzwert der Folge der Partialsummen, wenn dieser existiert
n=0
In der mathematischen Umgangssprache wird leider allzuoft kein Unterschied zwischen

diesen Begriffen gemacht.
Satz 3.16. (Satz iiber die geometrische Reihe) Fiir jedes z € R gilt
= falls |z| < 1,

1-2’
falls z> 1,

> 2" = +00,
divergiert, falls 2 < —1.
Veranschaulichung. In Abbildung [J] sehen wir eine Zerlegung des Quadrates von Seiten-
lange 1 in Quadrate und Rechtecke mit Flacheninhalt %, }1, é, .... Dies veranschaulicht die
Tatsache, dass
X1 1 &1 11
= . - = . - 1
E on+1 " 2 nz::(] on A 2 1_%
Satz [3.16]

n=0
streng genommen Satz

Beweis. Wir unterscheiden jetzt drei Félle
1. Fall: |z| < 1. In diesem Fall gilt
o = B - S U Sy S
22" = klm Z 2= klm 1— 2 -~ lim (1—2z) N lim (1—=z) 11—z
n=0 T kooon 1 koo T ke t k—o0 0
Satz 2.2 Satz 3.4 Satz 3.4 aus |z| <1 und Satz
folgt: hm 2HH1 =0
k—00

per Definition
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Quadrat mit

Zerl i
Seitenldnge 1 erlegung in Quadrate

und Rechtecke

mit Flacheninhalt
111 1 1

ABBILDUNG 9. Illustration der geometrischen Reihe.

Der Ehrlichkeit halber muss man sagen, dass die Anwendung von Satz etwas voreilig
war, nachdem dieser nur angewendet werden darf, wenn man gezeigt hat, dass sowohl Zéhler
als auch Nenner konvergieren. Dies haben wir dann erst gegen Ende des Arguments gezeigt.
2. Fall: z > 1. In diesem Fall gilt

k
k-te Partialsumme der Reihe Y~ 2" = > 2" > Y 1 = k41

n>0 n=0

n
z > 1 folgt 2™ > 1

Es folgt nun leicht aus Satz [3.15] dass die Folge der Partialsummen bestimmt gegen +oo
divergiert.

3. Fall: z < —1. Wir iiberlassen es dem gelangweilten Leser zu zeigen, dass die Reihe in
diesem Fall divergiert. [ |

Wir beschlielen das Kapitel mit folgendem nicht besonders iiberraschendem Satz.

Satz 3.17. Es seien Y. a, und >_b, zwei Reihen, welche konvergieren, oder welche be-

n>0 n>0

stimmt divergieren. Dann gelten folgende Aussagen:

(1) i(an +b,) = ian + ibm wenn die Summe “+7 auf der
n=0 n=0 n=0 rechten Seite in der Tabelle

auf Seite [/ definiert wurde.
(2) Fir A€ R gilt YoAca, = A D ag.
n=0 n=0
(3) Wenn a,, <b, fir alle n € Ny, dann gilt
dYap, <> by
n=0 n=0

Beweis. Es seien Y a, und )b, zwei Reihen, welche konvergieren, oder welche bestimmt
n>0 n>0

k k
divergieren. Fiir beliebiges & € Ny bezeichnen wir mit s, = > a, und t, = > b, die

n=0 n=0
zuhorigen Partialsummen.

(1) Es gilt
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hier wenden wir die {iblichen Rechenregeln fiir endliche Summen an

k \L k k
(an+by) = Lm S (an+ bn) = lim <Zan + an>

0 k—o0 n—=0 k—o0 \ n=0 n=0

8

n

=5y, =ty

k k [ee) o]
= lim > a, + lim > b, = > a, + > by
n=0 n=0

k—00 n=0 k—00 n=0

T S~ S~—~—

=S =t
nach Satz (1), angewandt auf die Folgen (s;)ren, und (tx)kengs
wenn die rechte Seite definiert ist

(2) Die Aussage folgt sofort aus Satz (2), angewandt auf die Folge der Partialsummen
(sk)ken, und auf die konstante Folge (A)gen, -
(3) Die Aussage folgt sofort aus Satz|3.14] angewandt auf die Folgen der Partialsummen

(sk)ken und (tx)ren- |
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4. CAUCHY-FOLGEN UND DAS VOLLSTANDIGKEITSAXIOM

Auf Seite (18| hatten wir das Vollstdndigkeitsaxiom eingefiihrt, ohne die Begriffe zu er-
kldren. Wir werden dies in diesem Kapitel nachholen, und wir werden dann viele verschie-
dene Folgerungen aus dem Vollstindigkeitsaxiom formulieren.

4.1. Das Vollstandigkeitsaxiom. In diesem Teilkapitel wollen wir endlich das Vollsténdig-
keitsaxiom von Seite [1§|sauber formulieren. Wir verwenden daher in diesem Teilkapitel noch
mal kurzzeitig die etwas allgemeinere Sprache von angeordneten Korper.

Wir beginnen mit folgender wichtigen Definition.

Definition. Es sei K ein angeordneter Korper und es sei Folge (a,,)nen in K EiW ir definieren

(@n)nen ist eine Cauchy-Folge : <= EYO NEEiN n,mva la, — an| < e.

Bemerkung. Anschaulich gesprochen ist (a,),en eine Cauchy-Folge, wenn sich die Folgen-
glieder gegenseitig “immer ndher kommen”.

R e R L]
. . ° ° ° e
. . ° hd . ° ° . . . . .
i i i
L] L] L] L]
N n m
Mlustration der Folge ab diesem N unterscheiden sich

die Folgenglieder um weniger als € =
ABBILDUNG 10. Zweite Illustration der Definition der Konvergenz von Folgen.

Die Definition von einer Cauchy-Folge &hnelt der Definition einer konvergenten Folge,
und es stellt sich die Frage, was der Zusammenhang zwischen diesen beiden Begriffen ist.
Der folgende Satz gibt uns eine halbe Antwort auf diese Frage.

Satz 4.1. Es sei K ein angeordneter Korper. Jede konvergente Folgeiﬂin K ist auch eine
Cauchy-Folge.

Beispiel. Es sei K ein angeordneter Korper. Es sei (a,)nen eine Folge in K. Satz be-
sagt insbesondere, dass wenn (a,),en keine Cauchy-Folge ist, dann ist (a,)nen auch keine
konvergente Folge. Mit dieser Beobachtung ist es nun leicht zu zeigen, wie schon auf Seite
behauptet, dass die Folgen (—1)" divergieren.

Beweis. Es sei (a,)nen eine konvergente Folge. Wir bezeichnen mit a den Grenzwert. Per
Definition gilt also:

(%) V 4V |a,—a| < p.

p>0 MeN n>M

3TEine Folge in K ist natiirlich eine Abbildung N — K.
38Djie Konvergenz von Folgen in einem angeordneten Korper wird genauso definiert, wie zuvor.
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Wir miissen zeigen, dass die Folge (a,)nen €ine Cauchy-Folge ist. Es sei also € > 0.

Wir miissen ein N € N finden, so dass fiir alle n,m > N gilt |a, — a,,| < €. Wir
verwenden nun folgenden Standardtrick, welcher aus der Dreiecksungleichung folgt:

la, — am| = [(an —a)+ (a —an)| < |a, —al + |a, — al.

Wir setzen p = 5. Es folgt aus (*) dass es ein M € N gibt, so dass fiir alle m > M gilt
lam —a| < p = 5. Wir setzen jetzt N = M. Fiir alle n,m > N gilt dann in der Tat, dass

€ €
lan — am| < lan—al+lam —a < z4+- = e
Iy 2 2
Dreiecksungleichung, siehe oben denn n,m > N [ |

Es stellt sich nun noch die Frage, ob auch jede Cauchy-Folge eine konvergente Folge ist.
Der folgende Satz, welchen wir schon in Kapitel [1| formuliert hatten, besagt, dass dies bei
den reellen Zahlen in der Tat der Fall ist.

Satz. (Existenz und Eindeutigkeit der reellen Zahlen FEs g¢ibt (bis auf einen
eindeutig bestimmten Isomorphismus) genau einen angeordneten Korper, genannt Kdrper
der reellen Zahlen R, welcher das archimedische Aziom erfillt und welcher das Vollstindig-
keitsaxiom erfiillt:

(V) Jede Cauchy-Folge konvergiert.

Bemerkung. Um keinerlei Missverstdndnisse aufkommen zu lassen wiederholen wir noch
einmal die Hauptaussage von Satz [1.20}

jede Cauchy-Folge konvergiert im Korper R der reellen Zahlen.

Um die Bedeutung des Vollstiandigkeitsaxioms besser wiirdigen zu kénnen bendtigen wir
interessante Beispiele von Cauchy-Folgen. Folgender Satz gibt uns erst einmal ein niitzliches
Kriterium um zu zeigen, dass eine gegebene Folge eine Cauchy-Folge ist.

Satz 4.2. Es sei K ein angeordneter Korper, welcher das archimedische Axiom erfiillt.
Jede Folge in K, welche monoton und beschrdinkt ist, ist eine Cauchy-Folge.

Beweis. Es sei (a,)nen eine Folge, welche monoton ist. Wir betrachten nur den Fall, dass die
Folge monoton steigend ist. Der Fall, dass die Folge monoton fallend ist, wird fast genauso
bewiesen.

Es sei also (ay,)nen eine monoton steigende Folge. Wir miissen beweisen:

(an)nen ist beschrankt = (a,),en ist eine Cauchy-Folge.
Nach dem Prinzip der Kontraposition ist diese Aussage dquivalent zur Aussage:

(@n)nen ist unbeschrinkt <= (a,)nen ist keine Cauchy-Folge.

Negation von (an)nen ist beschrinkt Negation von (an)nen ist eine Cauchy-Folge

Wir nehmen nun also an, dass (a,)nen keine Cauchy-Folge ist, d.h. wir nehmen an:

(%) 3V 3 Ja—an|> e

e>0 NeN nm>N
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Wir miissen zeigen, dass dies impliziert, dass (a,),eny unbeschréinkt ist. Es sei also C' € K
beliebig. Wir miissen zeigen, dass es ein M € N gibt, so dass ay; > C.

Behauptung.
() Fur jedes N € N existiert ein n > N mit a,, — ay > €.

Es sei N € N. Aus (x) folgt, dass es m,n > N mit |a, — a,,| > € gibt. O.B.d.A.
konnen wir annehmen, dass n > m. Dann gilt

Up — AN 2 Gp — Qp = |a'n - a'm| > €
4 4 4
da die Folge monoton steigend und n>m>N Wahl von m, n &

Wir verfahren jetzt wie folgt. Wir setzen ng = 1.

(1) Wir wenden (1) auf N = ny an und erhalten ny > ng mit a,, — a,, >

(2) Wir wenden (f) auf N = n; an und erhalten ny > n; mit a,, —a,, >

(3) Wir wenden () auf N = n, an und erhalten ng > no, mit a,, — a,, >

Wir erhalten also eine Folge ng, ni,ns, ... von Indizes, so dass fiir jedes k € N gilt
Qp, > Qp,_,+€ > Qy ,+2-€ > ... > a, +k-e

Es folgt aus dem Archimedischen Axiom, welches wir auf Seite [18| formuliert hatten, dass
es ein k € N gibt mit a,, > a,, + k€ > C gibt. Mit anderen Worten, wir haben gezeigt,
dass die Folge (a,)nen unbeschriankt ist. [ |

) a no (1’71,1 a no a’”:}
Folgenglieder a,, — | | | |

T~ o o [ ] [ ] [ ] o000 O e e o e o [} [} R
€= - b i b | e |
/ / /
Qpy+E€ Qp, +E€ Qp,+E€

ABBILDUNG 11. Tllustration fiir den Beweis von Satz
Wir erhalten aus Satz [4.2] folgenden Satz.

Satz 4.3. (Konvergenzsatz fiir monotone Folgen) Jede Folge, welche monoton und
beschrinkt ist, konvergiert in R.

Beweis. Der Satz folgt sofort aus Satz und der Tatsache, dass in R jede Cauchy-Folge
konvergiert. u

Bemerkung. Es sei (a,)nen eine Folge, welche monoton fallend und beschrénkt ist. Aus

dem Konvergenzsatz [4.3| folgt, dass der Grenzwert a := lim a,, existiert. Es folgt leicht aus
n—oo

Satz , angewandt auf die Folge (a,)neny und die konstante Folge (a),en, dass a < a,, fiir
alle n € N.
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Das folgende Lemma gibt uns nun ein interessantes Beispiel einer Cauchy-Folge.

Lemma 4.4. Es sei z > 0 eine reelle Zahl. Wir betrachten die Folge (an)nen,, welche
gegeben ist durch:

ag = z und welche iterativ definiert ist durch apy, = %(aﬁ—ai), firn=0,1,2,....

Diese Folge (a,)nen hat die folgende Eigenschaften:
(1) Fiir alle n € N gilt a2 > z.

(2)
(3) Die Folge (an)nen ist beschrankt.

(4) Wenn z € Q, dann gilt auch fir jedes n € Ny, dass a,, € Q.
(5) Die Folge (an)nen ist eine Cauchy-Folge.

(6) Die Folge (an)nen konvergiert in R.

(7) :

Der Grenzwert a := lim a,, hat die Eigenschaft, dass a® = z.
n—oo

Beispiel. Fiir z = 2 erhalten wir die Folge
1 2 3 1 3 2 17
d =2 m=y (@] =g e-y(3+1) -
Diese Folge hat also die Eigenschaft, dass die Quadrate der Folgenglieder gegen 2 konver-
289

gieren. In der Tat ist a3 = 272 schon ziemlich nahe an 2 dran.

Beweis.

(1), (2) Diese Aussagen werden in Ubungsblatt 3 bewiesen.

(3) Ein einfaches Induktionsargument zeigt, fiir alle n € N gilt:dass a,, > 0. Zusammen
mit (2) erhalten wir also, dass fiir alle n € N gilt: |a,| = a, < a;. Die Folge ist also
in der Tat beschrankt.

(4) Diese Aussage folgt aus einem einfachen Induktionsargument.

(5) Nach (1) und (3) ist die Folge (a,)nen monoton fallend und beschrénkt. Es folgt nun
aus Satz [1.2] dass (a,)nen eine Cauchy-Folge ist.

(6) Diese folgt aus (5) und der Vollstéandigkeit von R. Oder etwas anders formuliert, die
Aussage folgt aus (2) und (3) zusammen mit dem Konvergenzsatz [£.3]

(7) Nach (6) wissen wir, dass die Folge (an)nen konvergiert. Wir setzen a := lim a,.
n—o0
Dann gilt
. . .1 z 1/, z 1 z
a = lima, = lima,;; = hmf<an—|——> :f<hman—|— _ > :7< +7>.
n—oo 4 n—o0 N n—o0 Ay, N 2 \n—oo h_}m Qp 2 a

Verschieben der Folgenglieder  Definition von a1  Satz 3.4
dndert den Grenzwert nicht

Wir haben also gezeigt, dass a = %(a—l—é). Aber dies bedeutet gerade, dass a®> = z. W

Wenn wir im vorherigen Lemma beispielsweise mit z = 2 anfangen, dann erhalten wir
also eine Folge (a,)nen, welche gegen eine reelle Zahl a € R konvergiert, mit a* = 2. Der
folgende Satz besagt, dass diese Zahl a nicht rational ist.
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Satz 4.5. Es gibt keine rationale Zahl, deren Quadrat 2 ist.

Beweis. Nehmen wir an es gibe eine rationale Zahl r mit r> = 2. Dann koénnten wir
schreiben r = ¢, wobei a,b € Z teilerfremd sind. Durch Quadrieren erhalten wir, dass
2b% = a%. Wir sehen, dass 2 die linke Seite teilt, also muss 2 auch die rechte Seite teilen,
also ist a gerade, d.h. a = 2a fiir ein a € Z. Es folgt also, dass 2b*> = 4a*. Durch Kiirzen
sehen wir, dass b = 2a2. Die rechte Seite ist also gerade, also muss auch die linke Seite
gerade sein, d.h. b muss gerade sein.

Zusammengefasst haben wir gezeigt, dass a und b gerade sind. Dies ist aber ein Wider-

spruch zu der Tatsache, dass a und b teilerfremd sind. [ |

Korollar 4.6.

(1) Es gibt reelle Zahlen, welche nicht rational sind.
(2) Der Korper Q der rationalen Zahlen ist nicht vollstindig.

Beweis. Wir wenden Lemma auf z = 2 an. Wir erhalten eine Folge (a,)nen von ratio-
nalen Zahlen, welche gegen eine reelle Zahl a € R konvergiert, mit a? = 2.

(1) Es folgt aus Satz 7 dass a ¢ Q. Wir haben also gezeigt, dass a € R\ Q liegtm

(2) Wir hatten gerade angemerkt, dass a der Grenzwert einer Folge von rationalen Zahlen
(an)nen ist. Insbesondere ist nach Satz die Folge (a,)nen eine Cauchy-Folge. Da
der Grenzwert nicht in Q liegt, sehen wir, dass die Cauchy-Folge (a,,)nen nicht in Q
konvergiert. Insbesondere ist Q also nicht vollstindig. |

Eine reelle Zahl, welche nicht rational ist, heif3t irrational. Wir haben gerade in Ko-
rollar gesehen, dass es irrationale Zahlen gibt. Wir beschliefen das Teilkapitel mit
folgender, bewufit unsauber formulierten Frage.

Frage 4.7. Wieviel mehr reelle Zahlen als rationale Zahlen gibt es?
Wir werden diese Frage spéter noch prézisieren und eine klare Antwort geben.

4.2. Dezimaldarstellung von reellen Zahlen (x). m In diesem Teilkapitel wollen wir
zeigen, dass jede reelle Zahl eine Dezimaldarstellung besitzt. Dies zeigt dann auch, dass
die reellen Zahlen, wie wir sie in der Vorlesung eingefiihrt haben, der Schulvorstellung
entsprechen.

Satz 4.8. Es sei d € N mit d > 1 gegeben. Zudem sei (a,)nen eine Folge, so dass fiir alle
n € N gilt, dass a, € {0,1,2,3,...,d —1}. Dann ezistiert der Grenzwert

ooan

n=1 dr .

39Fiir eine M und eine Teilmenge X schreiben wir M \ X = {p € M |p ¢ x}. Mit anderen Worten,
M\ X ist das Komplement von X in M.

40Auch hier bedeutet das (x), dass wir den Stoff in der Vorlesung fast nicht behandelt haben. Sie kénnen
das Teilkapitel daher komplett ignorieren.
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Definition. Es sei (ay,)nen eine Folge von natiirlichen Zahlen in {0,1,...,d—1}. Wir schrei-
ben
® a,
— = ..
i qn a1 Q2 a3
——

existiert nach Satz

Beweis (x). Es sei d € N mit d > 1 gegeben. Zudem sei (a,)nen eine Folge, so dass fiir
alle n € N gilt, dass a, € {0,...,d — 1}. Per Definition miissen wir also zeigen, dass die

k
Folge der Partialsummen s := > a—z konvergiert. Nach dem Konvergenzsatz geniigt es
n=1

zu zeigen, dass diese Folge monoton steigend und beschréankt ist. Wir zeigen dies in den
folgenden beiden Argumenten:

(1) Fiir alle k € N gilt sp41 = s + Z5 > s, also ist die Folge monoton steigend.

(2) Fiir jedes n € N gilt

PR D DI S N R S
kl = Sk - < — = — =< — = :
:d 4 :d n:ld_ :d nzodn A 1_5
da a, <d Satz B.16

Wir haben also gezeigt, dass die Folge (s,,)nen) der Partialsummen beschrankt ist. W

Satz 4.9. Es sei z € [0,1) gegeben und es sei d € N mit d > 2. Dann gibt es eine Folge
(@n)neny mit a, €{0,1,2,3,...,d — 1}, so dass

o0

a

= =z d.h. so dass z = 0,a1aza;s ...
dn Y Y

n=1

Bemerkung. Satz besagt insbesondere, dass es fiir jede reelle Zahl z eine monoton
steigende Folge Von rationalen Zahlen, nédmlich in der Notation des Satzies die Folge der

Partialsummen Z @ gibt, welche gegen z konvergiert. Dies impliziert insbesondere, dass

jedes Intervall der Form (a,b) mit a < b unendlich viele rationale Zahlen enthilt.

Beweis (). Es sei also z € [0,1) beliebig. Wir definieren eine Folge (a,,)nen iterativ wie
folgt: B
a; := |z-dJ, und iterativ definieren wir a,, := L(z S dl) d"J firn=2,3,....

=1

Es folgt leicht aus der néichsten Behauptung, dass fiir alle n € N gilt: a,, € {0,...,d — 1}.
Behauptung. Fiir alle n € N gilt

Fiir n € N gilt in der Tat

N | = a; nY 1 n=la, " + 1
-ng = (-55) @) = 5 ((-55) @ -a) € D).
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2!
Es folgt nun aus der Behauptung, zusammen mit Satz angewandt auf z = é, und
dem Sandwichsatz 3.8 dass o, n_ .
z— > — = lim (z—Z—?):O.
o=y ar n—00 = d

Dies entspricht aber genau der Aussage, welche wir beweisen wollten. [ |

Definition. Es sei z € [0, 1). Nach Satz[4.9 gibt es eine Folge (a,)nen mit a,, €{0,1,2,3,...,9},
so dass x
z = > —/ =: 0,a1a9a3 ....
aey 10"

Wir bezeichnen dies als eine Dezimaldarstellung von z.

Bemerkung. Dezimaldarstellung von reellen Zahlen sind im Allgemeinen nicht eindeutig.
Beispielsweise gilt:

0,0999999 ... — 3 :9~§2(1i0>":9-(§(1)" 1 1)

n=2 10" n:OTO _E
1 1 1
=9 (2 —1-55) = 55 = 0,10000....
= 9 (1_110 ) = 1 = 0,10000
Satz [3.16

Ganz @hnlich kann man viele weitere Beispiele konstruieren. Beispielsweise ist
0,312400000... = 0,312399999999.. ..

Der néchste Satz sagt, dass alle Beispiele von reellen Zahlen mit nicht eindeutiger Dezi-
maldarstellung von dem Typ in der Bemerkung sind.

Satz 4.10. Es seien (a,)nen und (by)nen zwei verschiedene Folgen, deren Folgenglieder in
{0,1,2,...,9} liegen. Es gilt

™ On = Do
nZ::1 107 ngl 107’

genau dann, wenn es ein k € Ng und ¢1,...,¢x € {0,1,2,...,9} gibt, so dass
(a1,a9,...) = (c1,¢2y.,Cl-1,¢£,9,9,9,...), und
(bl,bg,...> = (01,02,...,(3]@,1,(3]6+1,O,O,0,...),

oder die gleiche Aussage gilt, mit den Rollen von (an)neny und (by)nen vertauscht.

Beweis (x). Es seien (ay,)nen und (b,),en zwei verschiedene Folgen, deren Folgenglieder in
{0,1,2,...,9} liegen.

Die “wenn”-Richtung des Satzes wird genau wie in der Bemerkung bewiesen. Es geniigt
nun also die “genau dann”-Richtung des Satzes zu beweisen. Wir nehmen also an, dass

X an X by
(+) Logn = 2 g

Nachdem die Folgen verschieden sind gibt es ein k € N, sodass a; = b; firi=1,... k—1,
aber so, dass a; # b,. O.B.d.A. konnen wir annehmen, dass b, > a;. Wir miissen zeigen,
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dass by = ax + 1, und dass fiir alle n € N gilt by, = 0 und ay,, = 9. Wir beweisen zuerst
folgende Behauptung;:

Behauptung 1. Es gilt folgende Ungleichung:

i Antk = by o by — ay.

n=1 107
Es gilt in der Tat, dass:

% n B bn = n - bn = n - bn
3 a+k107n+k = “+k107n+k + (ap—bg) + (bp—ag) > 3 a+k107n+k + (be — ax)
n=1 n=1 n=0

_ 10k, S n=ba o) = 105 [ S° A _ 5~ ba —a) = b —

=10 nz::k 0" + (bk Clk) =10 (nzzjl 0" nzzjl 10”) + (bk ak) ?\bk Qe

da nach Voraussetzung (*) gilt H

Es verbleibt nun folgende Behauptung zu beweisen:
Behauptung 2. Es ist by — ar = 1 und fiir alle n > 1 gilt: ap1 6 — bpor = 9.

Die Behauptung folgt aus der Beobachtung, dass gilt:

folgt aus Behauptung 1
¥

— by = 9 9 X1 9 1
T TR e S D M I S
+ =l 10m . =l 107 10 = 10™ N 10 1-— Tlo
da by > ag die Ungleichheit folgt aus apyr—bnir€{-9,...,9} folgt aus Satz

die Gleichheit gilt zudem nur, wenn
fir alle keN gilt, dass ap+r—bprx=9

Nachdem links und rechts 1 steht, miissen alle Ungleichungen auch schon Gleichungen
gewesen sein. Also folgt nach der Diskussion, dass b, — ap = 1, und dass a,x — bpip = 9
fiir alle k € N. [ |

Wir beschlieflen das Kapitel mit folgendem Korollar zu Satz [4.9]

Korollar 4.11. Jede reelle Zahl ist der Grenzwert einer Folge von rationalen Zahlen.

Beweis. Es sei x € R. Wir setzen ay = |x|. Dann ist z — ag € [0,1). Also gibt es nach
Satz eine Folge (ay,)neny mit a, € {0,1,2,3,...,9}, so dass

=) k k
T =a+> 2 = lim (ao + > a—") = Grenzwert der rationalen Folge k — ag+ >_ n_
n=1 10" k—o0 n=1 10" n=110"
———
€Q u

4.3. Injektive, surjektive und bijektive Abbildung. Bevor wir mit der Diskussion von
rationalen und reellen Zahlen fortfahren, fithren wir folgende ganz allgemeine Definition ein.

Definition. Es sei f: X — Y eine Abbildung zwischen zwei Mengen.
(1) Wir sagen f ist injektiv, wenn fiir alle 21 # xo € X gilt, dass auch f(z1) # f(xq).
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(2) Wir bezeichnen f(X) := {f(x)|z € X} C X als das Bild von f, oder manchmal
auch als den Wertebereich von f.

(3) Wir sagen f ist surjektiv, wenn f(X) =Y. Mit anderen Worten, f ist surjektiv genau
dann, wenn es zu jedem y € Y ein x € X mit f(z) = y gibt.

(4) Wenn f sowohl surjektiv als auch injektiv ist, dann nennen wir f bijektiv.
In der folgenden Tabelle betrachten wir einige Beispiele von Abbildungen:

a:N — N injektiv surjektiv
n o — n
b: N — Z injektiv nicht surjektiv
n o= n da —2 ¢ b(N)
c:N — N injektiv nicht surjektiv
n o~ n? da 2 ¢ ¢(N)
d:7Z — Ny nicht injektiv | nicht surjektiv
n o~ n? dad(—1)=4d(1)| da2¢d(Z)
e:Z — {2?|x €Ny} nicht injektiv surjektiv
n o~ n? da e(—1) = e(1)
f+7z — Z injektiv nicht surjektiv
n — 3-n+7 da 0¢ f(Z)
g:Q — Q injektiv surjektiv
n — 3-n+7
h:N — 7Z injektiv surjektiv
{ 5, wenn n gerade,
n — n—1
—%5=, wenn n ungerade

4.4. Abzidhlbare und iiberabzihlbare Mengen.

Definition. Eine nichtleere Menge@A heilt abzdhlbar, wenn es eine surjektive Abbildung
N — A gibt. Wir sagen zudem, dass die leere Menge auch abzéhlbar ist. Eine Menge,
welche nicht abzahlbar ist, heifit iberabzdhlbar.

Beispiel.

(1) Die Menge N ist abzdhlbar, denn die Identitdtsabbildung N — N ist offensichtlich
surjektiv.

(2) Die Menge Z ist abzéhlbar, denn wir hatten gerade im vorherigen Teilkapitel explizit
eine surjektive Abbildung h: N — Z angegeben.

4IDje leere Menge ist die Menge, welche kein Element enthilt. Eine Menge heifft nichtleer, wenn sie
mindestens ein Element enthélt.



60

(3) Die Menge {A, B,C, ..., X,Y, Z} der Buchstaben des Alphabets ist abzdhlbar. Bei-
spielsweise ist folgende Abbildung surjektiv:
N = {A,B.C,... XY, 2}
1 - A

26 — Z
n — 4, wennn >27

(4) Man kann das vorherige Beispiel verallgemeinern und zeigen, dass jede endliche Men-
ge abzéhlbar ist.

Satz 4.12. Es sei A eine abzdihlbare Menge und B eine Teilmenge. Dann ist B auch
abzdihlbar.

Beweis (). Es sei A eine abzdhlbare Menge und B eine Teilmenge. Wenn B endlich ist,
dann haben wir oben schon gesehen, dass B abzidhlbar ist. Nehmen wir nun an, dass B
unendlich ist. Wir wihlen eine surjektive Abbildung f: N — A. Wir definieren nun iterativ

n1 = min{n € N| f(n) € B},
und wenn nq,...,ny schon definiert sind, dann definieren wir
ng+1 = min{n > n;| f(n) € B}.

Dann ist die folgende Abbildung surjektivﬁ

N — B

Wir wollen jetzt zeigen, dass auch die Menge QQ der rationalen Zahlen abzéhlbar ist.

Satz 4.13. Die Menge Q der rationalen Zahlen ist abzdhlbar.

Beweis. Wir betrachten folgendes quadratisches unendliches Schema:

1 1 2 2 3 3
vd S S

1 _1 2 _2

2 2 2 2

s v

11 2 :

3 3 3 )
v S

1 _1 2

4 4 4

42Wo haben wir im Beweis verwendet, dass B unendlich ist?
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Es ist klar, dass jede rationale Zahl in diesem Schema auftaucht. Wir definieren nun eine
Abbildung f: N — @, indem wir k& € N das k-te Element in der obigen Auffithrung von
Elementen zuordnen. Diese Abbildung ist offensichtlich surjektivﬁ |

Der folgende Satz besagt dass, im Gegensatz zu der Menge QQ der rationalen Zahlen, die
Menge R der reellen Zahlen nicht abzéhlbar ist.

Satz 4.14. Die Menge R aller reellen Zahlen ist tiberabzdhlbar.
Beweis. Nach Satz geniigt es zu zeigen, dass das Interval [0, 1) iiberabzéhlbar ist. Wir

miissen also zeigen, dass es keine surjektive Abbildung f: N — [0,1) gibt. Mit anderen
Worten, wir wollen folgende Aussage beweisen.

Aussage. Fiir jede Abbildung f: N — [0, 1) gibt es ein x € [0, 1), welches nicht im Bild von
f liegt.

Es sei also f: N — [0,1) eine Abbildung. Wir schreiben die Zahlen f(1), f(2),... in
Dezimaldarstellung:

f(l) =: 0,ana2a13. ..
f(2) =: 0,a1 a2 a23...
) =: 0,ag1asas;s...

Wir miissen ein = € [0, 1) finden, welches nicht im Bild von f liegt, d.h. welches von allen
f(n) verschieden ist. Wir betrachten die reelle Zahl

7, falls a,, €{0,...,4}

3, falls a,, € {5,...,9}.

Wir haben die Ziffern ¢, so gewihlt, dass diese niemals 0 oder 9 werden. Es folgt aus

Satz [4.10] dass die Dezimaldarstellung von z eindeutig ist. Es geniigt nun zeigen, dass x
nicht im Bild von f liegt. Mit anderen Worten, es geniigt folgende Behauptung zu beweisen.

Behauptung. Fir alle n € N gilt x # f(n).

z = 0,c1¢c003. .. wobei jeweils ¢, = {

Es sei also n € N. Wir betrachten die Dezimaldarstellungen
r = 0,4 ¢ ¢c3 ... ¢, ..., sowie
fn) = 0,an1 Gp2 Ang - Gy - -
Nachdem wir ¢, so gewéhlt hatten, dass ¢, # ay,, unterscheiden sich die Dezimaldarstellun-

gen sich in der n-ten Ziffer. Aber wir hatten oben angemerkt, dass die Dezimaldarstellung
von x eindeutig ist. Es folgt also, dass in der Tat x # f(n). [

Bemerkung. Mithilfe von Satz kann man auch problemlos zeigen, dass jedes Intervall
der Form [a, b] mit a < b iiberabzdhlbar ist. Da die Menge der rationalen Zahlen abzihlbar
ist folgt, dass solch ein Intervall iiberabzéhlbar viele irrationale Zahlen enthélt.

43Dijeser Beweis kann natiirlich auch deutlich formaler durchgefithrt werden, ohne auf Bilder
zuriickzugreifen.
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In Frage [£.7 hatten wir uns etwas naiv gefragt, wieviel mehr reelle Zahlen es als rationale
Zahlen gibt. Die Tatsache, dass nach Satz die Menge Q der rationalen Zahlen abzihlbar
ist, und dass nach Satz die Menge R der reellen Zahlen iiberabzéhlbar ist, gibt eine
mathematische prazise Antwort auf diese Frage.
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5. FOLGERUNGEN AUS DEM VOLLSTANDIGKEITSAXIOM
5.1. Infimum und Supremum.

Definition. Es sei M eine Teilmenge von R. Wir fiithren folgende Begriffe ein:
(1) Wir sagen C' € R ist eine obere Schranke fiir M, wenn fiir alle x € M gilt: x < C.
(2) Wenn M eine obere Schranke besitzt, dann nennen wir M nach oben beschrinkt.
(3) Wenn es ein m in M gibt, welches eine obere Schranke fiir M ist, dann bezeichnen
wir
max(M) = m
als das Maximum von M. Insbesondere ist jede Menge mit einem Maximum auch
nach oben beschrankt.

Beispiel. Wir betrachten ein paar Beispiele:

(1) Das Intervall [1,00) ist nicht nach oben beschrankt, und besitzt daher auch kein
Maximum.

(2) Es sei M = [1,3]. Dann ist 3 eine obere Schranke, aber auch jede andere Zahl groBer
als 3 ist eine obere Schranke. Das Intervall [1, 3] besitzt ein Maximum, ndmlich 3.

(3) Es sei M = [1,3). Dann ist beispielsweise 3 eine obere Schranke, d.h. die Menge ist
nach oben beschrénkt. Andererseits besitzt M = [1,3) kein Maximum. In der Tat,
denn es gibt kein x € [1,3), welches die Eigenschaft besitzt, dass fiir alle y € [1,3)
gilt y < .

(4) (a) Jede nach oben beschrénkte Teilmenge von Z hat ein Maximum.
(b) Es sei nun m € N. Es folgt aus (a), dass jede nach oben beschrinkte Teilmenge

von {% |\keZ}=A{. .., —%, —%, 0, %, %, ...} ein Maximum besitzt.
Intervall [1, 3] Ny obere Schranken Intervall [1, 3) . obere Schranken
VAN —0 \
| ——+——+——+—>R ——+——+——+—+—>R
0 1 2 I Maximum 0

diese Menge besitzt kein Maximum

Wir umgehen jetzt das Problem, dass das Maximum einer nach oben beschrankten Menge
nicht notwendigerweise definiert ist, indem wir das Supremum einfiihren.

Definition. Es sei M C R eine Teilmenge. Wir sagen s € R ist Supremum sup(M) von M,
wenn s eine kleinste obere Schranke fiir M ist. Etwas genauer gesagt bedeutet dass:
(1) s ist eine obere Schranke fir M, d.h. fir alle x € M gilt = < s.
(2) Es gibt keine kleinere obere Schranke als s. Mit anderen Worten, es gilt eine der
folgenden dquivalenten Aussagen:
(a) Fiir alle y < s gibt es ein x € M mit y < x.
(b) Fiir alle € > 0 gibt es ein z € M mit s — € < z.
Man beachte, dass aus (2) folgt, dass ein Supremum, wenn es existiert, auch schon eindeutig
bestimmt ist.
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Beispiel.

(1) Wir betrachten noch einmal M = [1,3). Dann ist = 3 eine obere Schranke fiir
[1,3). Zudem gibt es keine kleinere obere Schranke fiir [1, 3). Also ist das Supremum
gerade = 3.

(2) Ganz analog zu (1) zeigt man, dass fiir alle abgeschlossenen, halboffenen oder offenen
Intervalle, welche nach oben beschrinkt sind, das Supremum durch “die Zahl rechts”
gegeben ist. Beispielsweise gilt fiir a < b € R, dass

sup((—o0,0)) = sup([a,b]) = sup((a,b]) = sup([a,b)) = b.
(3) Es folgt leicht aus Satz , dass sup{l — X |n € N} = 1.

1-1ineny
Intervall [1, 3) . obere Schranken PN obere Schranken
'—O/ \\\ ® @ 0ose / \\\
i i ——+———+—>R i ————+—+—>R
012/ 0 5/ 1
y < s ist keine  Supremum s = 3 s — ¢ ist keine ~ Supremum s =1

obere Schranke obere Schranke

ABBILDUNG 12. Die Suprema von [1,3) und {1 — 1 |n € N}.

Lemma 5.1. Falls eine Menge M CR ein Mazimum besitzt, dann gilt: max(M)=sup(M).

Beweis. Essei M C R eine Menge, welche ein Maximum besitzt. Wir setzen m := max(M).
Wir miissen zeigen, dass m die Eigenschaften (1) und (2) erfiillt.

(1) Per Definition ist m eine obere Schranke von M.
(2) Es sei y < m. Da m € M haben wir auch schon ein z € M mit y < z gefunden. MW

Wir haben jetzt schon gesehen, dass es Mengen gibt, welche zwar kein Maximum aber
dennoch ein Supremum besitzt. Der folgende Satz besagt nun, dass das kein Zufall ist.

Satz 5.2. (Satz von der Existenz des Supremums) Jede nach oben beschrinkte, nicht-
leere Teilmenge von R besitzt ein Supremum.

Beweis. Es sei M C R eine nach oben beschrénkte, nichtleere Teilmenge. Wir miissen
zeigen, dass ein Supremum von M existiert.

Wir hatten gesehen, dass eine nach oben beschriankte, nichtleere Teilmenge von R
nicht notwendigerweise ein Maximum besitzt. Andererseits folgt aus der Diskussi-
on auf Seite , dass jede beschriankte, nichtleere Teilmenge von {% |k € Z} ein
Maximum besitzt. Wir wollen diese Tatsache ausniitzen um das Supremum in R als

Grenzwert einer Folge von Zahlen der Form £ zu konstruieren.
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Es sei n € Ny. Wir setzen["]
pn = kleinste ganze Zahl, mit der Eigenschaft, dass & eine obere Schranke fiir M ist.

Behauptung. Die Folge (Zﬁ

2n) ist monoton fallend und beschrinkt.
n€eNy

Wir beweisen die beiden Aussagen der Behauptung:
(1) Es sei n € Ny. Dann gilt in der Tat folgende Ungleichung:

Prt1 P )
2n+1 — 2n+1 - on :
/I\
per Definition von p,, ist ;ff’l = B ecine obere Schranke fiir M,

die Ungleichung folgt nun aus der Definition von p,41
(2) Es sei m € M. Aus (1) folgt, dass fiir jedes n € Ny gilt 52 € [m, &]. Dies impliziert,
dass die Folge beschrankt ist. H
Es folgt nun aus dem Konvergenzsatz dass die Folge (g—z)n N konvergiert. Wir setzen

Wir behaupten, dass s die gewiinschten Eigenschaften (1) und (2) des Supremums besitzt.
(1) Es sei x € M. Wir miissen zeigen, dass x < s. In der Tat gilt:

z < lim =& = s.
fiir alle n € Ny gilt < &=, die Ungleichung folgt also aus Satz
(2) Wir miissen noch zeigen, dass s die kleinste obere Schranke ist. Es sei also y < s.
Wir miissen zeigen, dass y keine obere Schranke fiir M sein kann, d.h. wir miissen
zeigen, dass es ein x € M mit y < z gibt.
(a) Nachdem s —y > 0 folgt aus dem Los Alamos Satz , dass es ein m € Ny gibt,
so dass Q%n <s—y.
(b) Per Definition von p,, gibt es ein z € M mit « > 221,

(c) Es gilt pm—1  pm 1 1
x > = 2 —— > s—— > .
2m 2m 2m 2m
A + +
Wahl von x da (82 )nen fallend gilt £ >s  Wahl von m
Wir haben also gezeigt, dass s die Eigenschaften des Supremums erfiillt, d.h. M besitzt ein
Supremum. [ |

Der folgende Satz gibt uns eine hilfreiche Charakterisierung des Supremums einer nicht-
leeren, nach oben beschrinkten Teilmenge von R. Der Satz erlaubt es uns zudem oft Aus-
sagen iiber Suprema auf Aussagen iiber Grenzwerte zuriickzufiihren.

“Hierbei haben wir schon implizit verwendet, dass M nichtleer ist. Denn wére M die leere Menge, dann
wiire jede Zahl eine obere Schranke, also gébe es kein kleinstes p,, € Z, so dass &2 eine obere Schranke ist.
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3
N}

M ist nichtleer und nach oben beschrankt

22
/ \ P3 p1 Po
| I O e ——— ® I @ ew 23 ol 20
; ; ; ; ; —— } i ; R
1 1
0 : 1 11 2

ABBILDUNG 13. Illustration zum Beweis von Satz [5.2]

Satz 5.3. Es sei M eine Teilmenge von R.

(1) Wenn M nichtleer und nach oben beschrdnkt ist, dann existiert eine monoton stei-
gende Folge (a,)nen von Elementen in M, welche gegen sup(M) konvergiert.

(2) Wenn (ap)nen eine Folge von Elementen in M ist, welche konvergiert, und so dass

lim a,, eine obere Schranke fiir M ist, dann isﬁup(M = nh_)rgo .-

n—00

Beweis (x). Es sei M eine Teilmenge von R. Wir schreiben s := sup(M).

(1) Wir nehmen an, dass M nichtleere und nach oben beschrénkt ist. Wir definieren nun
zuerst geschickt eine Folge (a,)nen. Wir wihlen ein beliebiges a; € M. Nehmen wir
an, wir haben aq, ..., a,_, schon gewéahlt. Nach Voraussetzung ist s — % keine obere
Schranke fiir M, also gibt es ein z € M mit s — % < x. Andererseits ist s eine obere
Schranke fiir M, also gilt « < s. Wir setzen nun a,, := max{a,_1,z}.
Zusammengefasst haben wir also eine monoton steigende Folge (a,,)nen gefunden, so
dass alle Folgenglieder in M liegen, und so dass s — % < a, < s. Es folgt nun aus
dem Sandwichsatz [3.8] dass die Folge (a,)nen gegen s = sup(M) konvergiert.

(2) Es sei nun (a,)nen eine Folge von Elementen in M, welche konvergiert, und so dass
a = lim a, eine obere Schranke fiir M ist. Wir miissen zeigen, dass a = sup(M).

Nachg;r;o also a nach Voraussetzung eine obere Schranke fiir M ist, geniigt es zu
zeigen, dass es keine kleinere obere Schranke fiir M geben kann.

Es sei also y < a. Wir miissen zeigen, dass y keine obere Schranke fiir M ist. Anders
ausgedriickt, wir miissen zeigen, dass es ein Element in M gibt, welches grofier als y
ist. Nachdem lim a,, = a gibt es insbesondere ein n € N, so dass |a, —a| < a — v.

n—o0
Dann gilt aber, dass a, —a > —l|a, — a| > y — a, d.h. a,, > y. Wir haben also ein
Element in M gefunden, ndmlich a,,, welches groflier als y ist. [ |

—-<0 ® HeoH oo —-<0 ® HeoH ® o R
(1) * ‘ ' (2) — —
s % n s=sup(M) ax az ag lim a,
n—oo

ABBILDUNG 14. Illustration fiir den Beweis von Satz [5.9)

4Snsbesondere ist die Aussage, dass das Supremum in der Tat existiert.
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Beispiel. Wir betrachten
M = Qn(—2,3) = {alle rationalen Zahlen im Intervall (—2,3)}.

Wir wollen zeigen, dass sup(M) = 3. Dies kann man mithilfe der Definition zeigen, oder,
falls diese doch zu verwirrend ist, mithilfe von Satz [5.3}

(1) Wir betrachten die Folge a, = 3 — L. Dies ist eine Folge von Zahlen in M.

(2) Der Grenzwert lim a,, = lim (3 — 1) = 3 ist eine obere Schranke fiir M.
n—oo n—oo

Also gilt nach Satz 5.3 dass sup(M) = 3.

Im Folgenden fithren wir nun ganz analog die Begriffe Minimum, untere Schranke, nach
unten beschrdnkt und Infimum ein:

Definition. Es sei M C R eine Teilmenge.

(i) Wir sagen C' € R ist eine untere Schranke fiir M, wenn fiir alle x € M gilt: C < z.
(ii) Wenn M eine untere Schranke besitzt, dann nennen wir M nach unten beschrankt.
(iii) Wenn es ein m in M gibt, welches eine untere Schranke fiir M ist, dann bezeichnen

wir
min(M) = m
als das Minimum von M.
(iv) Wir sagen i € R ist Infimum inf(M) von M, wenn i eine grofte untere Schranke fiir
M 1ist. Das bedeutet also:
(1) i ist eine untere Schranke fir M, d.h. fir alle x € M gilt i < x.
(2) Es gibt keine groflere untere Schranke als s. Mit anderen Worten, es gilt eine der
folgenden dquivalenten Aussagen:
(a) Fiir alle y > ¢ gibt es ein x € M mit z < y.
(b) Fiir alle € > 0 gibt es ein z € M mit z < s + €.
Wenn das Infimum existiert, dann folgt aus (1) und (2) schon, dass es eindeutig
bestimmt ist.
Es gelten dann auch die offensichtlichen Varianten von Lemma 5.1} Satz[5.2]und Satz 5.3
Der vollstéandigkeit halber formulieren wir diese drei Aussagen. Der Beweis ist in allen drei
Féllen jeweils fast wort-wortlich der gleiche wie bei den beiden vorhergehenden Sétzen.

Lemma 5.4. Wenn eine Menge M C R ein Minimum besitzt, dann gilt min(M) = inf(M).

Satz 5.5. (Satz von der Existenz des Infimums) Jede nach unten beschrinkte, nicht-
leere Teilmenge von R besitzt ein Infimimum.

Satz 5.6. Es sei M eine Teilmenge von R.

(1) Wenn M nichtleer und nach unten beschrinkt ist, dann existiert eine monoton fal-
lende Folge (ay)nen von Elementen in M, welche gegen inf(M) konvergiert.
(2) Wenn es eine Folge (a)nen von Elementen in M gibt, welche konvergiert, und so

dass lim a,, eine untere Schranke fir M ist, dann ist inf(M) = lim a,.
n—oo n—oo
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Beispiel. Wir betrachten
M = Qn(2,4) = {ze€(2,4) ]|z € Q}.

Dann ist inf (M) = 2. Dies folgt leicht aus den Definitionen, oder es folgt auch aus Satz [5.6]
In der Tat, betrachten wir die Folge a,, = 2 + %, dann liegen alle Folgenglieder in M, und

lima, = lim (2 + %) = 2 ist eine untere Schranke fiir M. Also gilt nach Satz , dass
n—oo n—o0
inf(M) = 2.

Wir werden jetzt die Existenz von Suprema verwenden, um zu zeigen, dass jede nicht-
negative reelle Zahl Wurzeln beliebiger Ordnung besitzt.

Satz 5.7. Es set y > 0 und n € N. Dann ezistiert genau ein a € Rso mit a” = y.

Bemerkung. Den Spezialfall n = 2 von Satz [5.7 hatten wir eigentlich schon in Lemma [4.4]
bewiesen. Der neue Beweis ist weniger explizit, aber dafiir konnen wir nun die Aussage fiir
beliebiges n € N beweisen.

Definition. Es sei y > 0 und n € N. Nach Satz[5.7] gibt es genau genau ein a € R mit a > 0,
so dass a" = y. Wir bezeichnen a als die n-te Wurzel von y und bezeichnen es mit {/y. Wie
tiblich schreiben wir |/y := .

Beweis der Eristenzaussage von Satz[5.7. Es sei y > 0 und n € N. Wir wollen zeigen, dass
es ein a € R>( mit a" = y gibt. Wir setzen

M = {z eR|a" <y}

Wir wollen zeigen, dass das Supremum sup(M) von M die gewiinschte Eigenschaft besitzt,
d.h. wir wollen zeigen, dass sup(M )" = y. Dazu miissen wir aber erst einmal zeigen, dass
das Supremum von M definiert ist:

Behauptung. Die Menge M ist nichtleer und die Menge M und ist nach oben beschrinkt.

Die Menge M enthélt x = 0, also ist M nichtleer. Es verbleibt zu zeigen, dass M nach
oben beschrankt ist. Wir unterscheiden die beiden Fille y <1 und 1 < y.

(1) Wenn y < 1, dann ist 1 eine obere Schranke von M.
Wir miissen also zeigen: © € M — x < 1. Mit anderen Worten, wir miissen
zeigen: x > 1= x & M.
Es sei also > 1. Dann gilt 2" > 1 > y, d.h. x liegt nicht in M.
(2) Wenn 1 < y, dann ist y eine obere Schranke von M. In der Tat, denn aus x > y folgt
auch, dass ™ > y™ > y, d.h. z liegt nicht in M. H

Nach Satz existiert also das Supremum vom M. Es geniigt nun also folgende Behaup-
tung zu beweisen.

Behauptung. Fiir a := sup(M) gilt a" = y.
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Nach Satz (1) gibt es eine Folge (ax)ken von Zahlen in M mit lim a; = a. Dann gilt

k—oo
folgt aus Satz (2) folgt aus Satz (2)
y > lima} = < lim ak> = a" = < lim (a+ %)) = lim (a—I— %) > .
4 k—o0 k—o0 k—o0 k—o0 N
da ar € M gilt a} <y, die Ungleichung da a eine obere Schranke fiir M ist, gilt fiir alle ¢ > a,
folgt nun aus Satz dass ¢ > y, insbesondere gilt also (a + %)" >y
die Ungleichung folgt also aus Satz [3.6]

Wir haben also gezeigt, dass y > a” > y. Also ist a™ = y. |

M

ap a a—i—%

Beweis der Eindeutigkeitsaussage von Satz[5.7. Es sei y > 0 und n € N. Es seien also
a,b € Rsp und a™ = b" = z. Wir wollen zeigen, dass a = b. Rein aus Vergniigen geben wir
zwei verschiedene Beweise.

(1) Zuerst fiithren wir einen Widerspruchsbeweis durch. Nehmen wir also an, dass a # b.
O.B.d.A. kénnen wir dann annehmen, dass a > b. Dann gilt aber y = a™ > 0" =y
und dies ist ein Widerspruch.

(2) Es ist oft etwas eleganter, ohne Widerspruchsbeweis auszukommen. Fiir Feinschme-
cker ist also hier noch ein direkter Beweis, dass a = b. Wir betrachten folgende
Umformung:

0 =y—y =a" =0 = (a=0b)-(a" ' +ab" 2+ a?0" 3+ - +ab" 2+ b7 1).
4

sieht man durch Ausmultiplizieren der rechten Seite

Einer der beiden Faktoren rechts muss also null sein. Wenn der erste Faktor 0 ist,
dann ist natiirlich a = b. Nachdem a,b > 0 kann der zweite Faktor nur 0 sein, wenn
alle Terme = 0 sind. Dies impliziert, dass a = b = 0. |

5.2. Teilfolgen und der Satz von Bolzano-Weierstrafl.

Definition. Es sei (a,)nen eine Folge und es sei ny < ng < ... eine streng monoton steigende
Folge von natiirlichen Zahlen. Dann ist

(ank)kGN — (ann Apgyy Angy - - - )

auch eine Folge, welche wir als Teilfolge von (a,)nen bezeichnen.
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Beispiel. Wir betrachten die Folge

(an)neN = (3 + %)nGN = (47 3%7 3%7 3}1, 3%7 B%a 3%7 3%7 3%7 s )
Wir betrachten nun die Indizes ny = 2k + 1, k € N. Dann ist
(ank)keN = (3 + ﬁ)keN = ( 3%, 3%, 3%, 3%, . )

eine Teilfolge der urspriinglichen Folge.
Wir werden 6fters bewufit oder unbewuflt folgendes Lemma verwenden.

Lemma 5.8. Es sei (ay,)nen eine Folge. Wenn die Folge (ay)nen konvergiert, dann konver-

giert auch jede Teilfolge von (a,)nen gegen den gleichen Grenzwert.

Beweis (x). Es sei (a,)nen eine Folge mit Grenzwert a. Es sei n; < ny < ... eine streng

monoton steigende Folge von natiirlichen Zahlen. Wir miissen zeigen, dass klim ap, = a. Es
— 00

sei also € > 0. Es folgt aus lim a,, = a, dass es ein N € N gibt, so dass |a,, — a| < € fiir

n—oo
alle n > N. Nachdem n; < ny < ... eine streng monoton steigende Folge von natiirlichen
Zahlen ist, gilt fiir jedes k € N, dass n, > k. Es folgt also, dass fiir alle Kk > N gilt, dass
lan, —al <e. |

Wir wenden uns jetzt dem Hauptresultat von diesem Teilkapitel zu.

Satz 5.9. (Satz von Bolzano-Weierstrafl) Jede beschrinkte reelle Folge besitzt eine
Teilfolge, welche in R konvergiert.

Beispiel. Betrachten wir beispielsweise die Folge
7, wenn n < 10,
a, =<4 1+ %, wenn n > 10 Primzahl,

4 — #, wenn n > 10 keine Primzahl.

Diese Folge divergiert aber die Folge ist offensichtlich beschréankt. Wir betrachten zuerst
die Teilfolge, welche den geradzahligen Indizes entspricht. D.h. wir betrachten die Teilfolge

1 1 1
(a27a4aa67a8aa107a127a14aa167---) = (7,7,7,7,7,4—@,4—m74—ﬁ,-~)-

Diese konvergiert offensichtlich gegen 4. Wir konnen aber auch die Teilfolge betrachten,
welche durch die “Primzahl-Indizes” gegeben ist. D.h. wir betrachten die Teilfolge

_ 1 91 91 11
(ag,a3,a5,a7,a11,a13,a17,...) = (777777771ﬁ>1ﬁ71ﬁ7lﬁy--~)

Diese konvergiert offensichtlich gegen 1. Wir haben in diesem Fall also zwei konvergente
Teilfolgen gefunden, welche gegen zwei verschiedene Grenzwerte konvergieren.

Beweis. Es sei (a,)nen eine beschriankte Folge. Es existieren also x; < y; € R, so dass fiir
alle n € N gilt a,, € [z1,11] -
Behauptung. Es gibt eine Folge von Intervallen [z, yx], k > 2, so dass fir alle k£ € N gilt:

(1) [zk, yx) ist ein Teilintervall von [xg_1,yk—1] von halber Linge, und
(2) [xk, yx] enthélt unendlich viele Folgenglieder.
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Wir betrachten zuerst den Fall £ = 2. Es sei z := wlzﬂ der Mittelpunkt des Intervalls
[x1,11]. Nachdem [z1, 1] = [x1, 2]U[z, y1] und nachdem [z, y;] unendlich viele Folgenglieder
enthéalt gilt:

(a) das Intervall [x1, z] enthélt unendlich viele Folgenglieder, oder
(b) das Intervall [z, y;] enthilt unendlich viele Folgenglieder [

Wir betrachten nun das Intervall

[x1, 2], falls [xq, z] unendlich viele Folgenglieder enthilt,

[2,92] =

[2,11], andernfalls.
Wir definieren jetzt das ndchste Intervall [x3, y3] mit dem gleichen Verfahren: Wir wieder-
um zerlegen [zs, yo] wiederum in zwei Hélften. Wir wéhlen die erste Hélfte, wenn diese
unendlich viele Folgenglieder enthélt, ansonsten nehmen wir die zweite Hélfte. Indem wir
dieses Verfahren iterieren, erhalten wir die gewiinschte Folge von Intervallen. H

Wir werden jetzt eine Teilfolge (ay, )ken konstruieren, so dass jedes Folgenglied a,, im
Intervall [z, yx] liegt. Wir definieren diese Teilfolge von (a,,)nen wie folgt: Wir setzen

ny = 1.

Iterativ definieren wir dann F1

Ny = min{n c N | n >n; und a, € [$27?J2]}
n3 = min{n € N|n > ny und a, € [r3,ys]}
ng = min{n € N|n > ng_; und a, € [z, yi|}

Behauptung. Die Teilfolge (a,, )ren konvergiert.
Aus der Vollsténdigkeit von R folgt, dass es geniigt zu zeigen, dass die Teilfolge (ay, )ken

eine Cauchy-Folge ist. Zur Erinnerung, per Definition gilt:

a ist eine Cauchy-Folge <= vV 4 Y la,, —ap,| <e.
(an, Jren y-ro'e >0 KeN k,l2K| m |

Es sei also € > 0. Wir fithren folgende Voriiberlegungen durch:

(1) Wir setzen d := y; — 1, d.h. d ist die Lange vom ersten Intervall [z, y;]. Nachdem
wir die Lange des Intervalls bei jedem Schritt halbiert haben, folgt, dass die Lange
des Intervalls [z, yx| gegeben ist durch - - d.

46Eg kénnen auch beide Intervalle unendlich viele Folgenglieder enthalten.

4TDer Satz “es sei M eine Teilmenge von N, wir definieren n := min(M)” ist a priori etwas gefihrlich,
weil diese Definition nur Sinn macht, wenn M nicht die leere Menge ist. Wenn wir also schreiben, “es sei
n := min(M)”, dann miissen wir immer iiberpriifen, dass die Menge nichtleer ist. In unserem Fall ist dies
in der Tat der Fall, die Mengen {n € N|n > ng_; und a,, € [z, yx]} sind nichtleer, weil nach Konstruktion
jedes Intervall [z, yx] unendlich viele Folgenglieder enthélt.



72

(2) Aus dem Los Alamos Satzfolgt, dass klim #-d = 0. Es existiert also insbesondere
—00

ein K € N, so dass 2K%-d<e.
Es seien k,l > K gegeben. Dann gilt

.. 1
lan, —an,| < Linge von [zg,yx] = KT d < e
+ A 4
aus k,l > K folgt, dass nach Konstruktion von [zx,yx]  Wahl von K
ank7anl E [xK»yK] .
Folgenglieder a,, \
T - 3 z (1
| ® [ ] e 00 ® ® \ o (N X ] ® |
T 1 T
[1, 1]
[1’2, 92}
[IB: yiﬂ —
[$47 yéd

ABBILDUNG 15. Ilustration fiir den Beweis vom Satz von Bolzano-Weierstraf3.
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6. KONVERGENZ VON REIHEN

6.1. Erinnerung an Reihen. Wir erinnern im Folgenden noch einmal an den Begriff der
Reihe. Wir werden diesen Begriff in diesem Kapitel ausfiihrlichst behandeln. Es ist dabei
hilfreich den urspriinglich Begriff der Reihe, welchen wir in Teilkapitel [3.4] eingefiihrt hatten,
etwas zu erweitern.

Definition. Es sei w € Ny und es sei (a,,)n> €ine Folge von reellen Zahlenﬁ
(1) Fur k € Ny definieren wir

w—+k
k-te Partialsumme der Folge (an)n>w = D, Gn = Gy + Qi1 + -+ + Qi

(2) Wir definieren
Reihe Y a, := Folge der Partialsummen der Folge (ay,)n>w

S Folge (aw, Guw+0uwi1, GuwtGuwi1+auie,...) = Folge Gy

Qo +aw+1
oy + Qoy+1 +aw+2

Wir nennen die Zahlen a,, die Glieder der Reihe.

(3) Wenn die Reihe > a, konvergiert, d.h. wenn die Folge der Partialsummen konver-
n>

giert, dann schreiben wir

00 w+k
> a, = Grenzwert der Reihe )  a, := lim ) a,.
n=w n>w k=00 =y

Der Grenzwert der Reihe wird oft auch nur als Wert der Reihe bezeichnet. Zudem
schreiben wir auch kurz:

da, = too, wenn die Reihe > a, bestimmt gegen +oo divergiert.
n=w n>w

Wir erinnern an folgenden Satz.

Satz. Fiir jedes z € R gilt["]

1
T falls |z| < 1,

Zoz” = ~+00, falls z> 1,
" divergiert, falls =z < —1.

Wir erinnern auch noch an folgenden Satz["

481 Teilkapitel hatten wir nur den Fall w = 0 betrachtet.

49Dje Reihe Y. z™ hatten wir geometrische Reihe genannt.
n>0
%0Streng genommen hatten wir damals den Satz der Einfachheit halber nur fiir w = 0 formuliert. Der

allgemeine Fall wird natiirlich genauso bewiesen wie der Fall w = 0.
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Satz. |3.17| Es seien > a, und >_b, zwei Reihen, welche konvergieren, oder welche be-

n>w n>w

stimmt diwergieren. Dann gelten folgende Aussagen:

(1) i (an +by) = i a, + i b,, Wwenn die Summe “+7 auf der
n=w n=w n=w rechten Seite in der Tabelle

auf Seite [/ definiert wurde.
(2) Fir X eR gilt dAcan = A D ay.
(3) Wenn a, <b, fir alle n € N>y, dann gilt
dYa, <> by
Mithilfe von Satz kénnen wir folgendes Lemma beweisen.

Lemma 6.1. Es seien (an)n>w und (by)n>w 2wei Folgen. Wenn sich die Folgen nur in
endlich vielen Folgengliedern unterscheiden, dann konvergiert die Reihe ). a, genau dann,

n>w
wenn die Reihe )_ b, konvergiert.
n>w
Beispiel. Fiir n € Ny betrachten wir die Folgen
1019 wenn n < 1524, ) n
n = { 27" wenn n > 1524 und bn =27

Die beiden Folgen unterscheiden sich in genau 1525 Gliedern. Es folgt aus Satz [3.16] dass

die Reihe b, = 227" = X (5)" konvergiert. Es folgt nun aus Lemma , dass die etwas
n>0 n>0 n>0

mysteriosere Reihe ) a, ebenfalls konvergiert.
n>0

Beweis (x). Es seien >_ a, und > b, zwei Reihen, welche sich nur in endlich vielen Rei-

n>w n>w
hengliedern unterscheiden. Nachdem die Aussage des Korollars symmetrisch ist, geniigt es
folgende Behauptung zu beweisen:
Behauptung. Wenn Y a,, konvergiert, dann konvergiert auch > b,.
n>w n>w
Wir setzen ¢, := b, — a,,. Die Folge (¢,)n>w besitzt nach Voraussetzung nur endlich viele
Folgenglieder, welche von 0 verschieden sind. Die Reihe > ¢, ist daher ab einem gewissen

n>w

Folgenglied konstant. Insbesondere konvergiert die Reihe >_ ¢,. Es folgt nun aus Satz|3.17
n>w

(1), dass auch die Reihe > (a, + ¢,) = 2 b, konvergiert. ]
n>w n>w

Nachdem wir jetzt Reihen mit “verschiedenen Anféingen” betrachten, wollen wir noch
zeigen, dass der “Anfangspunkt” fiir die Konvergenz einer Reihe keine Rolle spielt. Genauer
gesagt, wir haben folgendes Lemma.
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Lemma 6.2. Es sei (a,)nen, €ine Folge von reellen Zahlen und es sei w € Ny. Dann gilt

> a, konvergiert — > a, konvergiert.
n>0 n>w

Im Falle der Konvergenz gilt zudem:

00 w—1 00
> ay, = >+ D G
n=0 n=0 n=w
~—— ~——
Wert der Reihe endliche Summe Wert der Reihe

Beweis. Das Lemma folgt leicht aus den Definitionen. Wir iiberlassen es daher der Leser-
schaft den Beweis aufzuschreiben. |

6.2. Konvergenzkriterien fiir Reihen. Im Folgenden wollen wir verschiedene notwendi-
ge und hinreichende Kriterien fiir die Konvergenz von Reihen kennenlernen. Wir beginnen
mit einem notwendigen Kriterium fiir die Konvergenz.

Satz 6.3. (Nullfolgen-Kriterium) Wenn eine Reihe . a, konvergiert, dann bilden die
n>w

Reihenglieder a,, eine Nullfolge.

Beweis. Um die Notation zu vereinfachen betrachten wir nur den Fall w = 0. Es sei also

> a, eine konvergente Reihe. Nach Voraussetzung konvergiert die Folge der Partialsummen
n>0

n
Sp = >, ar wobein € Nj.
k=0

Wir wollen zeigen, dass (a,)nen eine Nullfolge ist, d.h. wir wollen zeigen

V 3V |a,| < e

e>0 NeN n>N
Es sei also € > 0.

Wir haben also Informationen iiber das Verhalten der Partialsummen, brauchen nun
aber Informationen iiber die a,, selber. Per Definition ist a,, = s,, — $,,—1. Wir miissen
nun also die Differenzen s,, — s,_; kontrollieren. Dies schaffen wir dadurch, dass wir
uns daran entsinnen, dass nach Satz die Konvergenz der Folge (s,,)nen, bedeutet,
dass diese Folge insbesondere eine Cauchy-Folge ist.

Es folgt aus der Voraussetzung und Satz , dass die Partialsummen s, = >_a; eine
k=0

Cauchy-Folge bilden. Insbesondere gibt es also ein M € N, so dass:
fur alle n,m > M gilt s, — sp| <e.
Daraus folgt:  firallen > N:=M+4+1gilt  |a,| = [$n — sn_1] < €
/]\

es ist s, — s,_1 = a,, denn alle anderen Terme von s,, — s,,_1 heben sich weg [
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Satz 6.4. Es sei (a,)n>w €ine Folge, so dass fir alle n € Ns,, gilt: a,, > 0.
(1) Wenn die Folge der Partialsummen unbeschrdnkt ist, dann gilt > a, = +oo.

(2) Wenn die Folge der Partialsummen beschrdnkt ist, dann konvergiert die Reihe > a,.

n>w

Beweis. Nachdem alle Folgenglieder a,, > 0 folgt, dass die Folge der Partialsummen

w+k
<Za/n)k o = (s Ay + Api 1, Gy + Aoi1 + Qurzy - - )
€No

n=w

monoton steigend ist. Der Satz folgt nun sofort aus Satz und dem Konvergenzsatz [4.3]
|

Definition. Wir bezeichnen die Reihe
o= (L 1+ 1+ +5 1+5+3+% )
n>1
als die harmonische Reihe.
Der folgende Satz zeigt unter Anderem, dass die Umkehrung des Nullfolgen-Kriteriums[6.3
nicht gilt.

Satz 6.5. (Divergenz der harmonischen Reihe) Die harmonische Reihe divergiert
bestimmt gegen +o00, d.h.

= +o00.

00
>
n=1

S|

Beweis. Nachdem alle Reihenglieder % positiv sind, geniigt es nach Satz folgende Be-
hauptung zu beweisen.

k
Behauptung. Die Folge der Partialsummen s;, := >_ % ist unbeschrankt.

n=1

Wir betrachten im Folgenden die Partialsummen, welche zur Zweierpotenz k = 2™
gehoren. Wir fithren folgende Abschitzung durch:
ko= s =14 S gH7F shstitit o oo
>+ s+ g7+ sttt Tt ot gmtotas = 14D

Wir sehen also, dass die Partialsummen beliebig grof§ werden kénnen. Insbesondere ist die
Folge der Partialsummen nicht beschrankt. |

Fiir einen festen Exponenten d € N betrachten wir die Reihe ) n—ld Wenn d = 1, dann
n>1

erhalten wir die harmonische Reihe, welche, wie wir gerade gesehen hatten, divergiert. Der
néchste Satz besagt nun, dass die Reihe konvergiert, sobald der Exponent d > 2 ist.
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Satz 6.6. Fir jedes d € N mit d > 2 konvergiert die Reihe ) %
n>1

Beweis. Nachdem alle Reihenglieder # positiv sind, geniigt es nach Satz folgende Be-

hauptung zu beweisen.

k
Behauptung. Die Folge der Partialsummen s;, := >_ n—ld ist beschrinkt.

n=1

Es sei also & € N. Wir wiihlen ein m € N, so dass 2"+! — 1 > k. Dann gilt []]

amtl_g
0 < s < sgmiig = ) %
n=1
o 1 1 1 1 1 1 1 . 1
- 1 + ﬁ + ? + E + ? + @ + % + ct + (2171)(1 + + (2771,+1 _ l)d
1 1 1 1 1 1 1 1
S 1 + 27 + ﬁ + 47 + E E + 47 + et + (2771,)(1 + e (Qm)d
\N—/ -~ s N ~ J
_2 _4_ 22 2m
—2d =2d=(22)d (2m)d
2 (2%) 2" 2 N oi  o—id N (o—dt1)¢
= 14+ =+ 4+ .4 — i = 2t .9 = 2
9d (22)d (2m)d z;[) (2i)d 1;0 z:ZO ( )
_ —d+1\ym+1
B el O K 1
A 1 — 9—d+1 — 1 —92-d+l

nach Satz angewandt auf 2 =2"9"1 hierbei verwenden wir, dass aus d> 1 folgt, dass 1 — 274+ £

Wir haben also gezeigt, dass fiir alle k € Ny gilt: s, € [0, 1_2%(“1] Insbesondere haben wir
damit bewiesen, dass die Folge der Partialsummen beschrankt ist. [

Bemerkung. Satz besagt also insbesondere, dass die Reihe >_ # konvergiert, aber der
n>1

Satz sagt nichts iiber den Grenzwert der Reihe aus. Als Appetitanreger wollen wir jetzt
schon mal erwéhnen, dass wir ganz am Ende der Vorlesung sehen werden, dass

oo
1 ox?

n=1 n2 6
Aber um dies zu beweisen, werden wir erst mal 7 mathematisch prézise einfithren miissen.
Dies geschieht in einem spéteren Kapitel.

Satz 6.7. (Leibniz-Kriterium) Es sei (ay,)n>w €ine monoton fallende Folge. Wenn gilt
lim a, = 0, dann konvergiert die altermerendﬂReihe

Yo (=1)" - ay,.

n>w

S1Dag Argument #hnelt auf dem ersten Blick dem Beweis von Satz aber in diesem Fall schétzen wir
nach oben ab, wihrend wir im Beweis von Satz nach unten abgeschdtzt hatten.

Die Reihe . (=1)™ - a,, heifit alternierend, weil die Reihenglieder mit alternierenden Vorzeichen

n>w

auftauchen.
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Beispiel. Es sei (a,)nen, eine monoton fallende Folge, so dass lim a, = 0. In Abbildung

n—o0
versuchen wir die Partialsummen ag, ag — a1, a9 — a1 + asq, ... zu illustrieren.
Qo
< |
£ .
|<:—| T apg—aitay
ap—ay <_>|
\ o0
0 S (-1)-a,

n=0

ABBILDUNG 16. Illustration des Leibniz-Kriteriums.

Beispiel. Es folgt beispielsweise aus dem Leibniz-Kriterium, dass die Reihe
1
1. L
,; (="~
konvergiert. Das Leibniz-Kriterium gibt uns aber keine Aussage iiber den Grenzwert. Ganz
am Ende der Vorlesung Analysis I werden wir sehen, dass der Grenzwert der Reihe — In(2)
betragt. Aber bevor wir diese Aussage beweisen kénnen, miissen wir sowieso erst noch den
natiirlichen Logarithmus einfiihren.
Bemerkung. Es sei (a,)n>w €ine monoton fallende Folge, so dass lim a,, = 0. Es folgt aus
- n—oo
der Bemerkung auf Seite [53] dass fiir alle n > w gilt a,, > 0.

Beweis. Um die Notation etwas zu vereinfachen betrachten wir den Fall w = 0. Wie {iiblich
bezeichnen wir mit

Sp = Z(—l)k s ag
k=0

die n-te Partialsumme der Reihe. Es folgt aus der Vollstandigkeit von R, dass es geniigt
zu zeigen, dass die Folge (s;,)nen, der Partialsummen eine Cauchy-Folge ist. Mit anderen
Worten, wir wollen folgende Aussage beweisen:

(*) V 3V s —sml<e
e>0 NeN n,m>N

Wir miissen nun also die Differenzen |s,, — s,,| zielfithrend abschétzen.
Behauptung. Fiir n > m € N gilt s, — S, € [—@m1, Q1]

Wir betrachten zuerst den Fall, dass n ungerade und m ungerade sind. In diesem Fall
gilt:

die Vorzeichen erhalten wir aus der Voraussetzung, dass n ungerade und m ungerade

n 4
Sn—8m = >, (=1)'-a; = Gmi1—Qmiz + ...+ an1—a, > 0.
T i=m+1 — N——
>0, weil monoton fallend >0, weil monoton fallend

alle anderen Terme der
Partialsummen heben sich weg
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Andererseits gilt

da n ungerade und m ungerade

n +
Sp — Sm = Z (_]-)Z - ay = Om+1 —Qm+2 T Am43 cee Q2+ Ap1 — Ay
immt 1 —_— —_———

<0, weil monoton fallend <0, weil monoton fallend
S am+1 — ap S Am+1-
N

nach der Bemerkung vor dem Beweis gilt a,, > 0

Wir haben also bewiesen, dass in diesem Fall gilt, dass s, — s, € [0, apny1]. Ganz &hnlich
zeigt man auch:

(1) Wenn n gerade und m ungerade, dann ist ebenfalls s,, — $,,, € [0, @ps1]-
(2) Wenn n beliebige und m gerade, dann ist s, — S, € [—ama1,0]. B

Mit dieser Behauptung beweist sich die gewiinschte Aussage (x) fast von selbst. In der
Tat, sei € > 0. Nachdem lim a,, = 0 existiert ein N € N, so dass |a,| < € fiir alle n > N.

n—oo
Es seien nun n,m > N. Nachdem |s,, — ;| = [$;n — $»| konnen wir 0.B.d.A. annehmen,

dass n > m. Dann gilt
15 = Sm| < am41| < e
+ A
folgt aus der Behauptung da m+1>N [ ]
Satz 6.8. (Majoranten-Kriterium) Es seien (a,)n>w und (by)n>w 2zwei Folgen. Dann
qgilt

by, > |an| fir allen wund > b, konvergiert = > a, konvergiert.

n>w n>w
Beispiel. Wir wollen zeigen, dass die Reihe

1
2. mys

n>1
konvergiert. Wir setzen a, = n++2 und b, = # Offensichtlich gilt fiir alle n € N, dass
# > n21+2. Satz besagt, dass die Reihe TEI# konvergiert. Es folgt nun also aus dem

Majoranten-Kriterium dass auch unsere urspriingliche Reihe > ﬁ konvergiert.
n>1 )

Beweis. Um die Notation zu vereinfachen nehmen wir an, dass w = 0. Fiir n € Ny betrach-
ten wir die Partialsummen

Sp = 2 ak und t, == 2 b
k=0 k=0

Nachdem eine Reihe konvergiert genau dann, wenn die Partialsummen eine Cauchy-Folge
bilden miissen wir also folgende Aussage beweisen:

b, > |a,| firallen € Ng und V. V |th—tn| <e= V 4 V' lsp—5m| <e
e>0 NeN nm>N e>0 NeN n,m>N
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Es sei also € > 0 gegeben. Nach Voraussetzung existiert ein ein N € Ny, so dass fiir alle
n>m > N gilt |t, — t,,| < e. Dann gilt aber auch fiir alle n > m > N, dass

n n n
50 — 5| = ( 3 ak‘ < S a]l € by o= |t—ta] < e
T k=m+1 T k=m+1 T k=m+1 T
alle anderen Terme  Dreiecksungleichung nach Voraussetzung Wahl von N
heben sich weg u

Korollar 6.9. (Minoranten-Kriterium) FEs seien (a,)n>w und (by)n>w zwei Folgen.
Dann gilt
la,| < b, fir allen  und Y a, divergiert = > b, divergiert.

n>w n>w
Beispiel.

Da in 2% fiir alle n und da Zl divergiert folgt aus dem Minoranten-Krit.: > L divergiert.

vn n>1" a1V

TV
dies wissen wir aus Satz

Beweis (). Wie wir gleich sehen werden ist das Minoranten-Kriterium eigentlich nur eine
Umformulierung des Majoranten-Kriteriums. Es seien also (ay, )n> und (b, ),>. zwei Folgen,
so dass fiir alle n gilt, dass |a,| < b,. Das Majoranten-Kriterium besagt:

> b, konvergiert = ) a, konvergiert.
n>w n>w

Aus dem Prinzip der Kontraposition erhalten wir folgende Aussage:

> b, divergiert <= > a, divergiert.

n>w n>w
Das ist genau die Aussage, welche wir beweisen wollten. [

6.3. Absolute Konvergenz von Reihen und das Quotienten-Kriterium.

Definition. Eine Reihe > a, heifit absolut konvergent, wenn die Reihe >_ |a,| iiber die

n>w n>w

Absolutbetriage konvergiert.

Beispiel. Wir betrachten die Reihe Y (—1)" - 1. Es folgt aus dem Leibniz-Kriterium, dass
n>1

diese Reihe konvergiert. Aber die Reihe konvergiert nicht absolut, weil wir in Satz
gesehen hatten, dass die Reihe

i - B

divergiert.

Der folgende Satz besagt insbesondere, dass jede absolut konvergente Reihe konvergiert.
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Satz 6.10. Es sei (a,)n>w €ine Folge. Wenn die Reihe - |a,| dber die Absolutbetrige

n>w
konvergiert, dann konvergiert auch die Rethe Y a,. Zudem gilt dann, dass
n>w
2an| < X |anl.

Beispiel. Wir betrachten die Folge

n2’
L
nZs

an = . .
wenn n keine Primzahl.

{ —-L1 . wenn n Primzahl,

Es folgt aus Satz und aus Satz|6.10, dass die Reihe >_ a,, konvergiert.
n>1

Beweis. Es sei > a, eine Reihe, so dass die Reihe }_ |a,| iiber die Absolutbetrige kon-

n>w n>w
vergiert. Wir wenden das Majoranten-Kriterium [6.8| auf b, := |a,| an und erhalten daraus
sofort, dass auch die urspriingliche Reihe }_ a,, konvergiert. Fiir die Grenzwerte der Reihen
n>w

gilt zudem:

00 k k k 00

>Yoa,l = |[lim X a, = lim|Xa, < lim > |a,] = X |a,]

n=w k—o00 n=w T k—oo |n=w T k—o0 n=w n=w

ganz allgemein gilt |klim x| = klim |k | Dreiecksungleichung und Satz n
— 00 — 00

Satz 6.11. (Quotienten-Kriterium) FEs sei (a,)n>w eine Folge von reellen Zahlen mit
a, # 0, so dass der Grenzwert

O := lim |&*t
n—o00 Qp,
existiert.
(1) Wenn © < 1, dann konvergiert die Reihe  a, absolut. (Insbesondere konvergiert
n>w
dann nach Satz|6.10) auch die Reihe }_ a,.)
n>w
(2) Wenn © > 1, dann divergiert die Reihe ) ay,.
n>w
Beispiel.
(1) Wir betrachten die Folge a, = %5+, Dann gilt
lim |%*t| = jp (oE2D-5" g, 22 1
n—oo | Gp n—oo Bt (n+1) n—oo H(n + 1) 5

Es folgt also aus Satz|6.11], dass die Reihe ; n;l absolut konvergiert und insbeson-
n>0

dere auch “ganz normal” konvergiert.
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(2) Es sei x € (—1,1) mit « # 0. Wir betrachten noch einmal die geometrische Reihe

. . . . n+1
> ", d.h. wir betrachten a,, = ™. Dann ist © := lim |““—+1‘ = lim ‘m—n‘ = |z|. Es
n>0 n—soo! @n n—oo' ¥

folgt also aus Satz[6.11] dass die Reihe »_ 2™ konvergiert. Diese Aussage hatten wir

n>0
natiirlich schon in Satz [3.16] bewiesen.
(3) Es sei k € N. Wir betrachten die Reihe Y- 2. In diesem Fall ist
n>1

nk

Ap41 . 1 ‘
= lim |————
n—00 (’ﬂ + 1)k

Qp

R B
= Jm e = L

O = lim

n—oo

Wenn k = 1, dann divergiert die Reihe ). # = > % nach Satz . Hingegen wenn

n>1 n>1

k = 2, dann konvergiert die Reihe > n—lk = # nach Satz 6.6, Wir sehen also, wenn
n>1 n>1

© = 1, dann kann man keine allgemein giiltige Aussage treffen.

Beweis von Satz (1). Um die Notation etwas zu vereinfachen betrachten wir nur den
Fall w = 0. Es sei also (a,)nen, eine Folge von reellen Zahlen a,, # 0, so dass

© = lim || < L

n—oo ' On
Wir miissen zeigen, dass die Reihe 3 |a,| konvergiert.
n>0

Das obige Beispiel der geometrischen Reihe legt nahe, dass unsere jetzige Reihe ei-
ner geometrischen Reihe “&hnelt”. Der Gedanke ist jetzt die Konvergenz unserer
Reihe mithilfe der schon bekannten Konvergenz von geometrischen Reihen und dem
Majoranten-Kriterium zu beweisen.

Nachdem © < 1 konnen wir ein A € (©,1) wihlen. Es folgt aus der Definition von
lim |"“Z—:1| = 0O, angewandt auf ¢ = A — © > 0, dass es ein N € Ny gibt, so dass fiir

n—oo

alle n > N gilt:

Ap+1
Gy

Int1l < X, woraus folgt, dass |ani1]| < - |anl.

€ (0 —¢,0 +¢), insbesondere
=X

Qp

Indem wir die letzte Ungleichung mehrmals anwenden erhalten wir fiir beliebiges n > N
folgende Ungleichung;:

(*) an] < Alapo1] < AN lapa] <00 < AN ay| = AT ATV ]
——
=:C
Zusammengefasst haben wir also folgende Aussage bewiesen:

Aussage. Es gibt ein A € [0,1), ein C' € R und ein N € Ny, so dass fiir alle n > N gilt:
lan| < A™-C.
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Mit dieser Aussage ist es nun ein Leichtes zu beweisen, dass die Reihe }_ |a,| konvergiert:
n>0

(1) Nachdem A € [0,1) folgt aus Satz [3.16| und Lemma , dass die Reithe > A" - C

n>N

konvergiert.
(2) Es folgt aus (1) und der Aussage, zusammen mit Majoranten-Kriterium, dass die

Reihe Y |a,| konvergiert.
n>N

(3) Es folgt aus (2) und Lemma , dass die Reihe > |a,| konvergiert. [
n>0
An41 n = O 4 N 2 3 1
an T e ° o sese o °
1 O 1 Q l

0 [s) \1
Intervall (©—¢, ©+e¢) A

ABBILDUNG 17. Abbildung zum Beweis von Satz [6.11]

Beweis von Satz (2). Um die Notation etwas zu vereinfachen betrachten wir wiederum
nur den Fall w = 0. Es sei also (ay,)nen, eine Folge von reellen Zahlen a,, # 0, so dass

O = lim || > 1.

n—oo

Wir miissen zeigen, dass die Reihe _ |a,| divergiert. Wir wihlen ein A € (1,0). Ganz
n>0

analog zum Beweis von (1) sieht man,_dass es ein N € Ny gib, so dass fiir beliebiges n > N
gilt |a,| > A"V . |ay|. Daraus folgt schon, dass die Folge (a,,)nen, keine Nullfolge ist. Also

folgt aus dem Nullfolgen-Kriterium ﬁ, dass die Reihe ) a,, divergiert. |

n>w

6.4. Umordnung von Reihen. Bevor wir zum eigentlichen Thema dieses Teilkapitels
schreiten wollen wir noch folgende suggestive Notation einfiihren.

Notation. Fiir eine konvergente Reihe _ a,, schreiben wir

n>1
k 0
a;+ast+az+... := lim > a, = > a,.

k—00 =1 n=1

Beispiel. Es ist
L k=2m+1

L L b L lim kete Partialsumme = lim § m2 oo mt =0.
2 2 3 3 4 4 55 k—o0 k—o0 , sonst

Jetzt wenden wir uns dem eigentlichen Thema des Teilkapitels zu. Es folgt aus dem
Kommutativgesetz, dass es egal ist, in welcher Reihenfolge wir endlich viele reelle Zahlen
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addieren. Beispielsweise gilt
a+as+a3 = ag+ a1 +ay = as+as+ ay.
Etwas allgemeiner, wenn ay, ..., a, € R endlich viele reelle Zahlen sind, und wenn zudem
7:{1,...,n} = {1,...,n} eine Bijektion ist, dann gilt
apt+aztaz+ -+ ap = )+ ar2) +ar@) o F G-

Es stellt sich die Frage, ob die “naive” Verallgemeinerung dieser Aussage auf Reihen eben-
falls gilt. Dies fiihrt uns zu folgender Definition.

Definition. Es sei »_ a,, eine Reihe und es sei 7: N>, — N5, eine Bijektion. Wir nennen

n>w

die Reihe )_ a,@) eine Umordnung von 3. a,.

n>w n>w
Es stellt sich also die Frage, ob Umordnungen die Konvergenz und den Grenzwert einer
Reihe abidndern kénnen. Das folgende Beispiel bejaht diese Frage.

Beispiel. Wir betrachten noch einmal die obige Reihe. Wir hatten gesehen, dass

1 1 1 1 1 1 1 1
Wir betrachten nun jedoch folgende Umordnung:ﬁ]
1 1 1 1 1 1 1 1 1 1
>0 >0 >0
Wir sehen also, dass alle Partialsummen dieser Reihe > % sind. Insbesondere wird diese

Reihe definitiv nicht gegen 0 konvergieren. D.h. die umgeordnete Reihe konvergiert nicht
gegen den Grenzwert der urspriinglichen Reihe.

Wir haben also gesehen, dass Umordnungen sehr wohl den Grenzwert abédndern kénnen.
Es gilt sogar folgende ganz allgemeine Aussage:

Satz 6.12. (Riemannscher Umordnungssatz) Es sei > a, eine Reihe welche konver-

n>w
giert, aber nicht absolut konvergiertﬂ
(1) Fiir jedes x € R ezistiert eine Umordnung, so dass die umgeordnete Reihe gegen x
konvergiert.

5Wir konnen die Umordnung auch prézise mithilfe einer Bijektion 7: N — N angeben. Wir betrachten

7:N — N

1, falls n =1,

4m + 3, falls es ein m € Ny mit n = 3m + 2 gibt,
4m +5, falls es ein m € Ny mit n = 3m + 3 gibt,
2m + 2, falls es ein m € Ny mit n = 3m + 4 gibt.

Man kann leicht nachweisen, dass dies ist eine Bijektion ist. Wenn wir die urspriingliche Reihe mithilfe von
7 umordnen, dann erhalten wir in der Tat die angegebene Reihe.
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(2) Es gibt Umordnungen, welche bestimmt gegen +oo divergieren.
Beispiel. Auf Seite |80] hatten wir gesehen, dass die Reihe > (—1)" - % konvergiert, aber
nicht absolut konvergiert. Der Riemannsche Umordnungss;Jztzz1 impliziert also, dass es zu
jedem x € RU {%o0} eine Bijektion 7: N — N mit ni;(—l)T(") : % = z gibt.

Beweis. Wir werden diesen Satz nicht verwenden, und wir werden ihn daher auch nicht
beweisen. Ein Beweis wird beispielsweise in [Hel Satz 32.4] und [Hi, Kapitel 19] gegeben.
Die Beweisidee ist zudem sehr hiibsch auf

http://de.wikipedia.org/wiki/Riemannscher_Umordnungssatz

skizziert. Der Beweis kann auch als anspruchsvolle Ubungsaufgabe mit dem vorhandenen
Wissensstand durchgefiihrt werden. [

Wir haben jetzt also gesehen, dass eine Umordnung das Konvergenzverhalten einer nicht
absolut konvergenten Reihe vollig abdndern kann. Der folgende Satz besagt nun, dass dieses
Problem nicht auftaucht, wenn wir eine absolut konvergenten Reihe umordnen.

Satz 6.13. (Umordnungssatz) Wenn - a, eine Reihe ist, welche absolut konvergiert,

n>w
dann konvergiert auch jede Umordnung von - a, absolut gegen denselben Grenzwert.
n>w
Beispiel. Auf Seite [81] hatten wir, mithilfe des Quotienten-Kriteriums gezeigt, dass die

Reihe > n5+ ! absolut konvergiert. In diesem Fall fithrt also jede Umordnung zum gleichen
n>0

Ergebnis. Dies ist ein Grund, warum absolute Konvergenz von Reihen eine feine Sache ist.

Wir werden diesen Satz im weiteren Verlauf der Vorlesung nicht benétigen. Wir haben
deswegen den Satz in der Vorlesung nicht bewiesen. Der Vollstédndigkeit halber geben wir
den Beweis im néchsten Teilkapitel.

6.5. Beweis des Umordnungssatzes (*). Wir wollen nun also den Umordnungs-
satz beweisen. Im Beweis des Umordungssatzes werden wir folgendes Lemma
verwenden.

Lemma 6.14. Es sei > a, eine konvergente Reihe. Zu jedem e > 0 gibt es ein N € N, so

n>1
dass

Beweis von Lemma[0.14 Es sei also > a, eine konvergente Reihe und es sei € > 0. Wie
n>1

k

iiblich bezeichnen wir mit s;, = Z a,, die k-te Partialsumme der Reihe ) a,,. Nachdem die
n>1

Y4Wir hatten gezeigt, dass die Relhe 5— 5 + 3 — 3 + T + L 14 .. konvergiert. Es folgt zudem
fast sofort aus der Divergenz der harmomschen Relhe also aus Satz m dass unsere Reihe nicht absolut
konvergiert,.


http://de.wikipedia.org/wiki/Riemannscher_Umordnungssatz
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Reihe konvergiert, folgt aus Satz [£.1], dass die Partialsummen eine Cauchy-Folge bilden.
Insbesondere gibt es ein M € N, so dass fiir alle k,1 > M gilt: |s; — s;| < 5. Insbesondere

gilt fiir alle k > N := M + 1, dass
<&t dak,N>M

S . k . €
S a,| = lim an| = lim |sp —sy] < §<e
n=N k—oo |pn=N k—o0 4
folgt aus Lemma [3.6 [ |

Wir wenden uns nun dem eigentlich Beweis des Umordnungssatzes zu.
Beweis des Umordnungssatzes[0.15. Um die Notation etwas vereinfachen betrachten wir

nur den Fall w = 1. Es sei > a,, eine Reihe, welche absolut konvergiert und es sei 7: N — N

n>1

eine Bijektion. Wir mﬁssenizeigen, dass
Z Qrpn)y = @ 1= Z Qp, .
n=1 n=1
Es sei also € > 0 gegeben. Wir miissen also ein N € N finden, so dass fiir alle n > N gilt:

Yarw —a| < €
k=1

Nach Voraussetzung konvergiert die Reihe >_ |a,|. Lemma |6.14] besagt nun, dass es ein
n>1

K € N gibt, so das{” 0 .
o ak] < R

k=K

Wir miissen im Folgenden also den Betrag

ZaT(k) — a‘ “klein kriegen”. Nachdem wir
k=1

Information iiber die Partialsummen der Reihe _a; besitzen, ist es sinnvoll, diese ins
k>1

Spiel zu bringen. Fiir beliebiges n € N machen wir dazu folgende Abschéitzung:

n n K—-1 K-1 n K—-1 K—1
> k) — &’ = (X — ap + > ar — a‘ < | Xarg — X ak‘ + ’a — > ak
k=1 k:il []C(ill k:ozol kil Ilc(ill k=1
= EG/’T(]C) — ak‘ =+ ’ Z ak‘ S ZGJT(k) - Z ag + E ‘ak’
" k=1 k=1 k=K N k=1 k=1 =
Lemma [6.2] Satz [6.10]
n K-—1 €
< |\ X — Zak‘—kf.
k=1 k=1 2

Wir miissen also jetzt noch ein N € N finden, so dass fiir alle n > N der erste Summand
< £ ist.
)

5 Djeser Anfang vom Beweis erscheint vielleicht etwas “aus der Luft gegriffen”, aber irgendwann Mal

€

miissen wir ja die Voraussetzung verwenden, und mit dem §-Trick sind wir bis jetzt immer wieder gut
gefahren.
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K—-1
Die Idee ist nun n so grof§ zu wihlen, dass alle Summanden der Summe »_ a; auch schon
k=1
in der Summe > a, ) auftreten. Wir fithren diese Idee nun aus. Nachdem 7 eine Bijektion
k=1

ist, existiert ein N € N, so dass ]
(%) {1,2,...,K =1} C {r(1),7(2),...,7(N)}.

Dann gilt fiir alle n > N, dass

n K—-1 [es)
€
dlarqy — Zak’ = , ar(k)) < 2 larm| < 2 Jax] < 5
=1 k=1 T k=1,...,nmit 7(k)>K k=1,...,nmit 7(k)>K k=K
denn es folgt aus (x), dass es zu jedem Dreiecksungleichung nach Wahl von K
ke{l,...,K—1}einle{l,...,n} mit 7(I)=Fk gibt
Zusammengefaf3t erhalten wir also, dass fiir alle n > N gilt:
n n K—-1 € € €
ZaT(k)—a < ZCLT(k)— agl+- < —+- = e
k=1 4 k=1 k=1 2 4 2 2
erste Ungleichung zweite Ungleichung
Wir haben damit gezeigt, dass die Umordnung der Reihe }_a, auch gegen a := an,
n>1 n=1
konvergiert.
Es verbleibt zu zeigen, dass die Reihe )_ a,, auch absolut konvergiert. Aber dies folgt aus
n>1
dem obigen Beweis, wenn wir die Reihe > |a,| anstatt der Reihe > a,, betrachten. |
n>1 n>1

6.6. Das Cauchy-Produkt fiir absolut konvergente Reihen. Fiir endliche Summen
gilt, wie wir in Satz bewiesen hatten, folgendes Distributivgesetz:

k l k l
(p;oap) ‘ (qZ::Obq> - pZ:IO qZ::()ap ‘ bq’
denn jedes Produkt a, - b, taucht sowohl auf linken als auch auf der rechten Seite genau

einmal auf. Man kann sich nun fragen, ob eine dhnliche Aussage fiir Reihen gilt. Es seien

beispielsweise >_a, und »_ b, konvergente Reihen. Gilt dann notwendigerweise, dass
p20 920

endliche Summe

Auf den ersten Blick erscheint das ziemlich logisch, denn auf der rechten Seite taucht jedes
Produkt a, - b, auch genau einmal auf.

5Wir kénnen beispielsweise N = max{r~1(1),...,7 (K — 1)} wiihlen.
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ao Vfrb\g**qu - b3 as - by as - bs
ao 52(1 . b2 s - by as - by o = die Summe der Terme ist
e .
ag - by a -‘51*\\@2 bla,g by ..//// > ag - by mit n =3
k=0
ag - bo ai - b() a9 boaj . bO

In Ubungsblatt 6 werden wir sehen, dass die Antwort im Allgemeinen jedoch nein ist.

Genauer gesagt, wir werden sehen, dass es konvergente Reihen > a, und >_ b, gibt, so dass
p>0 q>0

<pz::0ap> ' (qgobq> 7 nX::O kX::O @+ b
In der Tat gibt es Reihen, so dass die Reihe auf der rechten Seite noch nicht einmal kon-
vergiert.

Der folgende Satz besagt nun, dass dieses Problem nicht auftreten kann, wenn die beiden
urspriinglichen Reihen absolut konvergieren.

Satz 6.15. (Cauchy-Produktformel) Es seien >_a, und > b, Reihen, welche absolut

p=>0 q=0

konvergieren. Dann gilt ~ 0 x~ n
(Za) (Zh) = = Zar-bos
p=0 q=0 k=0

n=0

6.7. Beweis der Cauchy-Produktformel (x). Im Beweis von Satz werden wir fol-
gendes einfaches Lemma bendtigen.

Lemma 6.16. Wenn
(an)nENo = (a()) ay, Gz, as, . . . )
eine konvergente Folge ist, dann konvergiert auch die Folge

(CLI—%J)nENO = (ao, a0, a1,a1,a,as,...)

gegen die gleiche reelle Zahl.

Beweis (x). Wir setzen a = lim a,. Wir miissen zeigen, dass limaj»| = a. Es sei also
n—00 n—oco -2

e > 0. Dann existiert nach Voraussetzung ein N € N, so dass |a, — a| < € fiir alle n > N.
Dann gilt aber auch fiir alle n > 2N, dass |aL%J —al <e. [ |

Beweis von Satz[6.13. Fiir n € Ny schreiben wir
Qn = {(p.¢) €NoxNo[p<nundg<n}, sowie
Dn = {(p;Q) ERIO X N0|p+q STL}

Anders ausgedriickt, die Menge (,, beschreibt das “Quadrat” in Ny x Ny mit den Eckpunk-
ten (0,0), (0,n), (n,0) und (n,n), und die Menge D,, beschreibt das “Dreieck” in Ny x Ny
mit den Eckpunkten (0,0), (0,n) und (n,0). Fiir jedes n gilt, dass @z C D,, C Qn.
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Es seien nun > a, und > b, absolut konvergente Reihen. Dann gilt:

p=0 q20
@ () (&) 5 dm(Ze)(Zh) 5 dm, z, eh m
Satz [3.4] Distributivgesetz

(b) <p§0|az)|> <§0|bq|> i JL%(;Z:OMPD <qzz:o|bq|> i nlgrolo(p’q)é(gnmpbﬂ-

Zudem ist

00 d
(C) Z . Zakbd,k = lim Z Zakbd k = lim Z (lpb
d=0 k=0 n—o00 d=0 k= n—00 (p,q)€D,
Nach (a) und (c) geniigt es folgende Behauptung zu beweisen.
Behauptung.
lim | > ayb, — = 0.
n—00 |(p,q)€Qn (P,@)EDn
Wir fithren folgende Abschétzung durch:
denn D,, C Q, Dreiecksungleichung
¥ ¥
lim | > a,b, — > ayb,| = lim > aybyl < Hm > apby|
n=00l (p.0)€Qn (p,@)€Dn n—ool(p, q)GQ A\Dn n—09(p, q)GQn\D
< lim lapyby| = hm( lapby — > |apbq|> =
N n—09(p, q)GQ \Q a2 n—00 \ (p,q)€Qn (P9)€Q 1)

nachdem @y \ Dn C Qn \ Q|2

Um die Notation zu vereinfachen, setzen wir
Cr = 2 apbyl.
(P,q)EQn

In (b) hatten wir gesehen, dass die Folge (¢, )nen, konvergiert. Mit dieser Notation kénnen
wir jetzt die obige Abschitzung weiterfithren:

x* = lim <cn — CL%J) = lime, — hmq%J = 0.

n—oo n—oo n—oo /I\

nach Lemma [6.16] [ ]

6.8. Die Exponentialreihe. In diesem Kapitel fithren wir die Exponentialreihe ein, wel-
che zusammen mit der geometrischen Reihe eine der wichtigsten Reihen iiberhaupt ist.

Satz 6.17. Fir jedes x € R konvergiert die Exponentialreihe > m—r; absolut.

n>0n:

Beweis. Es sei x € R beliebig. Wir schreiben a,, := fL—T Dann gilt

Ap+1
Qap

li || _

n—oon + 1

= lim

n—oo

lim
n—o0

"l )
™ (n+1)! ‘
folgt aus Satz (3), angewandt auf A = ||
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Es folgt aus dieser Berechnung und dem Quotienten-Kriterium, d.h. aus Satz [6.11] dass die
Exponentialreihe > a, = > % absolut konvergiert. [

n>0 n>0

Definition. Fir x € R schreiben wir
o " . k " . 2 3 k
exp(z) ::Z—:hmZ—':hm(l—l— i S —+——|—...—|——>

n=0 """ |

n! k—o0 ,—o T k—oc0

Wir definieren zudem die
FEulersche Zahl e := exp(1).

Eine Computerberechnung zeigt, dass e ~ 2.7182818284590. . . E
Definition. Wir bezeichnen die Abbildung

R —- R
r — exp(z) als die Ezponentialfunktion.

Der folgende Satz beinhaltet die wohl wichtigste Eigenschaft der Exponentialfunktion.

Theorem 6.18. (Funktionalgleichung der Exponentialfunktion) Fir alle z,y € R
qgilt
exp(z +y) = exp(x) - exp(y).

Beweis. Es seien also z,y € R gegeben. Dann gilt

X P 00 q oo n Jfk ?nfk X 21 n! n—
eowent) = (55)(55) 1 B3 ooe ~ S&awaom

p=0 E q=0 ?
nach der Cauchy-Produktformel diese kénnen wir
anwenden, da die Exponentialreihe absolut konvergiert

B SN R L N S W O no_
;Em S(p)atyrt = >ty = el ty)
|
nach Definition von (Z) = m nach Satz 2.1 -

Wir beschlielen das Kapitel mit ein paar grundlegenden Eigenschaften der Exponential-
funktion.
TDie ersten 50 Stellen der Eulerschen Zahl sind
e ~ 2.71828182845904523536028747135266249775724709369995

Hierbei ist bei den Stellen kein “System” zu erkennen. Das legt den Schlufl nahe, dass e wohl keine rationale
Zahl ist. Dies ist in der Tat der Fall, der Beweis dazu ist sogar relativ einfach:

http://de.wikipedia.org/wiki/Beweis der Irrationalitdt_der_eulerschen Zahl

Es gilt allerdings auch noch eine deutlich stiarkere Aussage: die Eulersche Zahl e ist transzendental, d.h. e
kann nicht die Nullstelle von einem Polynom mit rationalen Koeffizienten sein. Diese Aussage wurde erst
1873 von Hermite bewiesen, also 150 Jahre nachdem die Eulersche Zahl eingefiihrt wurde.
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Satz 6.19. Die Ezponentialfunktion hat folgende Figenschaften:
(1) Es ist exp(0) = 1.
(2) Fiir alle x € R gilt exp(—z) = exp(x)
(3) Fiir alle x > 0 gilt exp(z) € ( ) und fir alle x < 0 gilt exp(x) € (0,1).
(4) Fiir jedes n € Z gilt exp(n) =

Beweis.

(1) Wir berechnen
0" . 0 , 0 0*
exp(0) = E:—.—hm 1—|—0—|——2—|——3!+~--—|——k! = 1.

(2) Fur z € R gilt:

1, alsoist exp(—x) = expl(x).

exp(—x) -exp(z) = exp(—z+z) = exp(0) =
4 4
Theorem [6.18 siehe (1)

(3) Es sei zuerst > 0. Dann gilt
exp(z) = Zx—zl+x+2z—7 :1+I+hm2— > 14z > 1.
n=o ™ n=2 " koo pzp nl
folgt aus Satz[3.6] da = > 0.

Es sei nun x < 0. Wir hatten gerade bewiesen, dass exp(—x) € (1,00). Es folgt aus
(2), dass exp(z) = m € (0,1).
(4) Der Fall n = 0 folgt aus (1). Fiir n € N gilt:

Theorem [6.18] Definition von e
N 4
exp(n) — eXp(l + ...+ 1) — \exp(l) ..... eXp(lZ = e -0 = "
n—Mal n—Mal n—Mal

Es sei nun n < 0. Wir hatten gerade bewiesen, dass exp(—n) = e~ ". Es folgt aus (2),

dass exp(n) = ——— = -1 = ¢". |

exp(—n) e~
Wir beschlieen das Kapitel mit der Illustration des Graphen der Exponentialfunktion
in Abbildung

~ Graph der Exponentialfunktion x — exp(z)




92

7. STETIGE FUNKTIONEN

7.1. Beispiele von Funktionen. Wir hatten uns bislang ausfiihrlich mit Folgen und Rei-
hen beschiftigt aber jetzt wenden wir uns endlich dem eigentlichen Ziel der Analysis zu,
nédmlich dem Studium von Funktionen.

Definition. Eine Funktion ist eine Abbildung f: D — R, wobei D eine Teilmenge von R
ist. Wir nennen D den Definitionsbereich von f. Zudem bezeichnen wir

Graph(f) = {(z, /() €R®|z € D}
als den Graphen von f.

Im Folgenden betrachten wir mehrere Beispiele von Funktionen und deren dazugehorige
Graphen. Wie bei Folgen sehen wir dabei, dass der Phantasie bei der Definition von Funk-
tion keine Grenzen gesetzt sind.

\ \ \
T2 T2
Afl .—ﬂ_o
01 2 o1 | 1 2
T-1 T-1
-2 1+-2
bR — R c:[-1,2) = R
T = r — 1
| | A
T T2 T4
—2 1 ! [ IE
‘ T T } T T T "2
1 2 -2 -1 1 2
1+-1 1T-1 11
12 T2 — —
-2 —1 1 2
d: R\ {0} — R e:R — R frR - R
r — 1 x = |z {—x, wenn z <0,
r Tr = 9
x®, wenn x>0

Wir konnen aus dem gegebenen Schatz von Funktionen noch viele weitere konstruieren,
indem wir beispielsweise Funktionen addieren, multiplizieren oder verkniipfen.

7.2. Definition von Stetigkeit und erste Eigenschaften. Wir fithren nun einer der
grundlegendsten und wichtigsten Begriffe der Analysis ein.
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Graph der Dirichlet-Funktion

L |
N}
-
—_
@—
—_
T @
| =
=

12 o1 | 1 2 ol | 1 2
® —1 e -1 s}
+-2 ° 12 T2
goR — R h:7Z — R R — R
—1, wenn x <0, r 1, wenn z € Q,
T 0, wenn z=0, v —1, wenn x € Q
1, wenn x>0
| \
. 2 .—0 4
11 e—o 9 4 *+1
9 1 | 1 2 12
—4 1 1-1
; o |-2 19
2
E:R — R IR —- R
r — exp(x) r = |z 1 wenn z # 0,
xr z
0, wennz =20

Definition. Es sei f: D — R eine Funktion und xg € D. Wir definieren

f ist stetig im Punkt zp <= V v |f(z) — f(zo)] < e
>0 6>0 gz e D mit
|z —zo| < &

Wir sagen f: D — R ist stetig, wenn f in jedem Punkt des Definitionsbereichs stetig ist.

Bemerkung. Wenn man Intervalle den Absolutbetrédgen bevorzugt, dann kann man die

Definition von Stetigkeit wie folgt umschreiben:
[ ist stetig im Punkt zp <= V 4 f(x) € (f(zo)—c¢, f(xo)+e).
e0 >0 z € D mit
z € (xo—0,20+9)

Das folgende Lemma zeigt, dass affin lineare Funktionen stetig sind.
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Intervall (f(xzo)—¢, f(zo)+e) Graph von f Intervall (f(xo)—c¢, f(z0)+e€) Graph von f

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L

/

die Funktionswerte von (xg — 6§, g + 0) es gibt kein § > 0, so dass
liegen im Intervall (f(x¢)—¢, f(zo)+e) die Funktionswerte von (x¢ — 0,z + 9)

. o im Intervall (f(zo)—¢, f(x¢)+e€) liegen
f ist stetig in xg ) _ o
f ist nicht stetig in xg

Lemma 7.1. Fir jedes beliebige m € R und b € R ist die affin lineare Funktion

R - R
xr = m-xr+b stetig
f(xo )\\\ -
~ Graph der Funktion z — m -z +b
Lo

Beweis. Es sei o € R. Wir miissen zeigen, dass die Funktion stetig im Punkt x ist. Es sei
also € > 0.

(1) Wenn m # 0, dann setzen wir 0 := fy- Dann gilt:
=(@) =/ (@0)
o — 20| <6 = —[(m-w+b) — (m-wo +b)| <& = |f(x) — f(wo)| < |m| -6 =e.

m|
(2) Wenn m = 0, dann gilt fiir alle z € R, dass |f(z) — f(x¢)| = 0 < e. Also erfiillt jedes
0 >0, zB. 0 =1, die gewiinschte Bedingung. |

Notation. Wenn f: D — X irgendeine Abbildung ist, und wenn C' C D eine Teilmenge ist,
dann bezeichnet man mit f|o die Einschrénkung von f auf den Definitionsbereich C'. D.h.
flo bezeichnet die Abbildung
f|c: C —- X
c = f(o).

Wir illustrieren diese Definition in Abbildung

Das folgende Lemma besagt, dass die Einschrankung einer stetigen Funktion auf eine
Teilmenge wiederum stetig ist.
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Graph einer Funktion f: D — R Graph der Funktion f|o: C' — R
[ © \ | ' i o—o
H ~__ o s

ABBILDUNG 18.

Lemma 7.2. Es seit D C R eine Teilmenge und es sei f: D — R eine stetige Funktion.
Dann ist fir jede Teilmenge C' C D die Einschrinkung f|c: C — R ebenfalls stetig.

Beweis (x). Es sei D C R eine Teilmenge, es sei f: D — R eine stetige Funktion und es
sei C' C D. Es sei xg € C und € > 0. Dann gibt es nach Voraussetzung ein 6 > 0, so dass
|f(x) — f(xo)| < € fiir alle x € (g — 0,29 + ) N D. Dann gilt diese Ungleichung natiirlich
auch fur alle z € (zg — 0,29 + §) N C. Wir haben also gezeigt, dass die Funktion f|c im

Punkt zq stetig ist. [
Beispiel. Es folgt aus Lemma [7.1] und aus Lemma [7.2] dass die Funktionen
-1,2) - R Z — R
und
r — 1 T = T

deren Graphen wir auf den Seiten [92] und skizziert hatten, stetig sind.

Satz 7.3. Es sei f: [a,b] — R eine stetige Funktion und es sei g: [b,c] — R eine stetige
Funktion mit f(b) = g(b). Dann ist die Funktion
h:la,q] — R
N { f(z), wenn z € [a,b,
g(x), wenn x € (b,

stetig. Die gleiche Aussage gilt auch, wenn f und g auf Intervallen der Form (a,b] oder
(—o0, b] beziehungsweise [b,c) oder [b,o0) definiert sind.

Beweis. Der Satz wird in Ubungsblatt 6 bewiesen. |
Graph von f: [a,b] =R Graph von g: [b,¢c] =R Graph von h: [a,c] =R
a b b c a b c

ABBILDUNG 19. Illustration von Satz [7.3]
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Beispiel. Wir betrachten die Betragsfunktion

h:R — R
. ||_{—a:, falls x <0
x = x, fallsx > 0.

Es folgt Lemma [7.] und aus Lemma [7.2] dass die Funktionen

f:(=00,00 — R f:0,00) — R
r — —x r — x

und

stetig sind. Also folgt aus Lemma[7.3] dass die Betragsfunktion h stetig ist.

~— Graph der Betragsfunktion x — |z|

An dieser Stelle wére es jetzt logisch die Summe und das Produkt von stetigen Funk-
tionen zu betrachten. Wir diskutieren aber zuerst den Zusammenhang von Stetigkeit und
Grenzwerten von Folgen, weil uns dann unsere vorherigen Ergebnisse zu Grenzwerten bei

der Diskussion von Stetigkeit das leben deutlich erleichtern werden.

7.3. Stetigkeit von Funktionen und Grenzwerte von Folgen. Der folgende Satz
verbindet den neuen Begriff der Stetigkeit mit dem vertrauten Begriff des Grenzwertes

einer Folge von reellen Zahlen.
Satz 7.4. FEs sei f: D — R eine Funktion und es sei xg € D. Dann gilt:
f ist stetig fir jede Folge (ay)nen in D mit hm Ay =
<~ o>

im Punkt x gilt, dass dann auch hm f(an) = f(zo).

die Werte f(a,)

/ :
x0 == Fol

ge a’fl

ABBILDUNG 20. Illustration von Satz [7.4]

_— Graph der Funktion f: D — R

Bemerkung. Es sei f: D — R eine Funktion und es sei (a,),en eine konvergente Folge
in D ist, welche gegen einen Punkt in D konvergiert. Dann besagt die “="-Richtung von

Satz [7.4] dass gilt:

f ist stetig im Grenzwert lima, = lim f(a,) = f < lim a, ).
n—o0

n—oo n—oo



97

Etwas salopp gesagt gilt also: eine Funktion ist genau dann stetig, wenn wir Grenzwert und
Funktion vertauschen koénnen.

Beispiel. Manchmal kénnen Satz [7.4] auch verwenden um zu zeigen, dass eine gegebene
Funktion nicht stetig ist. Betrachten wir beispielsweise die Funktion
ffR - R
{ r—2, wennzx < 3,
T
r—1, wenn x> 3,

und die Folge 3 + %, welche in Abbildung 21| skizziert sind. Dann gilt
. 1 o . 1 . o . . 1
lmfB+1) = lm@+1) = 221 = f3) = f(lm (3+1)).
>3

Es folgt also aus dem Prinzip der Kontraposition und der obigen Bemerkung, dass die
Funktion f im Grenzwert lim (3 + &) = 3 nicht stetig ist.
n—oo

die Folge f(3 + %) é; Graph von f
fB) ——
— ~ Hi——— ,
\ die Folge 3 + =

ABBILDUNG 21.
Wir beweisen die “="-Richtung und die “<”-Richtung von Satz [7.4] getrennt.

Beweis der “=7-Richtung von Satz[7.4). Fiir eine beliebige Folge (a,)nen in D miissen wir

beweisen:
f stetig in o und lima, =2y = lim f(a,) = f(z0).

n—00 n—oo

Mit anderen Worten, wir miissen beweisen:

vV 4 V [ f(x) = f(xo)| <€ und V 4V la,—aol<p =V IV |fla,)—f(xo)] <e

€e>0 >0 gz D mit pu>0 NeNn>N e>0 NeNn>N
|x—x0| <o

Es sei also € > 0. Nachdem f im Punkt z, stetig ist, existiert ein § > 0, so dass fiir alle

[z —xo| <6 = |f(z) = flzo)| <e

Wir wenden die Definition von lim a, = z¢ auf u = 0 an. Es gibt also ein N € N, so dass

n—oo

n>N 2 a, — zo| < 0.
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Dann gilt aber auch, dass

n>N 2 o, —m|<d B [fan) — fla)] <e -

Beweis der “=7-Richtung von Satz[7.4] Wir wollen also folgende Behauptung beweisen.

f ist stetig im Punkt x¢
7\

v 3 Vo [f(x)=flzo)l <€ < v lim f(a,) = f(xo).
e>0 6>0 7 € D mit Folge a,, in D M—00
|z —x0| <6 mit lima, =x¢

Aus Kontraposition folgt, dass es geniigt folgende Behauptung zu beweisen:

Behauptung.
konvergiert
Vv 3 - >e = 3 flan) g
€0 6>0 z € D mit |f(x) f(xO)‘ =€ Folge arn, in D nicht gegen f(.’IJ(])

|z —zo| <6 mit lim a, =x¢

Wir wahlen also ein € > 0 mit der links genannten Eigenschaft. Fiir jedes n € N existiert
dann also ein a,, € D mit folgenden Eigenschaften:

(1) lan —@0| < 5 und (i) [f(an) = flzo)| = €.
Dann folgt leicht aus (i) und der Definition von Konvergenz von Folgen, dass lim a,, = zo,
n—oo
und aus (ii), dass die Folge (f(ay))nen nicht gegen f(zo) konvergiert. |

7.4. Eigenschaften von stetigen Funktionen. Der folgende Satz besagt insbesondere,
dass die Summe und das Produkt von stetigen Funktionen wiederum stetig ist.

Satz 7.5. Es seien f,g: D — R Funktionen, welche im Punkt xq € D stetig sind. Zudem
sei A € R. Dann sind die Funktionen
f+g9:D — R f9g:D — R Af:D — R
z = f(z)+g(z) z = f(z) g(z) z = A f(z)
ebenfalls stetig im Punkt xo. Wenn g(x) # 0 fir alle x € D, dann ist auch die Funktion

I'D - R
g

z — 1@ stetig im Punkt x.

g(x)
Beweis.

Wenn man die Definition und Aussagen mal verdaut hat, dann sieht man, dass der
Satz eigentlich sofort aus Satz [3.4] und Satz [7.4] folgt.
Wir zeigen im Folgenden, dass die Funktion f + ¢ im Punkt z, stetig ist. Nach Satz
geniigt es folgende Behauptung zu beweisen.

Behauptung. Fiir jede Folge (ay,)nen in D mit lim a,, = xq gilt: lim (f + ¢)(a,) = (f + g)(xo).
n—oo n—o0
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Es sei also (a,)nen eine Folge in D mit lim a,, = xo. Dann gilt

n—oo
Definition der Funktion f + ¢ Satz (1)
: : oo oo :
Tim (f +9)(an) = lim (f(an) +9(an)) = lim f(ay) + lim g(an)
i f(zo) + g(x0) = (f + 9)(@o)-
folgt aus Satz da f und g stetig Definition der Funktion f + g
Alle anderen Aussagen werden ganz analog auf Satz zuriickgefiihrt. n
Definition. Es seien ayg,...,a, € R mit a,, # 0 gegeben. Wir nennen
frR — R

T A+ Gx + aer? + -+ aza”

eine Polynomfunktion von Grad n. Es seien p,q: R — R zwei Polynomfunktionen. Dann
heif3t

f:{reRlg(z) #0} — R

s o 2
eine rationale Funktion.
Beispiel. Beispielsweise ist
R — R R\ {+v2} — R
r = =323 4+ V22t + %xE’ baw. S 7m3;7j3;2

eine Polynomfunktion bzw. eine rationale Funktion.

Satz 7.6. Polynomfunktionen und rationale Funktionen sind stetig.

Beweis. Es folgt aus Lemma und Satz dass die Funktionen z — 2" =z - ...z
und Linearkombinationen von solchen Funktionen stetig sind. Dies bedeutet gerade, dass
Polynomfunktionen stetig. Aus Satz folgt nun auch, dass rationale Funktionen stetig
sind. I~

Der folgende Satz besagt insbesondere, dass die Verkniipfung von stetigen Funktionen
wiederum stetig ist.

Satz 7.7. Es seien f: D — R und g: E — R zwei Funktionen, so dass f(D) C E. Wenn
f im Punkt xq stetig ist und wenn g im Punkt f(zo) stetig ist, dann ist die Funktioﬂ
gof:D — R
x = g(f(x)) stetig im Punkt xq.

——
eE

585 folgt aus der Voraussetzung, dass f (D) C E, dass die Verkniipfung g(f(z)) iiberhaupt definiert ist.
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Beispiel. Wir betrachten die Funktionen [ f(z) = 22 — 2 und g(z) = |z|. Es folgt aus
Satz[7.7} dass die Verkniipfung (g o f)(z) = |2? — 2| stetig ist.

Beweis. Wir miissen zeigen, dass die Funktion go f: D — R im Punkt zq stetig ist. Wir
verwenden dazu Stetigkeitskriterium aus Satz [7.4] Es sei also (an)nen eine Folge in D mit

lim a,, = z¢. Wir miissen folgende Behauptung beweisen:
n—oo

Behauptung. Es ist (g o f)(zo) = h_)m (go f)ay).

Es gilt:
(9o f)(wo) = g(f(x0)) = g(f(limay,)) = g(lim f(a,)) = lim g(f(an)) = lim (gof)(an).
folgt aus Satz[7.4 und der folgt aus Satz[7.4 und der
Voraussetzung, dass f im Punkt Voraussetzung, dass g im Punkt
xo = 1Lm ayp, stetig ist flzo) = ILm f(ay,) stetig ist [}

7.5. Stetigkeit der Exponentialfunktion. Die Abbildung des Graphen der Exponenti-
alfunktion auf Seite legt natiirlich nahe, dass die Exponentialfunktion stetig ist. Dies
ist in der Tat der Fall, wie wir jetzt beweisen werden.

Satz 7.8. Die Exponentialfunktion exp: R — R ist stetig.

Beweis (). Wir wollen zuerst zeigen, dass die Funktion exp im Punkt 0 stetig ist. Dazu
benotigen wir folgende Abschétzung.

Behauptung. Fiir alle |z < 5 gilt [exp(z) — 1] < 2 |z].

Es sei also |z| < 1. Dann gilt

Lemma Satz [B.17 Umparametrisierung m=n—1
o0 xn *l’ e8] xn \l( o0 xn—l J” S l.m
@) -1 = |55 -1 = |5 =kl i = kS
< Jal- X A < el X g = el = 2o,
- m— n - m=0 2™ -1
+ 0o(m+1) + 0 4 1—3
Satz [6.10] folgt aus Satz [3.17] folgt aus Satz[3.16] da geometrische Reihe

da|z| < $ und nl > 1
Wir wenden uns nun wieder dem Beweis der Stetigkeit von exp im Punkt 0 zu. Es sei

also € > 0. Wir setzen § = min{§, 3}. Fiir alle |z| < ¢ gilt dann
|exp(z) —exp(0)] = |exp(z)—1] < 2-|z| < 2-§ = e
+ A
folgt aus der Behauptung, da [z <§ <1 dalz[<d< €

®9Bei einer Funktion muss man immer angeben, was der Definitionsbereich sein soll. Beispielsweise sind

die Funktionen R —- R [0,1] — R
9 und 9
T = A
verschieden, nachdem diese Funktionen verschiedene Definitionsbereiche besitzen. Wenn wir nun schreiben,
“f(x) = 22 — 27, oder “f(z) = %”, oder “f(z) = Q—wa\”’ ohne eine Angabe vom Definitionsbereich, dann

ist der Definitionsbereich die Menge aller Punkte in R, fiir die die rechte Seite definiert ist.



101

Wir miissen noch zeigen, dass exp in jedem beliebigen Punkt stetig ist. Es sei also xy € R.
Fir x € R gilt nach der Funktionalgleichung [6.18] dass exp(x) = exp(z — x¢) - exp(zo).
Daraus folgt, dass wir die folgende Gleichheit von Funktionen haben:

. S

(z = exp(z)) = (22 z-exp(xg)) o (y—=exply)) o (#—=z—z).

TV
=: h(z), stetig =:¢(y), stetig in 0 =: f(z), stetig
nach Lemma wie gerade bewiesen nach Lemma

Wir hatten gerade bewiesen, dass die mittlere Funktion im Punkt 0 stetig ist. Nachdem f
in xg stetig ist, nachdem g in f(xy) = 0 stetig ist, und nachdem h in g(f(zq)) = exp(0) =1
stetig ist folgt nun aus Satz[7.7], dass die Verkniipfung der Funktionen rechts im Punkt z
stetig ist. Aber das galt es zu beweisen. [

7.6. Grenzwerte von Funktionen.
Definition. Im Folgenden sei f: D — R eine Funktion und es sei zy € R.
(1) Nehmen wir an, es gibt ein >0, so dass (z9—7,79) C D.[Fiir a €R schreiben wir

li = — VvV A v —al <
loy flz)=a LA |f(z) —al <e
z € (zo—9,0)

und wir nennen li/m f(z) den linksseitigen Grenzwert von f am Punkt xo.ﬁ
x 1o

————— Graph der Funktion f
Ad--o N ol

Intervall (a—e, a+e) ~__

a S N A

7

Intervall (z¢—9, z¢) o
ABBILDUNG 22. Illustration der Definition des linksseitigen Grenzwertes.

Definition.
(2) Ganz analog, wenn es ein 1 > 0 gibt, so dass (z, 7o +7) C D, dann schreiben wir %]
lim f(z)=a <= V 4 v |f(z) —a|] <€

T \(T0 e0 >0 z € D mit
z € (zo,z0+9)

60Dje Aussage, dass es ein 77 > 0 gibt mit (zg — n,29) C D bedeutet, dass die Funktion f “links” von
o definiert ist. Diese Bedingung fiihrt dazu, dass der Grenzwert, wenn dieser denn existiert, eindeutig
bestimmt ist. Der Beweis der Eindeutigkeit ist dhnlich dem Beweis von Satz

51Die Notation 7 g soll suggestieren, dass x “von unten” gegen g strebt.

52Der linksseitige Grenzwert von f am Punkt 2o wird manchmal auch mit lim f(z) bezeichnet.
T
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und wir nennen lim f(x) den rechtsseitigen Grenzwert von f am Punkt x.

T \(Zo
(3) Wenn sowohl li/m f(z) als auch li\m f(z) definiert sind, und wenn die Grenzwerte
x /X0 T N0

iibereinstimmen, dann schreiben wir

lim f(z) = li/m f(z) = lim f(x)

T—T0 \(Zo

und wir nennen lim f(z) den Grenzwert am Punkt x.
T—>T0

Beispiel. In der folgenden Abbildung zeigen wir den Graph zweier Funktionen und wir geben
verschiedene links- und rechtsseitige Grenzwerte an. Man beachte, dass fiir Grenzwerte an
einem Punkt xg die Funktion am Punkt xq gar nicht definiert sein muss. Wenn die Funktion
doch am Punkt zy definiert ist, dann sind zudem die Funktionswerte am Punkt z( vollig
irrelevant.

a
limf(z)=1 limf(z)=2 li
1/‘(1f( ) rlirclz]t(l) lim f(q;) = xl/‘nif(x) hmf(x) ist
und f(a) =2 v=b o Txe :
und f(b) =1 nicht definiert
i
h}nl(](.l) existiert nicht ¢ ¢ glﬂlg}g g(x) = g(e)
Beispiel. Wir betrachten die Funktionen
fiR\{0} = R g: R\ {0} = R h:R\ {0} - R
N exp(z) — 1 N exp(z)? — 1 N exp(z) — 1 — z
x || x2

Es stellt sich nun die Frage, ob die Grenzwerte lirr(l) f(z), lir% g(x) und hH(l) h(x) existieren,
T T— T

und wenn ja, ob wir die Grenzwerte bestimmen konnen. “Per Hand” ist das zumindest
jeweils eine undankbare Aufgabe. Spéter werden wir eine elegante Methode kennenlernen
um diese Fragen zu beantworten.

63Dje Notation \, g soll suggestieren, dass x “von oben” gegen xg strebt.
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Satz 7.9. Es sei f: D — R eine Funktion. Zudem sei xqg € D ein Punkt, so dass es ein
n >0 mit (xg —n,x0 +n) C D gibt. Dann gilt

f ist stetig im Punkt vo <= lim f(x) = f(xo).

T—rxTQ

Beweis. Die Aussage folgt eigentlich sofort aus den Definitionen. Desto mehr man hin-
schreibt, desto verwirrender wird die Lage. Wir schreiben deswegen keine Details auf. W

Beispiel. Wir betrachten die Funktion

frR — R
. { 22 +7, wennx < 3,
5—x, wennx > 3.
Dann gilt lim f(z) = lim(2>+7) = 32+7 = 16.
denn die Funktionen f und z + 2247  dies folgt aus Satz[7.9} denn die Funktion
stimmen fiir < 3 iiberein x +— x24T ist stetig in x = 3

Wir fithren nun noch einige weitere unterhaltsame Definitionen ein.

Definition. Es sei f: D — R eine Funktion. Zudem sei xy € D ein Punkt, so dass es ein
n > 0 mit (zg — 0, x9) C D gibt. Wir schreibenﬂ

li = : =
501/‘150 f<x) oo = C’\Z/R >0 x Egmit f(:l:) > G
z € (xo—0,x0)
sowie li _ : J '
frl/‘nmlo f(x) o° — C\ZR 0>0 z Ggmit f(x) <¢
z € (zo—9,0)
Ganz analog definieren wir auch li\m f(z) = +00 und li\m f(z) = —o0.
T \(Z0 T N0
T Yim f(2) = +o00
x xo
3 _— Graph von f
——

) / Zo

Intervall (z¢—0, xg

Der folgende Satz, welcher eng mit Satz [7.4] verwandt ist, erlaubt es Grenzwerte fiir
Funktionen auf die uns vertrauten Grenzwerte von Folgen zuriick zu fiihren.

64Dje Definition ist inspiriert von der Definition von bestimmter Konvergenz von Folgen, siehe Seite
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Satz 7.10. Es sei f: D — R eine Funktion. Zudem sei xg € D ein Punkt, so dass es ein
n >0 mit (xg —n,x0) C D gibt. Fir jedes C € RU {00} gilt:

lim f(z) = C <= fiir jede Folge (ap)nen tn D N (—00,x0),

oy ol mit lim a,, = xo gilt, dass lim f(a,) = C.
n—o0 n—o0

Die analogen Aussagen gelten auch fiir li\m f(z).

T\ (X0
Beweis. Der Beweis ist ganz analog zum Beweis von Satz [7.4 Wir tiberlassen es der Leser-
schaft die Details auszufiihren. |

Fiir Grenzwerte von Funktionen gelten nun die gleichen Aussagen wie fiir Grenzwerte
von Folgen:

Satz 7.11. Es seien f: D — R und g: D — R zwei Funktionen. Es sei xo € R. Wir
nehmen an, dass es einn > 0 gibt, so dass (xo —n,xo) C D. Wenn li/m f(z) € RU{zxoo}
x /o

und li/m g(x) € RU{zxoo} definiert sind, dann gilt
)

(1) J () Fetel) = b)) - i i)
(2) J () gl = I i) o b gl

wenn die Addition und Multiplikation auf der jeweiligen rechten Seite in den Tabellen auf
Seite[{3 definiert ist. Die gleichen Aussagen gelten analog auch fiir den rechtsseitigen Grenz-
wert lim und fir den Grenzwert lim .
\(Zo T—T0
Beweis. Der Satz folgt sofort aus der Kombination von Satz[7.4 mit Satz [3.4 und Satz[3.10]
[ |

Bemerkung. Es gelten auch die offensichtlichen Analogien von Satz (4), Satz sowie
Satz Die Beweise sind dabei ganz dhnlich den urspriinglichen Beweisen.

Wir fithren nun die letzten Definitionen von diesem Kapitel ein.

Definition. Es sei f: D — R eine Funktion. Wenn es ein zy gibt, so dass (xg,00) C D,
dann schreiben wir fiir a € R, dass

xlg&f(x):a = EYO XEEIR xe\gmit |f(z) —al <e
x> X

Wir bezeichnen lim f(x) als den Grenzwert von f fir x gegen +oo. Zudem definieren wir:

T—r00
li = : .
Erf@ =t =l e sepm @70
z> X
Ganz analog definieren wir auch lim f(z) = —oo, sowie die Grenzwerte lim f(z).
T—r00 T—r—00

Der folgende Satz ist das wenig iiberraschende Analogon zu Satz [7.10]
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Graph von f

N\

a-+€
a A
a—¢€

)I( lim f(z) = 400

T—00 T—00

Satz 7.12. Es sei f: D — R eine Funktion, so dass es ein xo gibt mit (xg,00) C D. Fiir
jedes C' € RU {£o0} gilt:

fiir jede Folge (ap)nen in D,

mit lim a,, = oo gilt, dass lim f(a,) = C.
n—0o0 n— o0

lim f(z) = C <=

T—00

Die analogen Aussagen gelten auch fir lim f(zx).
Tr—r—00

Beweis. Der Beweis ist ganz analog zum Beweis von Satz [7.4] Auch dieses mal iiberlesen
wir es der Leserschaft die Details auszufiihren. |

Wir beschlieflen das Teilkapitel mit folgendem Lemma, welches ganz dhnlich wie Korol-
lar B.13] bewiesen wird.

Lemma 7.13. Es seien cg,...,cq € R mit d > 1 und ¢y # 0. Dann gilt

oo, wenn cq > 0,

lm (co+cp-x+eo 22+ +cgq -2 +cy-2%) = {
m—>oo(0 ! 2 -1 d ) —0o0, wenn cqg < 0.

7.7. Gleichméflige Stetigkeit. Im Folgenden ist es hilfreich verschiedene Typen von In-
tervallen zu unterscheiden.

Definition. Es seien a,b € R.
(1) Ein Intervall vom Typ [a, b], [a,00) oder (—oo, a] heifit abgeschlossen.
(2) Ein Intervall vom Typ (a,b), (a,00) oder (—o0o, a) heifit offen.
(3) Ein kompaktes Intervall ist ein beschrinktes und abgeschlossenes Intervall, das heif}t,
ein Intervall vom Typ |a, b].

In diesem Teilkapitel zeigen wir, dass Funktionen auf kompakten Intervallen gleichméfig
stetig sind. Die Definition von “gleichméfig stetig” ist auf den ersten, und oft auch auf den
zweiten Blick, verwirrend. Dieses Ergebnis iiber die gleichméflige Stetigkeit wird aber im
spiteren Verlauf der Vorlesung noch eine wichtige Rolle spielen.

Wir erinnern an die Definition Stetigkeit. Es sei f: D — R eine Funktion. Dann gilt:

fist stetig = V V 4 v |f(z) = f(zo)] < e

z0€D €0 >0 4 D mit
‘I — Io‘ <
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In Abbildung 23 betrachten wir den Graphen der Funktion f(z) = < mit z € (0,00) und
wir betrachten den Fall ¢ = % Wir sehen, dass es fiir xop = a moglich ist ein deutlich
grofleres ¢ zu finden als fiir zo = b.

Graph von z+ % I\

das Intervall

> | (F)- 3 7+

das Intervall u b

1 1 '
(fla)—4 fl@)+3) o
fiir 7o = a kann man fiir € = 5 fiir o = b kann man fiir e =

1
. « PPN . . 2
ein “grofles” ¢ finden nur ein “kleines” ¢ finden

ABBILDUNG 23.

Es wiére nun eigentlich praktisch, wenn man fiir gegebenes € > 0 ein § > 0 finden konnte,
welches fiir alle g € D funktioniert. Dies fiihrt uns zu folgender Definition:

Definition. Es f: D — R eine Funktion. Wir definieren:
f gleichmdfig stetig <= vV 4 V W |f(z) — fzo)] < e

e>0 >0 zo€D  z € D mit
|z — 20| < &
Etwas vereinfacht ausgedriickt, eine Funktion f ist gleichméflig stetig, wenn “es zu jedem
e >0 ein § > 0 gibt, welches fiir alle x( passt”.

Beispiel. Wir betrachten die Funktionen

f:(0,1] —- R g:[0,00) — R
r o~ 1 und T o /T

x?

Es ist eine schone Ubungsaufgabe zu zeigen, dass die stetige Funktion f: (0,1] — R nicht
gleichméBig stetig ist und es ist eine genauso schone Aufgabe zu zeigen, dass ¢g: [0,00) — R
gleichméfig stetig ist.

Wiéhrend also stetige Funktionen auf (halb-) offenen Intervallen nicht gleichméBig stetig
sein miissen, ist die Lage fiir stetige Funktionen auf kompakten Intervallen viel zufrieden-
stellender:

Satz 7.14. Jede stetige Funktionen, welche auf einem kompakten Intervall definiert ist, ist
auch gleichmdflig stetig.

Beweis. Essei f: [a,b] — R eine stetige Funktion. Wir wollen zeigen, dass f auch gleichméBig
stetig. Wir werden den Satz mit einem Widerspruchsbeweis beweisen. Nehmen wir also an,
dass f nicht gleichméfig stetig ist. Dies bedeutet, dass

3 @) = f)l = p

p>0 6>0 yela,b] z € [a,b] mit
lz —yl <6
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Sei also solch ein p > 0 gewahlt.

Die Idee ist nun die Formulierung der Stetigkeit iiber Folgen, siehe Satz ins Spiel
zu bringen. Dazu brauchen wir eine konvergente Folge in [a, b]. Eine Folge erhalten
wir erst einmal dadurch, dass wir die obige Aussage auf § = %, n € N anwenden.
Diese Folge muss nicht notwendigerweise konvergieren. Aber mithilfe des Satzes
von Bolzano—Weierstraf erhalten wir eine konvergente Teilfolge. Das reicht fiir unsere

Zwecke.

Fiir jedes n € N wenden wir die Aussage auf 6 = % an und erhalten also z,,y, € [a,b], so

dass gilt:

(@) lza—yal <~ und (b)) [f(xa) = flya)| = p

n
Die Folge (2,)nen ist beschrénkt (weil sie in [a, b] liegt), insbesondere existiert nach dem
Satz von Bolzano—Weierstral eine Teilfolge (z,, )ren, welche konvergiert. Wir setzen

c:= limaz,,.
k—o0

Behauptung. Es gilt auch klim Yn,, = C-
— 00

Nach (a) gilt fiir alle n € N, dass |z, — yn| < % Insbesondere gilt fiir alle & € N, dass
Ty, — n—lk < Yn,, < Ty, —i—n—lk. Nachdem die linke und die rechte Folge gegen ¢ konvergieren,
folgt aus dem Sandwichsatz [3.8] dass auch die mittlere Folge y,, gegen ¢ konvergiert. B

Also gilt: folgt aus Satz da f stetig
¢ . .
Qi f @) = fyn) = f(liman,) = f(limy,,) = f(c) = f(c) = 0.

|...|2;;,nach(b)
Dies ist aber nun ein Widerspruch, denn zum einen gilt nach (b) fiir alle £ € N, dass

Zn, ) —f(Yn, )| = w1, zum anderen wurde gerade gezeigt, dass die Folge gegen 0 konvergiert.

Graph der stetigen Funktion f: [a,b] — R

a I Y1 xr3Ys Ty Y2 b

ABBILDUNG 24. Skizze fiir den Beweis von Satz [7.14].
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8. DER ZWISCHENWERTSATZ
Wir beginnen das Kapitel mit folgendem Satz.

Satz 8.1. (Beschrénktheitssatz) Jede stetige Funktion auf einem kompakten Intervallen
ist beschrinkt. Mit anderen Worten, wenn f: [a,b] — R eine stetige Funktion ist, dann
existiert ein C' € R, so dass fir alle x € [a,b] gilt: |f(z)] < C.

Beispiel. Die Aussage des Satzes gilt nicht, wenn wir stetige Funktionen auf nicht-kompakten
Intervallen betrachten. Beispielsweise ist die Funktion

f:(0,1] — R
1

T stetig und unbeschrankt.

Beweis. Es sei f: [a,b] — R eine stetige Funktion. Wir fithren einen Widerspruchsbeweis
durch, d.h. wir nehmen an, dass es kein solches C' gibt. Mit anderen Worten wir nehmen
an, dass gilt:

(x) Fiir alle C' € R existiert ein z € [a,b] mit |f(z)| > C.

Wie im Beweis von Satz wollen wir wieder die Formulierung der Stetigkeit iiber
Folgen, siehe Satz ins Spiel zu bringen. Dazu brauchen wir eine konvergente Folge
in [a, b]. Eine Folge erhalten wir erst einmal dadurch, dass wir (x) auf C' =n, n € N
anwenden. Die Folge z,, € [a,b], welche wir erhalten, muss nicht notwendigerweise
konvergieren. Aber mithilfe des Satzes [5.9| von Bolzano—Weierstrafl erhalten wir eine
konvergente Teilfolge. Das reicht mal wieder fiir unsere Zwecke.

Aus (x) folgt, dass es zu jedem n € N ein x,, € [a,b] gibt, so dass |f(x,)| > n. Die Folge
(n)nen von reellen Zahlen ist beschrinkt, also existiert nach dem Satz von Bolzano—

Weierstrafl eine Teilfolge (x,, )ren, welche konvergiert. Wir setzen x := klim Zp,. Nachdem
—00

a < x,, <bfolgt aus Satz , dass auch a < z < b, das heifit x € [a, b]. Insbesondere sehen
wir also, dass x = klim z,, im Definitionsbereich der Funktion f liegt. Wir sehen nun, dass
—00

gilt: . :
+oo = lim|f(z,)| = }f( hmxnk)| = |f(z)].
0 k—oo 0 k—o0
folgt aus | f(xn, )| >nk >k folgt aus Satz da f stetig, und daher auch |f]| stetig ist
Wir haben also einen Widerspruch erhalten. [
flo) e ; R e Graph von x — | f(z)]
- e ——+— i
a Ty T X7 Xs T3 Ty Tg x b

ABBILDUNG 25. Skizze fiir den Beweis des Beschrianktheitssatzes
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Definition. Es sei D C R und es sei f: D — R eine Funktion. Wir sagen:

(1) f besitzt ein Minimum, wenn es ein zo € D gibt, so dass f(z¢) < f(x) fiir alle z € D
(2) f besitzt ein Maximum, wenn es ein z; € D gibt, so dass f(x1) > f(z) fur alle x € D.

Beispiel. In der Abbildung sehen wir eine stetige Funktion auf einem kompakten Intervall
[a, b]. Diese besitzt ein Minimum und ein Maximum. Wir sehen zudem eine stetige Funktion
auf dem offenen Intervall (1,2), welche weder ein Minimum noch ein Maximum besitzt.

f(xl) O/
flwo) = , o—0
T T T ' '
a Zo b= T 1 2
jede stetige Funktion f:[a,b] — R besitzt  diese stetige Funktion f:(1,2) =R besitzt
ein Maximum und ein Minimum weder ein Maximum noch ein Minimum

Satz 8.2. (Satz iiber die Existenz von Maximum und Minimum) Jede stetige Funk-
tion auf einem nichtleeren kompakten Intervall besitzt ein Maximum und ein Minimum.

Bemerkung. Satz iber die Existenz von Maximum und Minimum macht eine stérkere
Aussage, als der Beschrénktheitssatz 8.1 Wir haben den Beschrinktheitssatz zuerst

formuliert und bewiesen, weil wir diesen im Beweis von Satz verwenden werden.

Beweis. Es sei also f: [a,b] — R eine stetige Funktion auf dem kompakten Intervall [a, b]
mit a < b. Wir miissen zeigen, dass es zg,x; € [a, b] gibt, so dass fiir alle z € [a, b]:

flxo) < flx) < fla)
Wir zeigen zuerst die Existenz von z;. Es folgt aus Satz 8.1 dass die Menge f([a,b])
beschrénkt ist. Zudem ist die Menge nichtleer. Also existiert nach Satz das Supremum
y1 == sup(f([a,b])). Es folgt nun aus Satz[5.3| (1), dass es eine Folge (z,)nen in f([a, b]) gibt,
welche gegen 1; konvergiert. Fiir jedes n € N wéhlen wir jetzt ein ¢ € [a, b] mit f(c,) = z,.
Nachdem die Folge (¢,)nen beschrénkt ist, existiert nach dem Satz von Bolzano—

Weierstraf eine Teilfolge (¢, )ren, welche konvergiert. Wir setzen x; := klim Cn,- Wie im
—00
Beweis von Satz [8.1| sehen wir, dass z; € [a, b]. Zudem gilt:
folgt aus Satz[7-4] da f stetig Lemma [5.§]

. v . v
f@) = f(lme,) = lmfe,) = lmz, = lmz = y= sup(f(a,b).

n—oo

Nachdem das Supremum sup(f([a,b])), per Definition, insbesondere eine obere Schranke
fir f([a,b]) ist, folgt nun, dass f(z1) > f(x) fiir alle z € [a, b].
Ganz analog zeigt man auch die Existenz von xy. [
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y1 =sup(f([a,b])) g A

2y ‘

‘ '\ _— Graph der stetigen
o | Funktion f: [a,b] — R

N W
Do
1

a ¢ C3 Co ca b

ABBILDUNG 26. Skizze fiir den Beweis von Satz [8.2]

Der folgende Satz besagt insbesondere, dass eine stetige Funktion f auf einem kompakten
Intervall [a, b] jeden Wert zwischen f(a) und f(b) als Funktionswert annimmt.

Satz 8.3. (Zwischenwertsatz) Es sei f: I — R eine stetige Funktion auf einem In-
tervall 1. Fir jede Zahl yo zwischen zwei Funktionswerten f(a) und f(b) ezistiert ein x
zwischen a und b, so dass f(xg) = ygﬁ

wenn f: I — R stetig ist, dann gibt
es zu jedem yo zwischen f(a) und f(b)
ein xg € [a,b] mit f(zo) = yo.

/ Intervall 1

I I |

ABBILDUNG 27. Veranschaulichung der Aussage des Zwischenwertsatzes.

Beispiel. Wir betrachten die Funktion

ffR — R
r — x?—-2

Dann gilt f(0) < 0 und f(3) > 0. Der Zwischenwertsatz also, dass es ein « € [0, 3] mit
22 — 2 = 0 gibt. Ganz analog kann man mithilfe des Zwischenwertsatzes zeigen, dass jedes
¢ > 0 eine Quadratwurzel besitzt.

Beweis. Es sei f: I — R eine stetige Funktion auf einem Intervall I. Es seien a < b
zweil Punkte in dem Intervall I. Wir betrachten nur den Fall, dass f(a) < f(b), der Fall

65Wir sagen eine Zahl r € R liegt zwischen s und t, wenn Folgendes gilt:

(1) falls s < ¢, dann ist r € [s, ],
(2) falls t < s, dann ist r € [, s].
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f(a) > f(b) wird fast genauso bewiesen. Es sei nun yo € [f(a), f(b)]. Wir miissen zeigen,
dass es ein zg € [a,b] mit f(z¢) = yo gibt.
Wie wir gerade gesehen hatten, impliziert der Zwischenwertsatz, dass es Quadratwur-
zeln von nicht-negativen Zahlen gibt. Wir hatten die Existenz von Quadratwurzeln
davor schon in Satz 5.7 bewiesen. Wie wir gleich sehen werden ist der Beweis des Zwi-
schenwertsatzes fast identisch zu dem Beweis von Satz[5.7] Wir miissen hauptséchlich
die Funktion x — 2™ durch unsere Funktion f ersetzen.
Wir setzen
M = {x € la,b]| f(x) < wo}-
Nachdem f(a) < yo folgt, dass a € M. Die Menge M ist also nichtleer. Die Menge ist
zudem offensichtlich durch b nach oben beschriankt. Es folgt also aus Satz [5.2] dass M

ein Supremum besitzt. Nach dem sup(M) € [a, b] geniigt es nun folgende Behauptung zu
beweisen.

Behauptung. Fiir x¢ := sup(M) gilt f(zo) = yo.

Wir studieren f(xy) indem wir xy als Grenzwert von zwei Folgen schreiben:
(1) Nach Satz (1) gibt es eine Folge (ay)neny von Zahlen in M mit lim a,, = xo.

n—oo

(2) Fiir n € N setzen wir b, = min{zo + *,b}.

Dann gilt folgt aus Satz[7.4] da f stetig folgt aus Satz[7.4] da f stetig
. + . . oo
Yo > lim f(a,) = f( lim an) = f(zg) = f( lim bn) = lim f(b,) > vo.
da a, € M gilt f(a,) < yo, die da x( eine obere Schranke fiir M ist,
Ungleichung folgt nun aus Satz [3.6] gilt fiir alle ¢ € (z0, b], dass f(c) > yo,

zudem gilt nach Voraussetzung, dass f(b) > o,
insbesondere gilt also f(b,) > yo,
die Ungleichung folgt nun wieder aus Satz

Wir haben also gezeigt, dass yo > f(z¢) > yo. Also ist f(z¢) = yo. [ |
(b)- :
Yo !
fla)-— § flar

i — —_—
a b a \ / a, To b, b
M ={x € la,b]| f(z) <o}

ABBILDUNG 28. Skizze zum Beweis des Zwischenwertsatzes.

In Ubungsblatt 7 werden wir mithilfe des Zwischenwertsatzes folgenden Satz beweisen.
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Satz 8.4. Jede Polynomfunktion

R — R

r a0+a1-x+---+ak-xk

von ungeradem Grad besitzt eine Nullstelle.

Beispiel. Der gerade formulierte Satz impliziert also beispielsweise, dass die Polynom-
funktion f(r) = 3—a?+72®—22*—225+ 327 eine Nullstelle besitzt. Der Satz macht aber kei-
ne Aussage ob oder wie man die Nullstellen berechnen kann. In der Algebravorlesung wird
bewiesen, dass es fiir Polynomfunktionen von Grad > 5 keine allgemeine Losungsformel
geben kann.

Wir beschliefen das kurze Kapitel mit folgendem Satz, welchen wir in Ubungsblatt 7
beweisen werden.

Satz 8.5. (Satz des moralischen Dilemmas) Jede stetige Funktion f: I — R auf einem
Intervall I, welche nur Werte in Z annimmdt, ist konstant.

f:a, b] = Z stetig, also konstant f:[a,b] = Z nicht konstant, also nicht stetig
T /A i N —————
,,,,,,,,,,,,,, 7/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e —
,,,,,,,,,, 77|—077777777777777777777777777777777777777
T B 1 rmmmmmmmmr oo O
| a b | a b

ABBILDUNG 29.

Beispiel. In den Anwendungen ist folgende zu Satz dquivalente Formulierung oft wich-
tiger: wenn eine Funktion f: [a,b] — Z nicht konstant ist, dann kann sie nicht stetig sein.
Funktionen f: [a,b] — Z, welche nicht konstant sind gibt es in der Tat {iberall. Hier sind
ein paar etwas salopp formulierte Beispiele:

Coronafunktion : [0,1000] — N,
Inzidenzwert von Stadt + Anzahl der Menschen, welche sich treffen diirfen
Bestrafungsfunktion : [0,1000000] — Ny
Wert von gestohlenem Gut + Anzahl der Monate im Gefingnis
Notenfunktion :[0,100] — {1,2,3,4,5,6}
Punkte in Klausur — Note in Klausur
Rechtefunktion : [0,100] — Ny
Lebensalter — Anzahl der Fiihrerscheine, welche man machen darf

In allen Féllen ist die Funktion nicht-konstant, damit nach Satz[8.5] nicht-stetig und damit
letztendlich ungerecht.
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9. UMKEHRFUNKTIONEN
9.1. (Streng) monotone Funktionen.

Definition. Es sei D C R und es sei f: D — R eine Funktion.

(1) f heifit monoton steigend, wenn fiir z1,xo € D gilt: 1 < 2o = f(21) < f(2o
(2) f heifit streng monoton steigend, wenn fiir x1,zo € D gilt: 1 < xo = f(z1) < f(22
(3) f heifit monoton fallend, wenn fiir 21,z € D gilt: 1 < 2o = f(z1) > f(2o
(4)  f heiit streng monoton fallend, wenn fiir z1,zo € D gilt: 1 < xy = f(21) > f(22
| ____©
/ 1 1 1 |
‘ 1 1 o« I ' I I
x X T To ' '
/"o 1 2 /’0 - T —__
eine monoton eine streng monoton eine streng monoton
steigende Funktion steigende Funktion fallende Funktion

ABBILDUNG 30.

Lemma 9.1.

(1) Die Exponentialfunktion exp: R — R ist streng monoton steigend.
(2) Es sei k € N. Die Funktionen

(a) [0,00) = R und  (b) R — R
T — zk x — 2 sind streng monoton steigend.
Zudem ist die Funktion (0,00) = R
(c) xr — ka streng monoton fallend.
+4 14 12
3/ 13 11/’
o/ o) t2 /o — —
X -2 1 2
! 11 T-1 ‘ —t
_,/ 12
— —t : —t T2 -1+
-2 -1 1 2 -1 1 2

Beweis (x).
(1) Es seien also z1,x2 € R mit z; > 5. Dann gilt

exp(x1) = exp(xe + (1 —x2)) = exp(z2) - exp(x; —x2) > exp(xq).
4 4

Funktionalgleichung, sieche Theorem [6.18 es ist x1 > w9, also x1 — x2 > 0, also folgt
aus Satz (3), dass exp(x; —z2) > 1
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(2) Die Aussagen folgen leicht aus den Ordnungsaxiomen und Satz[1.17] (2) und (3). Das
Austiifteln der Details fithrt zu mehr Verwirrung als Erkenntnis, und wir beenden
[ |

damit auch schon wieder den Beweis.
Mithilfe des folgenden Lemmas kénnen wir fiir monotone Funktionen in vielen Féllen
den Wertebereich ohne grofien Aufwand bestimmen.

Lemma 9.2. Es sei f: D — R eine stetige, monoton steigende Funktion.
(1) Wenn [a,b] C D ein kompaktes Intervall ist, dann ist f([a,b]) = [f(a), f(D)].
(2) Wenn (a,b) C D ein offenes Intervall ist, wobei —oo < a < b < 0o, dann is

b)) = (L li .
f(@) = (lmf(z), i 7(z)
Zudem gelten die offensichtlichen Abdnderungen fir Intervalle vom Typ (a,bl, [a,b),

(—o0, b] sowie [a,o0).
Wenn f monoton fallend ist, dann gelten die gleichen Aussagen, allerdings mit den Grenzen

der Intervalle vertauscht.

__— Graph von f

F) e —— ~\ lim f(z) g 1

fla) g Graph von f }g&ﬂﬂ R
7 l 3 —
a b a 7 das Intervall la, 00)

ABBILDUNG 31. Illustration von Lemma [0.2]

Beispiel. Wir betrachten die monoton fallende Funktion

f:(0,00) — R
T o 1

T

Dann gilt: F([00)) = (lim f(z), f(1)] = (lim 1, 1] = (0,1]

T T—r00

folgt aus Lemma[0.2] da f streng monoton fallend, werden die Grenzen allerdings vertauscht

Beweis. Es sei f: D — R eine monoton steigende Funktion.

(1) Es sei [a, b] C D ein kompaktes Intervall. Wir sollen zeigen, dass f([a, b])=[f(a), f(b)].
In diesem Fall haben wir also zwei Mengen X und Y gegeben, und wir wollen
zeigen, dass X =Y. Es geniigt zu zeigen, dass X C Y und X D Y. Wenn man
nun zeigen will, dass X C Y, dann muss man zeigen, dass jedes x € X auch in

Y enthalten ist.

66Hierbei interpretieren wir natiirlich gm f(z)als lim f(z) und ganz analog li/‘m f(z) als lim f(x).
x — 00 Tr——00 x oo r—00

5"Wie in Satz und Satz kann man zeigen, dass die “Grenzwerte” in R U {£o0} existieren.
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(C) Wir zeigen zuerst, dass f([a,b]) C [f(a), f(b)]. Dies folgt aus folgender Beob-
achtung:

refab] = a<w<b = fla) < f(z) < f(b) = [f(x) € [f(a), f(D)].
denn f ist monoton steigend

(D) Wir zeigen nun, dass f([a,b]) D [f(a), f(b)]. Es sei also y € [f(a), f(b)]. Der
Zwischenwertsatz besagt, dass es ein x € [a,b] mit f(z) = y gibt. Also ist
y € f([a,0]).
(2) (%) Es sei beispielsweise [a,00) C D ein halb-offenes, unbeschrénktes Intervall mit
der Eigenschaft, dass le f(z) = oo. Dann gilt

f(la00) = f(Ulanl) = Ufan) = Ulf@) fm)] = [f(a),0).
nez 1 nez 1 nez 0
allgemein gilt fiir eine beliebige nach dem ersten Fall da f monoton steigend
Abbildung g, dass g(XUY)=g(X)Ug(Y) und da le f(z) =+
Die anderen Aussagen werden ganz analog bewiesen. [ |

9.2. Die Definition von Umkehrfunktionen. Wir erinnern an folgende Definition von

Seite (3]

Definition. Eine Abbildung f: X — Y zwischen zwei Mengen heifit injektiv, wenn fiir alle
x1 # 19 € X gilt, dass auch f(xq1) # f(x2).

Beispiel. Es folgt eigentlich sofort aus den Definitionen, dass jede streng monotone Funktion
f: D — R injektiv ist. Man sieht das auch gut in Abbildung [30]

Definition. Es sei f: D — R eine injektive Funktion. Dann existiert zu jedem a € f(D)
genau ein b € D mit der Eigenschaft f(b) = a. Dieses b wird mit f~!(a) bezeichnet und die
Funktion|
/L f(D) - R
a — fY(a) = das einzige b € D mit f(b) =a
heifit die Umkehrfunktion von f. Insbesondere gilt fiir a € f(D) und b € D:
a.

(%) @) =b <= f(b) =
Lemma 9.3. Es sei f: D — R eine injektive Funktion.
(1) fir allex € D gilt: — f~'(f(z)) = =,
(2) fir alley € f(D) gilt: — f(f~'(y)) = v
Beweis.

(1) Esseiz € D. Es folgt aus (x), angewandt auf « = f(z) und b = =, dass f~(f(x)) = z.

58Die Umkehrfunktion f~! besitzt den Wertebereich D, wir kénnten also auch etwas genauer schreiben
f~t: f(D) = D anstatt f=': f(D) — R.
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FYa):=b — Definitionsbereich D

ABBILDUNG 32.

(2) Es sei y € f(D). Es folgt nun aus (x), angewandt auf a =y und b= f~'(y), dass
FU W) =v. u

Lemma 9.4. Es sei f: D — R eine injektive Funktion. Dann gilt:
Graph(f~') = Spiegelbild von Graph(f) beziiglich der x = y-Diagonale.

Graph der Umkehrfunktion x = y-Diagonale

[ f(D) =R ~ Graph der Funktion

f:D—>R

ABBILDUNG 33. Illustration von Lemma [0.4]

Beweis (x). Zur Erinnerung: Der Graph einer Funktion g: £ — R ist definiert als
Graph(g) = {(z,9(z)) € R*|z € E}.
Wir wenden uns nun dem eigentlichen Beweis des Lemmas zu. Es sei (z,y) € R?. Dann gilt

(z,y) € Graph(f™') <= y = f"'(z) < fly) = < (y,x) € Graph(f).

nach () denn (y,z) = (y, f(v))-

Wir sehen also, dass wir den Graphen von f~! aus dem Graphen von f durch Vertauschen
der z- und der y-Koordinate erhalten. Anders ausgedriickt, wir erhalten den Graphen der
Umkehrfunktion f~!, indem wir den Graphen von f an der x = y-Diagonale spiegeln. W

Im weiteren Verlauf der Vorlesung werden wir mehrmals folgendes Lemma verwenden.
Lemma 9.5. Wenn f: D — R streng monoton steigend (bzw. fallend) ist, dann ist die
Umkehrfunktion f~': f(D) — R ebenfalls streng monoton steigend (bzw. fallend).

Beweis (x). Wir betrachten zuerst den Fall, dass f: D — R streng monoton steigend ist.
Wir wollen zeigen, dass dann auch f~!: f(D) — R streng monoton steigend ist. Fiir
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y1, Y2 € f(D) gilt dann:
B<y == FUFH ) < F(F 1 (we) < fH ) < 1 (we)-
aus Lemma folgt f(f~Y(y:)) = v da f streng monoton steigend

Wir haben also gezeigt, dass f~1: f(D) — R streng monoton steigend ist. Der Fall, dass
f: D — R streng monoton fallend ist, wird ganz analog bewiesen. [

9.3. Stetigkeit von Umkehrfunktionen. Es stellt sich also nun folgende Frage: wenn
f: D — R injektiv ist, und wenn f stetig ist, folgt dann, dass die Umkehrfunktion f~1
ebenfalls stetig ist? Das folgende Beispiel zeigt, dass die Antwort im Allgemeinen Nein ist.

Beispiel. In Abbildung sehen wir den Graphen einer Funktion f: [0,1] U (2,3] — R,
welche sowohl stetig als auch injektiv ist. Wir sehen zudem den Graph der Umkehrfunktion
~1:10,2] — R. Die Umkehrfunktion ist im Punkt zq = 1 jedoch nicht stetig.

1+ 5 \ 14 Graph(f~)

S S Graph(n -

1 2 3 S 23

die Funktion f ist stetig die Umkehrfunktion f=!
und injektiv ist im Punkt zy = 1 nicht stetig

Wir sehen also, dass die Umkehrfunktion im Allgemeinen nicht stetig ist, aber wir sehen
auch, dass zumindest in dem obigen Beispiel die Nicht-Stetigkeit von f~! an der “Zerissen-
heit” des Definitionsbereiches von f liegt. Wir werden deswegen im Folgenden Funktionen
betrachten, welche auf einem Intervall definiert sind.

Satz 9.6. (Satz von der Stetigkeit der Umkehrfunktion) Wenn f: I — R eine streng
monotone Funktion, welche auf einem Intervall I definiert z'stﬂ dann ist die Umkehrfunk-
tion f~1: f(I) = R stetig.

Beweis. Wir betrachten zuerst den Fall, dass I = R, und dass f: I — R eine streng
monoton steigende Funktion ist. Es sei also yo € f(R). Wir wollen zeigen, dass f~! stetig
im Punkt y, ist. Wir setzen xq := f~*(yo). Wir wollen also zeigen, dass

v 3 Vo ) € (zo—€em+e).

e>0 >0 ye(yo—d,y0+9)

69Wir setzen hier also nicht voraus, dass f stetig ist. Dies ist kein Fehler. Wenn f streng monoton ist,
dann ist die Umkehrfunktion stetig, selbst wenn f selber nicht stetig ist. Es ist vielleicht hilfreich mal
explizit den Graphen von solchen Funktionen aufzuzeichnen.
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Es sei nun € > 0. Nachdem f streng monoton steigend ist, folgt, dass
flxog—€) < yo = f(zo) < f(mo+e).
Wir wihlen nun ein 6 > 0, so dass [
(Yo — 0,0 +0) C (flzo—€), f(zo+e)).
Dann gilt fiir y € R, dass

Y€ (Yo—0,90+0) = yo—0<y<y+o
? flwo—€) <y < f(xo+e) ? [ (f(@o—e€) < [ (y) < [ (f(zo+e))

Wahl von ¢ aus Lemma folgt, dass f~! streng monoton steigend ist
= xo—e < [ y) <xote = [ Hy) € (vo—¢ zo+e).
/I\

folgt aus Lemma[0.3]

Wir miissen nun noch die Félle betrachten, dass I ein beliebiges Intervall ist, oder dass

Graph der Funktion f
/

fzog+¢€) 4 Yo+0 — I
Yo 1 Yo 1 Lol
f(zo—€) - yo—(;/—m‘l:‘:

AR
To—€ / / \750"‘6 yO —¢€ // \ ! (o) +e
yo—

zo = [~ (vo) (%) Hyo+9)
ABBILDUNG 34. Skizze fiir den Beweis von Satz [9.6]

J streng monoton fallend ist. Diese Fille werden ganz dhnlich bewiesen und sind eine
freiwillige Ubungsaufgabe. [ |

9.4. Die Wurzelfunktionen. Es sei k£ € N. Nach Lemma ist die Funktion

f:]0,00) — R
r v aP

streng monoton steigend und wir hatten in Satz gesehen, dass diese Funktion stetig ist.

Zudem gilt folgt aus Lemma da f streng monoton steigend Lemma [7.13]

+ ) TR
f([0,00)) = [£(0), lim f(z)) = [0, lima*) = [0,00).
Die zugehérige Umkehrfunktion

"OBeispielsweise konnten wir § := min{f(zo + €) — yo, yo — f(xo — €)} setzen.
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0,00) — R
v ) = E
/I\
folgt aus der Definition von {/x auf Seite
heiBt die k-te Wurzelfunktion. Es folgt aus Satz 0.0 dass die Umkehrfunktion stetig ist.

/ Glaph del Funktion
0,00) — R
r o~ 2
2 T \ .

x = y—Diagonale

1T -~ g \ Graph der Umkehrfunktion
o/ 1 0,00) - R
1 2 3 4 T =V

ABBILDUNG 35.

9.5. Die Logarithmusfunktionen. Wir fassen zuerst die wichtigsten Eigenschaften der
Exponentialfunktion zusammen.

Satz 9.7. Die Exponentialfunktion exp: R — R

x +— exp(r)= Z x—
besitzt folgende Eigenschaften: n=0 "
(1) exp(0) =1,
(2) exp(1) =:e st die Eulersche Zahl, es gilt e ~ 2.718281828.. . .,
(3) Fiir alle x,y € R gilt exp(z +y) = exp(z) -exp(y) (Funktionalgleichung).
(4) Fiir alle x € R gilt exp(—12) = ooy
(5) Fir alle n € Z gilt exp(n) = e".
(6) Fiir alle x € (—o00,0) gilt exp(x) € (0,1) und fir alle x € (0,00) gilt exp(z) € (1, 00).
(7) Die Exponentzalfunktwn st streng monoton steigend.
(8) Die Exponentialfunktion ist stetig.
(9) Es ist h_)m exp(z) = +o00 und lim exp(z) = 0.
) ex

T——00

(10) exp(R) = (0, c0).

Bewezs.

(1)-(8) Die ersten acht Aussagen haben wir in Theorem [6.18 Satz [6.19] Satz und
Lemma [0.1] bewiesen.
(9) (a) Es folgt aus (5), dass die Funktionswerte der Exponentialfunktion nach oben
unbeschrankt sind. Es folgt nun aus der strengen Monotonie der Exponential-
funktion, ganz dhnlich wie in Satz [3.15) dass li_)rn exp(x) = +o0.

(b) Diese Aussage folgt (9a), der Eigenschaft (4) und dem Analogon zu Satz [3.11]
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(10) Es ist folgt aus Lemma[0.2] da exp monoton steigend folgt aus (9)
+ ¥
exp(R) = exp((—o00,00)) = ( lim exp(z), lim exp(z)) = (0,00). m

Definition. Die Umkehrfunktion der Exponentialfunktion exp wird die Logarithmusfunktion
In: (0,00) — R genannt.

/ Graph der Exponentialfunktion
exp: R —- R
\ r — exp(x)
/ x = y-Diagonale

/\ Graph der Logarithmusfunktion

3 4 In: (0,00) — R
T r — In(z)

Satz 9.8. Die Logarithmusfunktion In: (0,00) —
r +— In(x)
hat folgende Figenschaften:

(0) Friir alle x € R gilt In(exp(z)) = = und fiir alle x € (0,00) gilt exp(In(z)) = x.

(1) In(1) =

(2) Infe) =

(3) Friir alle z,y € (0,00) gilt In(z-y) = In(x) +In(y) (Funktionalgleichung).
(4) Fiir alle x € (0,00) gilt In(2) = —In(x).

(5) Fiir alle n € N gilt In(e") = n.

(6) Fiir alle x € (0,1) ist In(z) € (—00,0) und fir alle x € (1,00) ist In(z) € (0,00).
(7) Die Logarithmusfunktion ist streng monoton steigend.

(8) Die Logarithmusfunktion ist stetig.

(9) Es ist hm In(z) = +o00 und h{‘% In(z) = —o0.

Bewezs.

(0) Diese Aussage folgt aus Lemma 9.3
(1) Es ist In(1) = In(exp(0)) =
(2) Es ist In(e) = In(exp(1)) =
(3) Es seien also z,y € (0, 00). Dann gilt
in(a-9) = In(exp(in(e)) exp(in(s))) = Inexp(in(e) + In(y))) = In(a) + In().
folgt aus (0) folgt aus Satz (3) folgt aus (0)
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(4) Es sei x € (0,00). Dann gilt
0 = In(1) = In(z-1) = In(z)+In(L), alsoist In(l)=—In(z).
A A
folgt aus (1) folgt aus (3)

(5) Es sei n € N. Es ist In(e”) = In(exp(n)) = n.

(6) Die Aussage folgt sofort aus Satz (6).

(7) Nachdem die Exponentialfunktion streng monoton steigend ist, folgt aus Lemma [9.5]
dass die Logarithmusfunktion ebenfalls streng monoton steigend ist.

(8) Nachdem die Exponentionalfunktion streng monoton steigend und auf dem Intervall
R = (—o00,00) definiert ist, folgt aus Satz dass die Logarithmusfunktion stetig
ist.

(9) (a) Es folgt aus (5), dass fiir beliebiges C' € R gilt: In(exp(C')) = C. Dies impliziert,
dass die Logarithmusfunktion In nach oben unbeschréankt ist. Nachdem die Lo-
garithmusfunktion zudem streng monoton steigend ist, folgt, ganz &hnlich wie in
Satz[3.15] dass lim In(z) = +o0.

T—r00
(b) Esist iy In(z) = limIn(%) = lim —In(z) = —limIn(z) = —oo.
z\0 T T—00 x T T—$00 T—00 T
die Aussage gilt fiir alle Funktionen folgt aus (4) Aussage (9a)

und folgt leicht aus den Definitionen

9.6. Potenzen von reellen Zahlen. Es sei a € R und n € Ny. Auf Seite [L3] hatten wir

definiert: 0 ) ) 1
av =a---- - a, sowie a° := 1 und fiir a # 0 hatten wir definiert ™" = —.
w_/ am
n—Mal
Wir wollen nun den Bereich der méglichen Exponenten erweitern. Es sei beispielsweise
s = g, mit p € Z und ¢ € N, eine rationale Zahl, dann kénnen wir fiir a € (0, 00) folgende

Definition einfiithren:
@ = ai = (\q/a)P ,  wobei die ¢-te Wurzel ¢z fiir z > 0 auf Seite definiert wurde.

Fir a = 2 wird der Graph der Funktion Q@ — R, x + 2% in Abbildung skizziert.
Der Graph legt nahe, dass man diese Funktion auch als eine stetige Funktion auf ganz R
fortsetzen kann. Mit anderen Worten, es sollte moglich sein a” fiir jeden Exponenten
r € R “verniinftig” definieren zu koénnen. Wir fithren dies nun mit folgender, vielleicht
tiberraschenden Definition durch.

———— Graph der Funktion

) Q - R
T T = 27

4 1 1
I T T T

ABBILDUNG 36.
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Definition. Es sei a € (0,00) und z € R. Wir definieren

T

a® = exp(z-In(a)).

Beispiel.

(1) Nachdem In(e) = 1 gilt fiir alle 2 € R, dass e” = exp(z).
(2) Wir haben jetzt also Potenzen a® fiir beliebige a € (0,00) und x € R definiert.
Beispielsweise haben wir jetzt definiert, was (2 + v/2)¢*V3 sein soll.

Der folgende Satz besagt nun, dass die Definition von “a hoch 2”7 alle Eigenschaften

erfiillt, die man erwarten wiirde. Der Satz kann insbesondere als Verallgemeinerung von
Satz [[.12] aufgefasst werden.

Satz 9.9. (Potenzregeln)
(1) Es seien a,b € (0,00) und z,y € R, zudem sei n € Ny. Dann gilt:

@ 4 =h (@) (@)

= axy
W) @ edl = gne (¢) a”-b" = (ab)
(C) a — a_iv (f) an a:-----qa.
-Mal

(2) Fiir a € (0,00) und s =2 mitp € Z und g €N gilt a* = (Va)?.
(3) Fiir jedes a € (0,00) ist die Funktion

R =+ R

a — a® stetig.

Bemerkung. Es folgt aus Satz (2), dass die zwei Definitionen von Potenzen a® mit
rationalem Exponenten s € QQ iibereinstimmen.

Beweis. Es seien also a,b € (0,00) und z,y € R.

(1) (a) Esist a® = exp(In(a) - 0) = exp(0) = 1.

(b) Es ist per Definition Funktionalgleichung

‘ v
ca¥ = exp(x-Ina)-exp(y-Ina) = exp(z-lna+y-Ina)

= exp((r+y) -Ilna) = a®*.
/I\

ail?

per Definition

(c)-(e) Diese drei Aussagen folgen ebenfalls leicht aus den Definitionen und den Eigen-
schaften der Exponentialfunktion und der Logarithmusfunktion. Diese Aussagen
werden im 8. Ubungsblatt bewiesen.

(f) Es ist

n

T4et1 —N—

a” = a

folgt aus (b)
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(2) Es seien a € (0,00) und s = £ mit p € Z und ¢ € N. Dann gilt

@y = af" = @ = ((gayy
A 4
folgt aus (1d) Definition von a

p
q

Da x +— 2P auf [0, 00) injektiv ist, folgt, dass as = (a)P.
(3) Es sei a € (0,00). Wir sollen zeigen, dass die Funktion
R - R
r +— a” =exp(z-In(a))

stetig ist. Diese Funktion ist die Verkniipfung der stetigen Funktionen = — z - In(a)
undﬂ y — exp(y) ist. Nach Satz|7.7]ist auch die Verkniipfung dieser beiden Funktio-

nen, d.h. die Funktion x — a* = exp(z - In(a)), stetig. |
1 ~— Graph der Funktion T Graph der Funktion
i R — R T B R
T T o 2 4 r o= (3)"
|/’i/ f f \'\l

"INach Satz wissen wir, dass die Exponentialfunktion stetig ist.
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10. DIE KOMPLEXEN ZAHLEN
10.1. Der Korper der komplexen Zahlen.

Definition. Wir bezeichnen mit C = {a+bi|la,beR}
/I\

genannt imagindre Einheit
die Menge aller formalen Summen a + bi, wobei i ein festgewéahltes Symbol ist, welches
die imagindre Finheit genannt wird. Wir nennen C die Menge der komplexen Zahlen. Fiir
a € R schreiben wir hierbei a + 0i = a und 0 + ai = ai. Wir kénnen komplexe Zahlen wie
folgt addieren

(x+yl)+ (@' +yi) = (z+2")+(@y+vy)i, wobex,y 2,y eR,
und wie folgt mit einer reellen Zahl A multiplizieren
A (z+yl) = Ar+ Ay, wobei z,y, A € R.

Man kann nun leicht iiberpriifen, dass C mit dieser Addition und dieser Skalarmultplikation
ein 2-dimensionaler reeller Vektorraum ist.
Bemerkung. Es folgt eigentlich sofort aus den Definition, dass die Abbildung
R? — C
(r,y) — x4yi
ein Isomorphismus von reellen Vektorrdumen ist. Wir stellen uns deswegen die komplexen
Zahlen bildlich auch als die 2-dimensionale Ebene vor.

Ri/i—o+1-i Ri
[ J
+i o +i b
1 2 3 —1 2 \3
— ——+—+—+——>R i ————+—R
T -1 2=2+0i —i

—1—2i

e o EOTH

ABBILDUNG 37. Graphische Darstellung von komplexen Zahlen und deren Addition.

Der folgende Satz besagt nun, dass man auf den komplexen Zahlen eine Multiplikation
einfiihren kann, so dass alle Korperaxiome erfiillt sind.

Satz 10.1. Die Menge C der komplexen Zahlen mit

Addition (z 4+ yi) + (@ +y'1) == (z+2)+ (y +¥)1i, wobei x,y, 7',y ER,
Multiplikation (z +yi) - (2 +y'i) = (2’ —yy) + (xy + 2'y)i, wobei z,y, ',y €R,

15t ewn Korper.

Bemerkung.
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(1) Salopp gesprochen ist die Multiplikation

(@ +yl)- (@' +y1) = (z2’ —yy) + (x) + 2y)i
gegeben durch “naives” Ausmultiplizieren und indem wir i? = —1 setzen.
(2) Die Addition von komplexen Zahlen entspricht der iiblichen Addition in R% Die

Multiplikation von komplexen Zahlen erscheint hingegen sehr unintuitiv. Im néchsten

Kapitel werden wir eine geometrische Interpretation der Multiplikation nachliefern.

Beweis. Wir miissen also jetzt zeigen, dass alle Korperaxiome erfiillt sind.

(A1)-(A4) Elementares Nachrechnen zeigt, dass die Additionsaxiome (A1) bis (A4) mit dem
additiv neutralen Element 0 = 0 + 01 erfiillt sind.
(M1) Das Assoziativgesetz zeigt man durch explizites Nachrechnen.
(M2) Die Definition der Multiplikation ist symmetrisch in « + yi und 2’ + y'i, also ist die
Multiplikation kommutativ.
(M3) Fiir alle x + yi € C gilt

(x+yi)-1 = (z+yi)(14+0i) = z+yi,

d.h. 1 =1+ 0i ist ein multiplikativ neutrales Element.
(M4) Es sei also 4+ yi € C\ {0}. Dann ist

o (i) = & Dz —yi) = —— (22442 =
@tyl) sl —vl) = Grosltyi)le—yl) = G0 +y) = 1
Anders ausgedriickt, es ist . .
(z4+yi))?t = —— (z—yi) = —— - YL i
x? + y? r?+y? x4 y?
(D) Das Distributivgesetz zeigt man ebenfalls durch explizites Nachrechnen. [

Definition. Fiir eine reelle Zahl a > 0 schreiben wir manchmal

V—a = a-i.
Dann gilt in der Tat, dass
V=& = (AP = @i = a(-1) = —a
Folgendes Lemma beweist man leicht durch explizites Nachrechnen.

Lemma 10.2. (Mitternachtsformel) Es sei p(z) = ax? + bx + ¢ ein Polynom, wobei
a,b,c € R und a # 0. Die komplexen Zahlen

—b+ Vb? — 4ac
f = o e C

haben die Eigenschaft, dass p(z+) = 0.

Es gibt auch Losungsformeln fiir Polynome von Grad 3 und 4. In der Algebravorlesung
wird jedoch bewiesen, dass es keine Losungsformel fiir Polynome von Grad > 5 geben
kann. Desto iiberraschender ist dann vielleicht folgender Satz, welchen wir in Analysis 111
beweisen werden.
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Satz 10.3. (Fundamentalsatz der Algebra) Es sei p(z) = ag + ayz + - -+ + apa® ein
beliebiges Polynom mit komplexen Koeffizienten, wobei k > 1 und a; # 0. Dann existiert
ein z € C mit p(z) = 0.

Bemerkung. Es sei w € C beliebig. Dann besagt der Fundamentalsatz der Algebra, dass
das Polynom 22 — w eine komplexe Nullstelle besitzt. D.h. es gibt ein z € C mit 2% = w.
Anders ausgedriickt, jede komplexe Zahl besitzt eine Wurzel. In Ubungsblatt 8 werden wir
der Frage nachgehen, was die Wurzel(n) aus i sind.

Definition. Fiir z =z +yi € C mit z,y € R heif}t

Re(z) = Re(x+yi) = =z der Realteil von z = x + yi,
Im(z) = Im(z+yi) = y der Imagindrteil von z = x + yi,
z = r+uyi = xr—yi die zu z = x + yi konjugiert komplexe Zahl.

Die geometrische Bedeutung dieser Definitionen wird in Abbildung [10.1| skizziert.

,,,,,,,,,,, z=x4+yi

N}\ der Betrag |z| ist der

: s> Abstand zum Ursprung

der Imaginarteil Im(z) —
ist die y-Koordinate von z

T

der Realteil Re(z) ist die /

z-Koordinate von 2z

die konjugiert komplexe Zahl 7 = x — y1i ist
das Spiegelbild von z beziiglich der z-Achse

7

Lemma 10.4. Es seien w,z € C. Dann gilt:

(1) Re(z) = 3(z2+7%2) nd
2) Im(z) = Z(z—2) (b)y w-z =

24

gl €

Ri
- z+7Z = 2Re(z) z—?zQIm(z)i/

/

Ri
z
. R R
’\‘5 ’\\‘z

Beweis (). Alle diese Aussagen konnen durch elementares Nachrechnen bewiesen werden.
Es seien also w = v+ vi und z = x + yi komplexe Zahlen. Dann gilt in der Tat

(1)  Re(z) = z = Ya+yito—yi) = J(z+yit+z+yi) = 1(z+72)
(2) Im(z) = y = l(x—i—yi—ac—l—yi) = %(m—i—yi—(m—i—yi)) = L(2—73)

21 7
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und es gilt

(a) w+z =u+t+z+@w+yi = utr—vi—yl = W+7z

(b) w=z =wur—ovy+ (uy+vr)i = ur—ovy— (uy+vz)i = (u—vi)(z—yi) = Wz

Wir haben damit alle Aussagen bewiesen. [ |

Definition. Es sei z = x + yi eine komplexe Zahl. Wir bezeichnen |z| := /22 + y? als den
Betrag von z.

Beispiel. Der Betrag |z| := y/22 + y? einer komplexen Zahl z = z + yi ist also gerade der
euklidische Abstand von z = z 4+ yi zum Ursprung. Es folgt beispielsweise, dass fiir > 0
die Menge {w € C||w — z| < r} gerade die abgeschlossene Scheibe mit Mittelpunkt z und
Radius r ist.

_—z=x+yi

2] = /22 + y? ist der euklidische Abstand /
von z = x + yi zum Ursprung {weCllw—=2<2}

Lemma 10.5. Es seien w,z € C. Dann gilt:

(1) 2| > 0 und es gilt: |z2| =0 <= z=0,
(2) 2| = Vz-%Z, insbesondere ist |z|* = z - Z,
(3) Z| = |4,
(4) jw-z| = |w]- |2,
() 2| = |Re(z)]  und|z| > [Im(2)],
(6) lw+z] < |w|+|z2|  (Dreiecksungleichung).
Zudem gilt fiir z # 0 folgende Gleichheit:

R

(7) = gpE
___________________________ 2w+ z

die Dreiecksungleichung besagt, dass
w4z < fw|+|z]

Beweis (x). Alle diese Aussagen kénnen zumeist durch elementares Nachrechnen bewiesen
werden. Es seien also w = u + vi und z = z 4+ yi komplexe Zahlen.
(1) Es ist |z| = /22 + y? > 0. Wenn z = 0, dann ist natiirlich |z| = 0. Umgekehrt, wenn
|z| =0, dann ist auch 22 + y*> =0, d.h. = 0 und y = 0.
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(2) Esist Vz-z = \/(x—l—yl)(x —yi) =22 +y2 = |z|.
(3) Esist [Z] = |z —yi| = /22 + (—y)2 = /22 + 42 = |z + yi| = |2].
(4) Es gilt: = Vuz w0z = Vw-w-z-2 = Vou-vVzzE = |u|-|z].
4 4 4
folgt aus (2) Lemma [10.4] (b) folgt aus (2)

(5) Es ist |z| = /22 + % > Va2 = |z| = |Re(2)|. Die zweite Ungleichung wird ganz

analog bewiesen.

(6) Es ist folgt aus (2) Lemma [10.4] (1)

jw - ]

v v
lw+z]? = (w+z2)- (W+2) =ww+wz+z2z0+2z2 = |w*+2Re(wz) + |z]?
< Jwl? + 2wz] + |27 = [w] + 2wl - |2] + |2 = (Jw] + |2]).

* 4

folgt aus (5) folgt aus (3) und (4)
z+—2Z = —-2z =1, alsoist z7" = —Z.
|22 4 2z |22
folgt aus (2) [ |

Bemerkung. Wir haben in diesem Teilkapitel insbesondere gezeigt, dass C ein Korper ist.
Es stellt sich die Frage, ob man eine Relation “>” auf C definieren kann, so dass C ein
angeordneter Korper ist. Dies ist allerdings nicht mdoglich. In der Tat, denn in einem ange-
ordneten Korper K gilt nach Satz dass a* > 0 fiir alle a € K\ {0}. Dies impliziert,
dass 1 =1-1> 0. Aus (O3) folgt dann, dass 0 > —1. Aber in C gilt i* = —1, welches nach
Satz positiv sein miisste, wenn C ein angeordneter Korper wére.

10.2. Folgen komplexer Zahlen. Wir werden in diesem Kapitel sehen, dass wir ohne
groflere Probleme die meisten bisherigen Definitionen und Sétze von reellen Folgen und
Reihen auf Folgen und Reihen von komplexen Zahlen iibertragen kénnen.

Wir beginnen mit der Definition der Konvergenz von einer Folge von komplexen Zahlen,
welche im Prinzip die gleiche ist, wie die Definition, welche wir auf Seite fiir Folgen
reeller Zahlen gegeben hatten.

Definition. Es sei (2,,)nen €ine Folge von komplexen Zahlen. Fiir z € C definieren wir El

limz,=2 <= V I V |z,—2]<e

n—00 e0 NeN n>N
z3 z
. _—{weCl|lw—2z| <€}
® 2z . .
z1e Illustration von lim z, = #
24 n—oo

"2Hierbei ist € eine positive reelle Zahl und |z,, — z| bedeutet den Betrag der komplexen Zahl z,, — z
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Fiir die Konvergenz von Folgen komplexer Zahlen gelten fast die gleichen Aussagen wie in
Satz [3.1], Satz und Satz [3.4] mit fast wort-wortlich den gleichen Beweisen. Insbesondere
gilt:

(1) Wenn eine Folge komplexer Zahlen konvergiert, dann ist der Grenzwert eindeutig

bestimmt.

(2) Eine Folge (z,)nen komplexer Zahlen, welche konvergiert, ist auch beschréankt, d.h.

es gibt ein C' € R, so dass |z,| < C fiir alle n € N.

Es seien (a,)nen und (b, )nen konvergente Folgen komplexer Zahlen. Dann gilt zudem

(3) lim (a, + b,) = lima, + limb,
(4) lim (a, - b,) = lima, - lim b,,
n—oo n—oo n—oo

(5) fiir AeC gilt limA-a, = X-lima,,

n—oo n—o0
(6) wenn fiir alle n € N gilt b, # 0, und wenn lim b,, # 0, dann gilt

n—oo
3 a”IL nli—{I(lX)an
Jm g = lim b,

(7) Als neue Regel erhalten wir noch die Gleichheit

lima, = lima,,
n—oo n—oo

welche man problemlos elementar beweisen kann.

Der folgende Satz besagt nun, dass man die Konvergenz von Folgen komplexer Zahlen
auf die Konvergenz der Real- und Imaginérteile zuriickfithren kann.

Satz 10.6. FEs sei (2,)nen €ine Folge von komplexen Zahlen und es sei z € C. Dann gz’lﬁ

lim z, = 2 = lim Re(z,) = Re(z) wund lim Im(z,) = Im(z).
n—00 n—00 n—00
Im(z,) T e Zn
1 o |
| 2 1
i \ ¢ |
Im(2) Fooo %°
Re(2) Re(zy)

Beweis (x). Es sei (2,)nen eine Folge von komplexen Zahlen. Fiir jedes n € N schreiben wir
jetzt z, = x, + y, 1, wobei x,,,y, € R. Wir schreiben zudem z = x + yi, wobei z,y € R.

Wir zeigen zuerst die “<="-Richtung. Wir nehmen nun also an, dass lim z, = x und
n—oo

lim y,, = y. Dann gilt:
n—oo

"Die linke Seite betrifft die Konvergenz einer Folge von komplexen Zahlen, wiahrend die rechte Seite
von der Konvergenz zweier Folgen reeller Zahlen handelt.
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obige Aussage (3) obige Aussage (5) mit A =i
+
limz, = lim (z,+y,i) = limz,+ lim(y,i) = limx, + ( lim yn)i = x+ yi.
n—oo n—oo n—oo n—oo n—oo n—oo
Wir zeigen nun die “="-Richtung. Es gilt
lim Re(z,) " Jim 3 (20 +Z0) - %(7}1—2}0% + nh_{goZ”) = 1(z+72) - Re(z).
Lemma [10.4] (1) obige Aussage (3) und (7) Lemma [10.4] (1)
Genauso zeigt man auch, dass lim Im(z,) = z. [
n—oo

Die Definition einer Cauchy-Folge komplexer Zahlen ist fast wort-wortlich die Gleiche wie
die Definition einer Cauchy-Folgen reeller Zahlen, welche wir auf Seite [51] gegeben hatten.

Definition. Es sei Folge (z,)nen eine Folge komplexer Zahlen.

(2n)nen ist eine Cauchy-Folge : <= 6\2’0 NE€|N anZN |2n — 2m| < €.

Satz 10.7. Jede Cauchy-Folge von komplexen Zahlen konvergiert in C.
Beweis. Es sei (2,)nen eine Cauchy-Folge von komplexen Zahlen. Wir miissen zeigen, dass

die Folge (z,)nen konvergiert. Wir setzen x,, = Re(z,) und y, = Im(z,). Es folgt aus
Satz dass es geniigt folgende Behauptung zu beweisen.

Behauptung. Die reellen Folgen (z,)nen und (¥, )nen konvergieren.

Wir beweisen zuerst, dass die Folge (z,),en konvergiert. Nachdem R vollstiandig ist,
geniigt es zu zeigen, dass die Folge (z,,)nen eine Cauchy-Folge ist. Wir machen dazu folgende
Beobachtung: fiir beliebige n,m € N gilt:

|z, — xm| = |Re(z,) — Re(zn)| = |Re(zn — 2m)| % |20 — Zm]-
Lemma [10.5] (5) besagt, dass | Re(w)| < |w|

Aus dieser Beobachtung und der Voraussetzung, dass (z,)nen eine Cauchy-Folge ist, folgt
sofort, dass (z,)nen in der Tat eine Cauchy-Folge, und damit eine konvergente Folge, ist.
Ganz genau zeigt man auch die Konvergenz der Folge (¥, )nen- [

10.3. Reihen von komplexen Zahlen. Der Begriff einer Reihe von reellen Zahlen, den
wir auf Seite 47| eingefithrt hatten, iibertragt sich auf offensichtliche Weise ins Komplexe.
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Definition. Es sei (an)nen, €ine Folge von komplexen Zahlen. Wir definieren

die Reihe Y a, := die Folge der Partialsummen der Folge (a,,)nen,
n>0 . .
- = die Folge (ag, ap+ai, ap+ai+az, ...) = die Folge ag

ap + aq
ap + ay + as

Wenn die Reihe > a, konvergiert, d.h. wenn die Folge der Partialsummen konvergiert,
n>0

dann schreiben wir
00 k
Y a, := Grenzwert der Reihe Y a, = lm ) a,.
n=0 n>0 k=00 =0
Fiir konvergente Reihen gelten dann die iiblichen Rechenregeln wie in Satz
Beispiel. Der Satz iiber die Konvergenz der geometrischen Reihe verallgemeinert sich
problemlos zu folgender Aussage:

1
1—2°

fir jedes z € C mit |z| < 1gilt > 2" =
n=0

Definition. Eine Reihe gzn von komplexen Zahlen heifit absolut konvergent, wenn die
n>0

Reihe > |z,| der Betrige konvergiert.
n>0

Bemerkung. Unter Verwendung von Satz konnen wir viele Aussagen iiber die Kon-
vergenz von reellen Reihen auch auf die Konvergenz von komplexen Reihen iibertragen.
Insbesondere erhalten wir, mit fast wort-wortlich den gleichen Formulierungen und Bewei-
sen, folgende Aussagen:

(1) Jede absolut konvergente Reihe konvergiert, siehe Satz [6.10]
(2) Das Majorantenkriterium, siche Satz [6.§ Dieses lautet nun wie folgt. Es sei (ay)n>w
eine komplexe Folge und es sei (by,)n>w eine reelle Folgen. Dann gilt
b, > |a,| fir allen und )b, konvergiert = > a, konvergiert.

n>w n>w

(3) Das Quotientenkriterium, siehe Satz Dieses lautet nun wie folgt: Es sei (a,)n>0
eine Folge von komplexen Zahlen mit a, # 0, so dass der Grenzwert

O = lim

n—oo

anJrl
an

existiert. Wenn © < 1, dann konvergiert die Reihe ) a, absolut, insbesondere kon-
n>0

vergiert dann nach der Verallgemeinerung von Satz|6.10[ auch die Reihe >_ a,,. Wenn
n>0

hingegen © > 1, dann divergiert die Reihe.
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Satz 10.8.
(1) Fir jedes z € C konvergiert die Exponentialreihe ) % absolut.
. . X n>0 "
(2) Die Exponentialfunktion exp: C = C . ) )
z . z z
z — exp(z) = P l};rilo(1+z+?+...+g)

besitzt die folgenden Eigenschaften:
(a) Fiir alle z,2' € C gilt  exp(z + 2') = exp(2) - exp(2’)  (Funktionalgleichung).

(b) Fiir alle z € C gilt exp (z) = exp(z).

Bewezs.

(1) In Satz hatten wir gesehen, dass die Exponentialreihe fiir jedes z € R absolut
konvergiert. Der Beweis, dass die Exponentialreihe auch fiir jedes z € C absolut kon-
vergiert ist eigentlich genau der gleiche, wir miissen nur die oben kurz angeschnittene
Verallgemeinerung des Quotientenkriteriums auf komplexe Reihen verwenden. Der
Vollsténdigkeit halber fithren wir das Argument aus. Es sei also z € C beliebig. Wir

. n .
schreiben a,, := %;. Dann gilt
(i1 2" p)
QA

lim
n—oo

= 0.

|| -
= = |z|- lim
Z"-(TL—FI)!‘ n—oon + 1 | | n—oon + 1

= lim
n—oo

Es folgt aus dieser Berechnung und dem Quotienten-Kriterium, dass die Exponenti-

alreihe > a, = X Z—T absolut konvergiert.
n>0 n>0 "1

(2) (a) In Theorem hatten wir die Aussage fiir den Fall bewiesen, dass z,2’ € R.
Der Beweis iibertriagt sich jedoch wort-wortlich zu dem Fall, dass z, 2’ beliebige
komplexe Zahlen sind.

(b) Diese Aussage folgt aus der allgemeinen Beobachtung, dass fiir jede konvergente

Reihe > z, folgende Gleichheit gilt:

n>0

k k 00

w, = lim > w, = lim >Xw, = > w,

0 k—00 n=0 + k—00 n=0 n=0

auf Seite hatten wir gesehen, dass sich Grenzwert
und komplexe Konjugation vertauschen lassen

118

n

=N

und der Beobachtung, dass fiir z € C' und n € Ny gilt: %7: = —.,

3|

Bemerkung. Wir haben jetzt also gesehen, dass viele Definitionen und Aussagen iiber reelle
Folgen und Reihen problemlos auf Folgen und Reihen von komplexen Zahlen iibertragen
werden konnen. Insbesondere alle Aussagen, welche nur mit dem Absolutbetrag “| |7 von
reellen Zahlen formuliert wurden, gelten ganz analog in der Welt der komplexen Zahlen.
Allerdings kénnen die Definitionen und Aussagen iiber reelle Zahlen, Folgen und Reihen,



133

welche die Anordnung “>” verwenden, nicht auf die komplexen Zahlen iibertragen werden.
Insbesondere gilt:
(1) Es gibt kein Analogon zum Leibniz-Kriterium, welches auf Folgen komplexer Zahlen
zutrifft.
(2) Es gibt keinen Begriff von Supremum oder Infimum einer Teilmenge von C.
(3) Es macht keinen Sinn zu sagen, dass eine Folge von komplexen Zahlen (z,)nen be-
stimmt gegen —oo oder +oo divergiert.
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11. TRIGONOMETRISCHE FUNKTIONEN

11.1. Definition von Sinus und Kosinus. Das folgende Lemma macht die etwas iiber-
raschende Aussage, dass fiir jede reelle Zahl ¢ € R die komplexe Zahl exp(ti) auf dem Kreis
mit Radius 1 um den Ursprung liegt.

Lemma 11.1. Fir allet € R gilt |exp(ti)| = 1.

Beweis. Fiir t eR gilt:  Lemmal 105 Satz (2b) datcR
+ + o
lexp(ti)]? = exp(ti)-exp(ti) = exp(ti)-exp(ti) = exp(ti)-exp(—ti)
= exp(ti —ti) = exp(0) = 1.
/T\
Funktionalgleichung, d.h. Satz (2a)
Nachdem Betrége immer > 0 sind folgt nun auch, dass exp(ti)| = 1. |

Analog zur Definition auf Seite fithren wir nun folgende Notation ein.

) n
Notation. Fiir z € C schreiben wir nun e® := exp(z) := > %
n=0 T:

Beispiel. Mit dieser Notation gilt:

(1) Fiir alle z,w € C gilt: e*** =¢*-¢¥  (Funktionalgleichung).
(2) Lemma besagt, dass fiir alle ¢t € R gilt: |ef'| = 1.

Definition. Fiir t € R definieren wir
sin(t) := Im(e'),  genannt Sinus von t
cos(t) = Re(e'), genannt Kosinus von t.
Bemerkung. Per Definition gilt also fiir jedes t € R folgende Gleichheit:
e = cos(t) +sin(t)i (Eulersche Formel)

L e’ = cos(t) + sin(t)i

S —im Analysis II werden wir sehen,

dass die “Lange” von diesem
~ . ..
1 > R Kreisbogen gerade ¢ betrégt

I

I

I

I

I

I
L '

cos(t)

Bemerkung. Lemma besagt, dass die komplexe Zahl e!' auf dem Einheitskreis um die
Null in C = R? liegt. Der Sinus von ¢ ist nun die “y-Koordinate” von e'! und der Kosinus
von t ist die “z-Koordinate” von e!'. Die anschauliche Bedeutung von e!! ist hierbei, dass,
zumindest fiir “kleine” ¢, der Kreisbogen zwischen 1 € C und e!' gerade die “Linge” ¢
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besitzt. Damit diese Aussage Sinn ergibt, miissen wir allerdings erst noch sauber definieren,
was “Lénge” eigentlich heiflen soll. Wir werden den Begriff “Lénge” erst in Analysis II
einfithren, wenn wir Analysis in einem beliebigen R™ behandeln.

Die folgenden Lemmata und Sédtze beinhalten einige grundlegende Aussagen iiber Sinus
und Kosinus.
Lemma 11.2. Firt € R gilt (1) sin(—t) = —sin(?)
(2) cos(—t) = cos(t).

Beweis. Es sei also t € R. Dann gilt

(1) sin(—t) ? Im (e") ? Im (eﬁ) ? Im (') ? —Im (e'") = —sin(?)
per Definition ~ aus t€R folgt —ti=ti Satz (2b) Definition des komplex Konjugierten
(2) cos(—t) i Re (e7') i Re (') i Re (ef) i Re (e') = cos(t). |
Lemma 11.3. Firt € R gilt sin(t)? + cos(t)? = 1.
Beweis. Es gilt:  sin(t)? 4+ cos(t)? = Im(e')? + Re(e')? = [efI2 = 1.
Definition des Betrags der komplexen/rZahl el Le;mam L

Ein Vorteil der Definition von Kosinus und Sinus mithilfe der komplexen Exponential-
funktion ist, dass sich nun die Additionstheoreme sehr leicht beweisen lassen.

Satz 11.4. (Additionstheoreme) Fir alle z,y € R gilt:

sin(z +y) = sin(z)-cos(y) + cos(z) - sin(y),
cos(x +y) = cos(z)-cos(y) — sin(z) - sin(y).

Beweis.

Der geniale Trick ist, dass man Sinus und Kosinus nicht getrennt betrachtet, sondern

zur komplexen Exponentialfunktion zusammenfasst. Die Additionstheoreme folgen

dann leicht aus der Funktionalgleichung der Exponentialfunktion. Bei den Additi-

onstheoremen ist es am einfachsten, wenn man sich diese Beweisidee merkt. Aus der

Beweisidee kann man sich dann problemlos die Additionstheoreme herleiten. Das ist

viel einfacher, als zu versuchen, sich die Additionstheoreme auswendig zu merken.
Es seien x,y € R. Dann gilt

dies folgt aus der Funktionalgleichung e?¥ % = e - e*

cos(z +y) +sin(z +y)i = @V = erityi — ori. ey
= (cos(z) + sin(z)1) - (cos(y) + sin(y)1)
= cos(x)-cos(y) — sin(x)-sin(y) + (sin(x)-cos(y) + cos(x)-sin(y))1i.
/I\
folgt durch Ausmultiplizieren

Der Satz folgt nun aus dem Vergleich der Realteile und der Imaginirteile. [ |



Wir heiBen Sinus und A&
Cosinus! : N . . .
P — Sinus und Kosinus sind untrennbare Freunde

Satz 11.5. Fiir alle x € R gilt

‘ _ o0 ok 2kt _ . _:c3 a:5_ _\k . z2k !

sin(@) =2 (U gy = ,}‘330(5” w s (U m>
0 2%k . 2 4 2k

COS(x) _ kg{)<_1)k'(§k)! = kh_)rr;()(l—%—l—%—...(—l)k.(gk)!)

Beide Reihen konvergieren zudem jeweils absolut.

Bemerkung. Satz besagt insbesondere, dass wir sin(xz) und cos(z) als Reihen be-
schreiben koénnen. Dies ist wichtig, weil man dadurch in der Praxis sin(z) und cos(x)
annaherungsweise ausrechnen kann.

Beweis. Es sei x € R. Ganz analog zum Beweis der absoluten Konvergenz der Exponen-
tialreihe kann man auch hier problemlos mithilfe des Quotienten-Kriteriums [6.11] zeigen,
dass die beiden angegebenen Reihen absolut konvergieren. Zudem gilt:

wir wollen den Ausdruck wieder in Real- und Imaginirteil aufteilen, nachdem i" € {—1,1} wenn n gerade,
und nachdem i"€{—1i, i} wenn n ungerade, teilen wir die Reihe auf in n gerade und n ungerade

¢

S I\ S n n n
cos(x) + sin(z)i = €' = > @ = Zl”x—' = > i”-m—' Dy i"-m—'
n=0 " n=0 n 4 n gerade s n ungerade s
wir konnen die Reihe zerlegen, weil die Reihen rechts, wie gerade gesehen, konvergieren
i 9% 22k . i .ok 22kt i( 1)k 22k i ( 1)k 2kt .
= 17 + 1- 177 = — . + ( — R T ) 1.
2k)! 2k+1)! 2k)! 2k+1)!
= I - S CU V=R R

denn i%F = (i%)F = (—1)*

Die Aussage des Satzes folgt nun, indem man den Realteil und den Imaginérteil zu Beginn
und am Ende vergleicht. [ |

Satz 11.6. (Stetigkeit der Sinus- und der Kosinusfunktion) Die Funktionen

R - R d R - R
t — sin(t) un t +— cos(t) sind stetig.

Beweis (x). Wir zeigen im Folgenden, dass die Sinusfunktion stetig ist. Der Beweis, dass
die Kosinusfunktion stetig ist, verlauft ganz analog. Das Stetigkeitskriterium aus Satz
besagt, dass es geniigt, folgende Behauptung zu beweisen:

Behauptung. Fiir jede konvergente Folge (a,)nen in R gilt lim sin(a,) = sin ( lim an).
n—oo n—oo
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Wir setzen a := lim a,,. Es ist

00 Satz Funktionalgleichung
: ¥ Nt . .
lim sin(a,) = lim Im(e®") = Im( lim e“’“) = Im( lim e 'e(“"_“”)
= Im (e lim el 9") = Im(e" - 1) = sin(a).
n—oo
das gleiche Argument wie im Beweis von Satz [7.8] zeigt,
dass fiir alle z € C mit |2| < § gilt, dass |e* — 1[ < 2|2
aus lim (a, — a) = 0 folgt nun, dass lim e(®» =91 =1 [

n—roo n— o0

11.2. Definition von 7. Wir wollen in diesem Teilkapitel “7” einfithren. Die Zahl 7 wird
in der Schule als der halbe Umfang eines Kreises von Radius 1 eingefiihrt. Das Problem,
welches sich nun stellt ist, wie ist denn die “Lénge” eines Kreises definiert? Wir werden diese
Frage erst in Analysis II beantworten. Wir fithren im Folgenden 7 auf eine andere Weise ein.
Wir werden spéter in Analysis II sehen, dass die Definition von 7, welche wir im Folgenden
geben werden, tatséchlich der Definition iiber den Umfang eines Kreises entspricht.

Wir wollen nun also eine verniinftige Definition von 7 geben, mit den Hilfsmitteln, welche
uns zur Verfiigung stehen. Die Idee ist, dass wir 7 iber die Nullstelle(n) der Kosinusfunktion
einfithren. Dazu miissen wir uns aber erst einmal davon iiberzeugen, dass die Kosinusfunk-
tion, so wie wir sie definiert hatten, iberhaupt eine Nullstelle besitzt.

Fir z € R gilt:

nach Satz gilt k=0 k=1 k=2 Summand
+ +
. S _ k ) 1,2k . _ IL’Q :r4 O _ k ) :I:Qk
COS(I‘) - kgo( 1) (2k)! =1 2 + 24 +kz::3( 1) (2k)!
. o S} Ve p2k+1 o B 23 LS e} k. 22kt
sin(z) = 2 (1) ekrnr 7 5 T t&ED 2k + 1)

Das folgende Lemma besagt nun, dass sich fir z € [0, 2] die Werte von sin(x) und cos(z) an
den Partialsummen orientieren. Insbesondere erhalten wir durch dieses Lemma eine gewisse
Kontrolle iiber sin(z) und cos(z) fiir z € [0, 2].

Satz 11.7. Fir z € [0, 2] gilt

2 I2

(1) 1—%§cos(x)§1—?—l—x—4 und  (2) = —

3 3 5
< sin(z) < x—‘%—i—%.

[N

9
6

[\)

Bemerkung. Es folgt leicht aus Satz [[1.7, dass cos(0) = 1, dass cos(2) < 0 und fiir alle
x € (0,2] gilt: sin(x) > 0.

Beweis (x). Fiir den Beweis des Satzes benétigen wir folgende Behauptung:

Behauptung. Es sei (ay)g>om eine monoton fallende Folge von nicht-negativen reellen Zah-
len. Dann gilt

S (=D)*-ap € [0, a0 falls der Grenzwert existiert.
k=2m
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2 'L‘2 f1}4 x x*
Graph von 1-%- Graph vc/)n -5 +5; Graph von x— %3 Graph von x— F"F%
/ /
/
\ ; ; | | | / |
/
~7 1
/
/
/
hier liegen die Werte von cos(x) fiir x€[0,2]  hier liegen die Werte von sin(z) fiir z € [0, 2]
Es gilt in der Tat: da alle Folgenglieder in [0, ag,,] liegen, folgt aus Satz
dass auch der Grenzwert in [0, ag,,] liegt
s . . n k . \lr
S (=D)Pap = lim > (=1)*-a = lim (agm—aomi1+aomioa—-..+(—1)"a,) € [0, as)
k=2m =0 k—om n—00 ~~ d

im Beweis des Leibniz-Kriteriums
auf Seite [78 hatten wir gesehen, dass
diese alternierende Summe in [0, a2 ] liegt H

Wir wenden uns jetzt dem eigentlichen Beweis zu.

(1) (a) Wie gerade besprochen gilt cos(z) = % + kz (—1)k- (‘;Z'.
. . . .. k ka CE4
(b) Wir miissen also zeigen, dass fiir alle z € [0, 2] gilt k§2(— ) @] e [0, ﬂ}.
2k
(c) Nach der Behauptung geniigt es zu zeigen, dass die Folge ay := ék)'
monoton fallend ist.
(d) Fiir k > 2 gilt:
apyr o a?kT? (2R x? < 4 <1
ar,  (2k+2)! 22 (2k+2)-(2k+1) T Qk+2)-2k+1) ‘
denn z€]0, 2] denn k£>2
Also ist die Folge ay, := fiir K > 2 monoton fallend.

(2k)'
(2) Der Beweis der Ungleichungen fiir sin(z) verlauft ganz analog zum Beweis von (1). W

Satz 11.8. Die Einschrinkung der Kosinusfunktion auf das Intervall [0,2] ist streng mo-
noton fallend.

Fiir den Beweis von Satz miissen wir die Werte der Kosinusfunktion an verschiedenen
Punkten vergleichen. Folgendes Lemma ermdoglicht dieses Unterfangen.

Lemma 11.9. Fir x,y € R gilt:

(1) cos(z) —cos(y) = —2-sin (x;—y) - sin (x;y),
(2) sin(z) —sin(y) = 2-cos(z;y) -sin(z;y).
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Beweis von Lemma[I1.9 Es seien z,y € R. Wir setzen u := ¥ und v := *7%. Dann gilt:

denn u+v=2 und u—v=y Satz [[1.4]

cos(z) — cos(y) = cos(u+v) — cos(u — v) L
= (cos(u)-cos(v) — sin(u)-sin(v)) — (cos(u)-cos(—v) — sin(u)-sin(—v))
= —2-sin(u)-sin(v) = —2-sin (%)-sin (%)

aus Lemma folgt, dass cos(—v) = cos(v) und sin(—v) = —sin(v),
also heben sich zwei Terme weg, und zwei Terme sind gleich

Diese Aussage iiber sin(x) — sin(y) wird ganz dhnlich bewiesen. [

Beweis von Satz[11.8. Wir wollen also zeigen, dass die Einschrinkung der Kosinusfunktion
auf das Intervall [0, 2] streng monoton fallend ist. Es seien also xo > z1 zwei reelle Zahlen in
[0, 2]. Wir miissen zeigen, dass cos(zy) < cos(x;). Mit anderen Worten, wir miissen zeigen,
dass cos(xg) — cos(x1) < 0. In der Tat gilt:

nach Lemma [11.9] (1) nach Satz (2) sind die diese Sinuswerte positiv
+ _ +
cos(zy) — cos(xy) = —2-sin ( % ) - sin ( % ) < 0.
— ~—
€(0,2], da z1, 72 €10, 2] €(0,2], da z1, 72 €10, 2]
und da z2 > x1 und da z2 > 1 ]

Definition. Nachdem cos(0) > 0 und cos(2) < 0 gibt es nach dem Zwischenwertsatz
ein x € (0,2), so dass cos(x) = 0. Satz besagt, dass der Kosinus auf dem Intervall
0, 2] streng monoton fallend ist. Es gibt also genau eine Nullstelle im Intervall [0, 2]. Wir
definieren jetzt

7 := 2 - die Nullstelle der Kosinusfunktion auf dem Intervall [0, 2].

14 Graph der Kosinusfunktion

cos(2) - ****** \

Bemerkung. Es ist

/ Nullstelle im Intervall [0, 2], dies ist per Definition 7
2

Sin(g)2 = 1- cos(g)2 =1-0=1 — sin(§) = 1.
4 4 4
Lemma [[1.3] per Definition von m denn sin(z) > 0 fiir z € [0, 2]

Wir erhalten insbesondere

(a) e2' = cos(Z)+sin(3)i = i
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Daraus konnen wir auch herleiten, dass

(b) 67: = (e§1)2 = i? —1,
(c) el = (621)3 = (-1)-i = —i,
(d) o= (et = (=)-1 = 1

5
e2' =1
/ .

\ _— die “Lange” des Kreisbogens ist ¢
0 5 =m 32 27 / \\// =1
—1

Bemerkung. Die Gleichung e™ = —1 kann auch geschrieben werden als €™ + 1 = 0. Diese
Gleichung wird manchmal als die schonste Gleichung der Mathematik bezeichnet, nachdem
diese die fundamentalen komplexen Zahlen e, 7, i,1 und 0 in Verbindung setzt.

imagindre Einheit i

Kreiszahl 7 i

e + 1 = 0
Eulersche Zahl e 5 e additiv neutrales Element 0

multiplikativ neutrales Element 1

Bemerkung. In Satz[0.7 hatten wir gesagt, dass die Exponentialfunktion exp: R — R streng
monoton steigend ist. Insbesondere ist die Exponentialfunktion exp: R — R injektiv und
wir konnten dadurch den Logarithmus als die Umkehrfunktion In: (0,00) — R definieren.
Nachdem exp(27i) = 1 = exp(0) sehen wir nun, dass die komplexe Exponentialfunktion
exp: C — C nicht injektiv ist. Insbesondere gibt es keine (offensichtliche) Definition eines
komplexen Logarithmus.

Das folgende Lemma zeigt, dass die Sinus- und die Kosinusfunktion 27 periodisch sind.
Lemma 11.10. Fiirt € R gilt:

cos(t+%5) = —sin(t) und sin(t+3) = cos(t)
cos(t +m) = —cos(t), und sin(t +7) = —sin(¢)
cos(t +2m) = cos(t) und sin(t +27) = sin(¢)
Beweis (). Es sei t € R. Dann gilt
cos(t+2)+sin(t+5)i = T2 = eli.e2l = ¢l = —sin(t) + cos(t)1,
cos(t+m) +sin(t +m)i = &M = et = . (1) = —cos(t)—sin(t)i,
cos(t 4+ 2m) +sin(t 4+ 2m)i = H2m) = eti.e2mi — gti] = cos(t) + sin(¢)i.
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Die Aussagen folgen, wie so oft, durch Vergleich der Real- und Imaginérteile. [

Bemerkung. Die Symmetrieeigenschaften aus Lemma und Lemma [11.10] zusammen
mit dem Graphen in Abbildung geben uns nun in etwa die Graphen der Sinusfunktion
und der Kosinusfunktion auf ganz R, welche in Abbildung skizziert sind.

/ Graph der Sinusfunktion

Wir beschlieflen das Teilkapitel mit einer meiner Lieblingsfunktionen.

Beispiel. In der folgenden Abbildung zeigen wir den Graphen der Funktion f: R\ {0} — R,
welche gegeben ist durch z + sin(1). Fiir alle k € Z gilt

T

f(ﬁ) =1 und f(mlJrg;) = —1 und falls zudem k#0 gilt: f(ﬁ) = 0.

Graph der Kosinusfunktion

STE

Wir sehen also, dass diese Funktion im Intervall [—1, 1] unendliche viele Nullstellen besitzt
und sogar jeder Zahl in [—1,1] von unendlich vielen z’s im Intervall (0,1] angenommen
wird. Diese Funktion f ist der Ursprung fiir viele weitere Funktionen mit unerwarteten
Eigenschaften.

VANl [T
Vi o

11.3. Polarkoordinatendarstellung von komplexen Zahlen.

Satz 11.11. (Satz iiber die Polarkoordinatendarstellung) Zu jeder Zahl z € C\ {0}
ezistiert genau ein r € Ryg = {z € R|z > 0} und genau ein ¢ € [0,27), so dass

Graph von x> sin(1) auf R\{0}
1

A

N

z = r-el
Definition. Zu jeder Zahl z € C \ {0} existiert also genau ein r € R. und genau ein

@ € [0,27), so dass z = r - e?'. Dieses Zahlenpaar (r,¢) nennt man die Polarkoordinaten
von Z.

Beweis (x). Es sei also z € C\ {0}. Wir zeigen zuerst die Existenz von r € Ry und

© € 10,27) mit 2z = re?l. Wir setzen w := r7- Man beachte, dass |lw| = 1. Wir wollen nun
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|z| = r ist der euklidische Abstand zum Ursprung

_—  ist der “Winkel” d.h. die “Lénge” des Kreisbogens

im Folgenden zeigen, dass es ein ¢ € [0,27) mit w = e®' = cos(p) + sin(p)i gibt. Wir
schreiben w = x + yi. Nachdem |w| = 1 folgt aus |w|*> = 2? + ¢?, dass |z| < 1 und auch
yl < 1.

Behauptung. Es gibt ein ¢ € [0, 7] mit cos(y)) = .

Fiir den Kosinus gilt cos(0) = 1 und cos(m) = — cos(0) = —1. Die Kosinusfunktion ist
stetig, also existiert, nach dem Zwischenwertsatz ein ¥ € [0, 7], so dass cos(¢)) = x. H

Behauptung. Es ist sin(¢) = y oder sin(y)) = —y.
Wir miissen also zeigen, dass sin(1))? = y2. Dies ist in der Tat der Fall, denn
sin(¥)? = 1—cos(¥)? = 1 —2% = 22+ 9% — 22 =92
,1\ N——

folgt aus Lemma [I1.3 =lw?=1 H
Wenn sin(v¢)) = y, dann gilt natiirlich, dass

et = cos(y) +sin(¥)i = z+yi = w.

Andererseits, wenn sin(y) = —y, dann gilt:
Lemma [[1.2] Lemma [IT.10
| v v
e?m=¥) = cos(2m — 1) +sin(2r —1p)i = cos(—¢) +sin(—)i = cos(¢p) — sin(zh)i

= r+yl = w.

Nachdem 27 — ¢ € [r, 2] haben wir also ein ¢ € [0,27] mit w = ¥’ gefunden. Nachdem
e?™ = €% gibt es auch ein ¢ € [0,27) mit w = €. Nun gilt
2= |z = = |z|-w = 2] - el
|| ~~
Es verbleibt zu zeigen, dass r und ¢ € [0,27) eindeutig bestimmt sind. Es ist klar, dass
r eindeutig bestimmt ist, da r = |z|. Die Kosinusfunktion ist auf [0, 7] streng monoton
fallendm Man kann damit auch leicht zeigen, dass ¢ € [0, 27) eindeutig bestimmt ist. Die
Ausarbeitung der Details verbleibt hierbei eine freiwillige Ubungsaufgabe. |

"1In der Tat, es folgt aus sin(§ — x) = sin(§ + ) und aus Satz dass sin(z) > 0 fiir z € (0, 7). Es

folgt dann aus dem Beweis von Satz dass die Kosinusfunktion auf [0, 7] streng monoton fallend ist.
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w=a+yi — | 14— Graph der Kosinusfunktion

wobel |w

ABBILDUNG 38. Skizze fiir den Beweis von Satz [11.11]

Bemerkung. Mit Satz [11.11] konnen wir jetzt die Multiplikation von komplexen Zahlen
geometrisch interpretieren. Es seien also z,w € C. Nach Satz [11.11] konnen wir schreiben
w=r-e?und z = 5 - e¥!. Dann gilt

Pi

w-z = r-ef 5.l = gtV
Wir sehen also, dass sich die “Winkel”m addieren und die Betrége multiplizieren.

. N
w-z =1r-8- €(¢+¢1)1 —

11.4. Die Einheitswurzeln (x). Wir beschliefen das Kapitel mit folgendem Satz.

Satz 11.12. Es sein € N. Dann gilt fiir z € C, dass
M=1 = z=e*" wobeik e {0,...,n—1}.

Beweis (x). Wir beginnen mit einer Vorbemerkung. Fiir z € C und m € Ny gilt:

() = ¢Fooniel = bt = e
~—
m-Mal
Wir beweisen nur die “<="-Richtung. Es sei also k£ € {0,...,n — 1}. Dann gilt
5 — 2k Lo (ezmg)n _ e2rifm _ p2mik _ (em)k — 1k =1
/l\
Vorbemerkung Vorbemerkung

SWir setzen das Wort “Winkel” in Anfithrungszeichen, weil wir den Begriff Winkel in dieser Vorlesung
nicht eingefiihrt haben.
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Die “=="-Richtung folgt ziemlich leicht aus dem Satz iiber die Polarkoordinatendarstel-
lung. Nachdem wir die Aussage nicht verwenden werden, wollen wir die Details nicht
ausfiihren. [ |

Definition. Die komplexen Zahlen z = e?™*/* L = 0,...,n — 1 werden oft als die n-ten
Einheitswurzeln bezeichnet.
Die letzte Abbildung des Kapitels zeigt die 3-ten, 6-ten sowie die 8-ten Einheitswurzeln.

27
27 £

A R A R
N N N

es’! —

die 3-ten Einheitswurzeln die 6-ten Einheitswurzeln die 8-ten Einheitswurzeln
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12. DIFFERENTIATION
12.1. Definition der Ableitung und erste Eigenschaften.

Definition. Es seﬂf: (a,b) — R eine Funktion, es sei g € (a,b) und es sei h # 0 mit
xo + h € (a,b). Dann gilt:
Steigung der Geraden durch die beiden Punkte f(zo+ h) — f(xo)

(xo, f(zo)) und (z¢ + h, f(xo + h)) auf dem Graphen von f h '

Wir bezeichnen diesen Wert als Differenzenquotient von f bei xy beziiglich h.

Flg 4 R) oo & [0 + 1) = f(0)

o Steigung = ]
[

flxo) T = ! ‘.

| T
T To To+ h

Der Gedanke ist nun zu betrachten, wie sich der Differenzquotienten verhélt, wenn h
“immer kleiner wird”. Mathematisch heifit das, dass wir den Grenzwert des Differenzen-
quotienten mit h — 0 betrachten, falls dieser Grenzwert existiert.

Definition. Es sei f: (a,b) — R eine Funktion und es sei xy € (a,b). Wir sagen, f ist
differenzierbar in xo, wenn der Grenzwert”|
/ i f @0+ R) — f(20)
flao) = lim h
existiert. Wir nennen f'(zo) die Ableitung von f im Punkt .

Bemerkung. Es folgt direkt aus den Definitionen, dass

i f@o @) _ i f@)- i)
h—0 h T—x0 T—Zo ’

Manchmal werden wir den Ausdruck auf der rechten Seite bevorzugen.

Definition. Es sei f: (a,b) — R eine Funktion. Wenn f differenzierbar im Punkt =y € (a, b)
ist, dann bezeichnen wir die Funktion

R — R
r = f(xo) + f'(z0) - (¥ — 20)

"In diesem Kapitel betrachten wir nur Funktionen, welche auf offenen Intervallen (a,b) definiert sind.
Hierbei gilt, dass —oco < a < b < 0.
"TWir betrachten also die Funktion (@ —x0,0)U(0,b—1209) — R

f(xo+h)—f(z
ho (Oi)L (wo)

)

und wir betrachten dann den Grenzwert mit A — 0 fiir diese Funktion.
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als die Linearisierung von f am Punkt xy. Zudem bezeichnen wir den Graphen der Linea-
risierung als die Tangente zum Graphen von f am Punkt x.

Bemerkung. Die anschauliche Bedeutung der Differenzierbarkeit von f im Punkt z ist,
dass f in der “Néhe von xy” durch eine lineare Funktion “approximiert” werden kann.
Mit anderen Worten, der Graph kann in der “Nihe von (zg, f(z0))” durch eine Gerade
approximiert werden.

/—— Graph von f

Graph der Linearisierung

f(z0) Uz) = f(zo) + f(z0)(x — 20)

an diesem Punkt kann der Graph nicht durch eine Gerade
“approximiert” werden; f ist also im Punkt z; nicht differenzierbar

Definition. Es sei f: (a,b) — R eine Funktion. Wir sagen f ist differenzierbar, wenn f in
jedem Punkt z( € (a,b) differenzierbar ist. Wir nennen dann die Funktion
fli(a,b) - R
x — fl(z) die 1. Ableitung von f.

af
dx

= f'(xo).

Notation. Der Klarheit halber schreiben wir manchmal % = f" und

T=XT(
Lemma 12.1. Es seien m,y € R. Dann ist x — m - x + y differenzierbar und es gilﬁ

%(m x4y = m oder knapper: (m-x+y) = m.

Beweis. Wir betrachten die Funktion f(xz) = m -z + y. Es sei x5 € R. Dann gilt

2o+ h) — f(xo) i (m-(xg+h)+y)— (m-xzo+y) . m-h
= lim = lim— = m.
h h—0 h h—0 h [

Der folgende Satz gibt ein hilfreiches Kriterium fiir Differenzierbarkeit.

Satz 12.2. FEs sei f: (a,b) — R eine Funktion und xy € (a,b). Dann gilt:

es gibt eine Funktion ¢: (a,b) — R,
f st differenzierbar im Punkt xo <= welche stetig in zq ist, so dass
f(z)—f(xo) = (x—z0)-p(z) fir alle x € (a,b)

Zudem gilt im Falle der Differenzierbarkeit, dass p(xo) = f'(x0).
"Wenn wir einen Ausdruck in x angeben, dann meinen wir damit die Funktion, welche auf der Teilmenge

von R definiert ist, fiir den dieser Ausdruck definiert ist. Mit m - x + y meinen wir also die auf ganz R
definierte Funktion x — m -z 4+ y.
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Beweis. Wir machen zwei Vorbemerkungen:

(1) Wie oben angemerkt gilt: lim w — lim {®)=f(z0)

h—0 T—T0 T—Xxo

(2) Nach Satz [7.9] gilt: ¢ ist stetig im Punkt zp <= lim p(x) = p(x0).
T—T0

Wir wenden uns nun dem eigentlichen Beweis des Satzes zu. Wir zeigen zuerst die “="-
Richtung. Wir nehmen also an, dass f differenzierbar ist im Punkt zy. Wir setzen

v: (a,b) — R
N %ﬁxo), wenn xoy # x,
f'(zo), wenn r = .

Es folgt aus (1) und (2), dass ¢ im Punkt zq stetig ist. Alle anderen Aussagen sind sowieso
von ¢ erfiillt.
Wir beweisen nun die “<="-Richtung. Wir nehmen also an, dass es eine solche Funktion

@ gibt. Dann gilt: _ _
lim flmo+h) = flzo) _ lim f@) = flwo) _ lim o(z) = o(z).
h—0 h 4 T—x0 T — Xo 4 T—T0 4
folgt aus (1) Wahl von ¢ folgt aus (2), da ¢
im Punkt x( stetig
Wir haben also bewiesen, dass f in x differenzierbar ist, und dass ¢(xg) = f'(x¢). |

Lemma 12.3. Es sei f: (a,b) = R eine Funktion und es sei xq € (a,b). Dann gilt:
f st differenzierbar im Punkt xro = f st stetig im Punkt xo.

Beweis. Es sei f: (a,b) — R eine Funktion, welche im Punkt z( € (a,b) differenzierbar ist.
Nach Satz gibt es eine Funktion ¢: (a,b) — R, welche stetig in x, ist, so dass

flz) = f(zo) + (x — x0) - p(x) fir alle z € (a,b).
Die konstante Funktion = +— f(zo) und die lineare Funktion x — x — z, sind natiirlich

stetig. Zudem ist nach Voraussetzung die Funktion x — ¢(z) stetig im Punkt z,. Also
folgt aus Satz und der obigen Gleichheit, dass x — f(x) im Punkt z stetig ist. [

Satz 12.4. (Ableitungsregeln) FEs seien f,g: (a,b) — R Funktionen, welche differen-
zierbar im Punkt x € (a,b) sind. Zudem sei A € R. Dann sind die Funktion f + g, Af und
f g im Punkt x differenzierbar, und es gilt:

1) (f+9)) = fiz)+4()

(2) (Af)(z) = A-f(2)

B)  (f-9)@) = f(2)g(@)+ f(z)g(x) (Produktregel)

Wenn g(x) # 0, dann ist die Funktion 5 im Punkt x differenzierbar, und es gilt:
gy = 9@ 1@ -d@)- @

@ (e - o

(Quotientenregel).
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Beweis. Es seien f,g: (a,b) — R Funktionen, welche differenzierbar im Punkt z € (a,b)
sind. Es folgt leicht aus den Definitionen, dass die ersten beiden Aussagen gelten.
Wir beweisen nun die Produktregel. Es ist

(Fg)(@) = lim E(F(z 4+ h)-glo+h) — f(x)-g(x)) =

Wir wollen jetzt in den Ausdruck f(xz+h)-g(x+h)— f(x)-g(z) die beiden Differenzen
f(z+h)— f(x) und g(x + h) — g(z) einfithren, welche in den Definitionen von f'(x)
und ¢'(z) auftauchen. Wir wenden jetzt genau den gleichen Trick wie im Beweis von
Satz an, ndmlich wir fithren eine geschickte Nullergénzung durch.

= lim (f(x+h)g(w+h)—f(2)glz+h) + f(x)g(z+h) - f(2)g(x))
= lim ; (f(x+h)-g(a +h) = f(2)-gle + h) + lim § (f(2)-g( + h) = f(x)-g(x))
= lim 7 (f(x+h) = f(2)) - limg(w + P +f(z): mn((x+m—gwn

7 - v

v~ g

—f’ =g(x), weil g stetig =g'(z)
= f'(z)-g ()+f()()
Wir wenden uns nun dem Beweis der Quotientenregel zu. Diese wird ganz dhnlich bewiesen
wie die Produktregel. In der Tat, es ist ")

L f@+h)  f@)) g 1 fl@+h)-g(x) - f(z)-g(x+h)

&%h(mx+m am> = s e h

L et h)gla) () gle) + T()-0(x) — f(x) gl +h)

T e m - g s b))

. T — f(x gz —g(z

- inﬁgﬂxkh}gﬁd < h 9(x) h j(x))

= U))@)) .
Beispiel. In Ubungsblatt 9 werden wir mithilfe der Ableitungsregeln zeigen, dass fiir jedes
n € 7 gilt: j—x " = n-g"l

12.2. Ableitung der Exponentialfunktion, sowie von Sinus und Kosinus. Wir er-
innern daran, dass nach der Definition auf Seite [90] und nach Satz gilt:

2kt

x2 o0 " . . xs .’1,‘5 e k
exp(x) = 1—|—x—|—?—|—n§3m Ssowie SlIl(LU) = Qi—g‘i‘y"'_k;(_l) m

Um die Ableitungen der Exponentialfunktion und der trigonometrischen Funktionen be-
stimmen zu kénnen, miissen wir erst einige grundlegende Grenzwerte berechnen.

"Der besseren Lesbarkeit wegen unterschlagen wir im Argument folgenden subtilen Punkt. Nach Vor-
aussetzung ist g(z) # 0. Nach Lemma wissen wir, dass g im Punkt z stetig ist. Also gibt es ein € > 0
so, dass fiir alle h € (—e¢,¢€) gilt, dass g(xz + h) # 0. Insbesondere macht es Sinn g(z + h) im Nenner zu
erlauben.
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Satz 12.5. (1) lm PO =L _ 1 4y (2) lim @ _
z—0 x z—0 X

Beweis von Satz (1). m Fiir den Beweis von Satz benotigen wir folgende, erst mal
etwas unmotivierte Behauptung.

Behauptung 1. Fiir z € R mit [z| < 1 gilt | <
ehauptung tir v € R mit 2] < ; gi Z (m+2) <
Es sei also |z < 3. Dann gilt:
Somml = Zlatml - ST < ZO" - 2 -
m+2 1 m+2 o (m+2)! ; o 2 R 1-3
folgt aus Satz folgt aus Satz [3.17 da Satz da dies eine
|z| < 4 und (m+2)! > 1 geometrische Reihe isttH

Behauptung 2. Es seien f,g: (—n,n7) — R zwei Funktionen, so dass hH(l) f(x) = 0 und so
T—
dass g beschrénkt ist, dann gilt 1irr(1) f(z)-g(x) =0.
T—
Die Behauptung folgt aus Satz [3.5] zusammen mit Satz [7 H

Wir wenden uns jetzt dem elgenthchen Beweis der Aussage zu. Nachdem es manchmal
leichter ist zu zeigen, dass ein Ergebnis “0” ist, beweisen wir lieber die dquivalente Aussage:

.1 .
91012(1) ;(exp(:c) —1—2) = 0. In der Tat gilt:

.1 .1 &
lim — (exp(z)—1—2z) = lim - (1+x—|—2——1—1‘) = lim=-- > &
0 T =0 T n=2 n! =0 n=2 n!
denn % " =" ? Substitution m =n — 2 Behauptung 2
\l/ 0 xn72 ‘1’ e rm \l/
z—0 nz::2 n! x—0 mZ:O (m+2)!
—_————

nach Behauptung 1 ist
fiir |z| < % der Betrag
durch 2 beschriankt [ |

Beweis von Satz[12.5 (2). Der Beweis verlduft ganz analog zum Beweis von Teil (1). In
der Tat gilt:

lim ~ (sin(a) —z) = lim > (x+z< ) = LS a2

z—0 X z—0 X (2n + 1)! z—=0 T n=1 2n+ 1)!
lima- > (1) lima. 5 (—1)m 0
= limx - -H)—— = limzx- — =
=0  n=1 (=1) (2n +1)! z—0 mZ:O (=1) (2m + 3)!

. 1 .
fir || < 3 ist der Betrag

Aus dieser Berechnung folgt sofort, dass lim Smagw) = 1.  wiederum durch 2 beschrénkt [ |

z—0

80Bevor man den technisch etwas anspruchsvollen Beweis liest, kann es hilfreich sein, sich die Aussage
des Satzes, mithilfe der obigen Beschreibungen von exp(x) und sin(x) plausibel zu machen.
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Mithilfe von Satz [12.5kénnen wir jetzt die Ableitungen der Exponentialfunktion, der
Sinusfunktion und der Kosinusfunktion bestimmen.

Satz 12.6.
d d . d .
(1) e exp(z) = exp(z) (2) - sin(x) = cos(x) (3) % cos(z) = —sin(x).

Beweis. Wir betrachten zuerst die Exponentialfunktion. Es ist

d 4. exp(e+h)—exp(zx) . exp(x)-exp(h) —exp(x)

gr SPlr) = lim o = h

= exp(z) - lim exp(h) — 1 _ exp(z) -1 = exp(z).
h—0 h

—_———
=1, nach Satz [[2.5]
Wir wenden uns nun der Sinusfunktion zu. Wir fithren folgende Berechnung durch:

d . . sin(z + h) —sin(x)
4 =1
1 Sn@) = lim h \ }
2cos (z+5 )sin | 5 sin (=
= lim ( 2) (2) = limcos (z+2%) - lim M = cos(x).
h=0 h h—0 g h—0 57
g S———
T = cos(x), weil cos nach — 1 nach Satz[ZH
nach Lemma m (2) Satz m stetig 1st und Substitution :E:%’
Ganz &hnlich kann man mithilfe von Lemma m (1) zeigen, dass - cos(z) = —sin(z).
Dies ist eine Ubungsaufgabe auf Ubungsblatt 9. [ |

12.3. Die Kettenregel und die Umkehrregel.

Satz 12.7. (Kettenregel) Es seien f: (a,b) — R und g: (¢,d) — R zwei Funktionen mit
f((a,b)) C (c,d). Wenn f im Punkt xo € (a,b) differenzierbar ist und wenn g im Punkt
f(xo) differenzierbar ist, dann ist g o f im Punkt xo differenzierbar und es gilt

(go f)(z0) = g'(f(w0)) - f'(w0).

Beweis. Wir setzen yo := f(x¢). Nach Satz “=" gibt es Funktionen
(1) a: (a,b) > Rmit  f(x) — f(xo) = (x — zo) - a(x), wobei « stetig in xg ist,
(2) B: (¢;d) = Rmit  g(y) — g(yo) = (y —wo) - B(y), wobei 3 stetig in yp ist.

Es gilt nun:
g —y, Anwendung von (2) aufy = f(z)

— 4
(go fl(x) = (g0 f)lxo) = g(f(x)) —g(f(z0)) = (f(z)— f(x0))  B(f(2)).
- (x — o) - afz) - B(f(2)).

Anwendung von (1)

Zudem folgt aus Satz (7.7, dass die Funktion x — «(z) - 5(f(z)) stetig in zq ist. Es folgt
also aus Satz[12.2] “<=”, dass die Funktion go f im Punkt z, differenzierbar ist. Zudem gilt

(go f)(zo) = alzo)-B(f(w0)) = f(w0)-g'(f(20)).
0 4

folgt aus dem letzten Satz von Satz [12.2]
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[
Korollar 12.8. Fiir jedes a € (0,00) gilt %aw = a”-In(a).
Beweis. Fiir alle v € R gilt: denn nach Satz [[2.6 gilt exp’ = exp
¥
g = iexp(ln(a) x) = exp/(In(a)-x)-(In(a)-x)" = exp(In(a)-z)-In(a) = a”-In(a).
dz " dz " "
Definition von a* Kettenregel mit f(x) = In(a)-2 und g(z) = exp(z) Definition von «® W

Satz 12.9. (Umkehrregel) Es sei f: (a,b) — R eine stetige und streng monotone Funk-
tion. Wenn f in einem Punkt xo € (a,b) differenzierbar ist mit f'(xo) # 0, dann ist die
Umkehrfunktion =1 im Punkt yo := f(xo) differenzierbar und es gilt:

—1\7 . 1
)W) = w6y

Bemerkung. Die Aussage der Umkehrregel wird in Abbildung [39] illustriert:

(1) Aus Lemma (9.4 wissen wir, dass wir den Graphen der Umkehrfunktion f~! erhalten,
indem wir den Graphen von f an der x = y-Diagonale spiegeln.

(2) Ganz analog zu (1) erhalten wir die Tangente zum Graphen von f~' am Punkt
(vo, [~ (o)) = (f(x0), w0), indem wir die Tangente zum Graphen von f am Punkt
(20, f(z0)) an der z = y-Diagonale spiegeln.

(3) Ganz allgemein gilt jedoch, dass wenn wir eine Gerade mit Steigung m an der = = y-
Diagonale spiegeln, erhalten wir eine Gerade mit Steigung %

1

Graph der Funktion f

(w0, f(20))

Tangente zum Graphen der Funktion f
—— - am Punkt (zo, f(z9)) mit Steigung f(z)

Tangente zum Graphen der Funktion f~!

— am Punkt (f(zo), f(f(x0)) = (yo, f(yo))

mit Steigung 77 = Frreo

Graph der Umkehrfunktion f—!

17
J (f(zo), o) = (f(z0), [ (f(x0))) = (o, [ (y0))

ABBILDUNG 39. Die Ableitung der Umkehrfunktion.

Beweis. Es sei f: (a,b) — R eine stetige und streng monotone Funktion und zudem sei
xg € (a,b). Wir betrachten im Folgenden den Fall, dass f streng monoton steigend ist.
Der Fall, dass f streng monoton fallend ist, wird ganz &hnlich bewiesen. Es folgt nun aus
Lemma [0.2] dass die Umkehrfunktion auf dem offenen Intervall (f(a), f(b)) definiert ist.
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Wir nehmen nun an, dass f im Punkt zq differenzierbar ist mit f’(xq) # 0.
(1) Nach Satz gibt es eine Funktion ¢: (a,b) — R, welche stetig in xq ist, mit

(%) f(x) = fwo) = (2 —w0) - p(2),

Wir wollen nun mithilfe des Differenzierbarkeitskriteriums aus Satz zeigen, dass
die Umkehrfunktion f~*: (f(a), f(b)) — R im Punkt yo = f(x¢) differenzierbar
ist. Fiir beliebiges y € (f(a), f(b)) folgt aus (x), angewandt auf z := f~!(y) und
o = [~ (yo), dass

y=vo = (/7' W) = [T () - (S ().
Also ist

1) — () = L -

Es folgt aus Satz und Satz , dass die Abbildung y — m im Punkt g

stetig ist. Also ist die Funktion f~' nach Satz im Punkt vy, differenzierbar.
(2) Es verbleibt die Ableitung der Umkehrfunktion im Punkt gy zu bestimmen:ﬂ

1
° -1 — = i o -1 — d - —1\/ - -
Gor ) =y = & (Gof W = A y= U = s
. -~ - N— —
= f"(F (o)) - (fF 1) (o) =
nach der Kettenregel [
d 1
Korollar 12.10. —In(z) = =.
dx 7
Beweis. Es ist d 1 1 1
) = — L _ 1
dz & exp/(In(z)) +  exp(In(z)) z
Umkehrregel angewandt auf f(z)=exp(x) denn nach Satz [12.6] gilt exp’ = exp m
Korollar 12.11. Fiir alle d € R gz’l % z¢ = d- 2?1 als Funktion auf (0, 00).

81Dje folgende Berechnung ersetzt nicht den gerade erst erbrachten Beweis, dass die Umkehrfunktion
im Punkt yq differenzierbar ist, denn in dieser Berechnung verwenden wir ja die Kettenregel und hierbei
verwenden wir schon implizit, dass wir in (1) gezeigt hatten,das f~! im Punkt yo differenzierbar ist.

82Wir hiitten die Ableitung von f~! auch in (1) mithilfe des Nachsatzes von Satzbestimmen konnen,
aber das Argument, welches wir jetzt geben, kann man sich leichter merken.

83Mit diesem an sich einfachen Beweis kann man sich auch jederzeit leicht die Formel fiir die Ableitung
der Umkehrfunktion herleiten.

84Fiir beliebiges d € R ist die Funktion 2 — z% nur fiir € (0, 00) definiert. Fiir d € Ny ist die Funktion
auf ganz R und fiir d € Z ist diese Funktion immerhin noch auf R\ {0} definiert. Fiir d € Z beweisen wir
die Ableitungsregel %xd =d- 2% " in Ubungsblatt 9 mithilfe der Produkt- und der Quotientenregel.
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Beweis. Es sei d € R. Es gilt: denn nach Satz gilt exp’ = exp und
nach Korollar gilt In(z)’ = X
d d ¥ 1
ﬁxd = %exp(ln(:t) ~d) = exp’(In(z) - d) - (In(z) - d) = exp(In(z) - d) - - d = 2471 d.
———
T " d 3 =exp(In(z))d=zd
Definition von x Kettenregel angewandt auf
f(z) =1In(z)-d und g(z) = exp(z) u
Beispiel. Es gilt: d d 1 1 1 1 1 :
oV = ; 3T =3 als Funktion auf (0, co).
Korollar [2.11]

12.4. Stetig differenzierbare Funktionen. Es sei f: (a,b) — R eine differenzierbare

Funktion. Wir erhalten dann also aus f eine neue Funktion, ndmlich die 1. Ableitung
f'i(a,b) - R

Wir koénnen uns nun fragen, was fiir Eigenschaften diese Funktion besitzt. Von den Bei-

spielen her, welche wir bis jetzt betrachtet hatten, kénnte man meinen, dass die Ableitung

immer stetig ist. Das folgende Beispiel zeigt jedoch, dass dies nicht notwendigerweise der
Fall ist.

Beispiel. Wir betrachten die Funktion
fTR — R
2 . gqin(L
N x?-sin(;), wenn z # 0,
0, wenn x = 0.

In Ubungsblatt 9 werden wir sehen, dass die Funktion in jedem Punkt differenzierbar ist,
insbesondere auch im Punkt z = 0, wo die Ableitung 0 betrédgt. Die Ableitung von f ist
also gegeben durch
"R = R
N 24 - sin(1) — cos(2), wenn x # 0,
0, wenn x = 0.

In Ubungsblatt 9 zeigen wir, dass diese Ableitungsfunktion im Punkt x = 0 nicht stetig ist.

Dieses leicht verstérende Beispiel fithrt uns zu folgender Definition, welche im Folgenden
ofters eine Rolle spielen wird.

Definition. Es sei f: (a,b) — R eine Funktion. Wenn f differenzierbar ist, und wenn zudem
f’ stetig ist, dann heifit f stetig differenzierbar.

Wir beschlieflen das Kapitel mit folgender fast schon selbsterklédrender Definition.
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Graph der Funktion sin(2), z # 0 Graph der Funktion 2 - sin(3), z # 0

\
AN
|

4% |

1
8w

Definition. Es sei f: (a,b) — R eine differenzierbare Funktion. Wenn die Ableitung [
differenzierbar ist, dann schreiben wir

f(2) — f// — (f/)/7
genannt die 2. Ableitung von f. Allgemeiner, wenn die (n — 1)-te Ableitung von f differen-
zierbar ist, dann definieren wir die n-te Ableitung von f als

f = (7YY

und wir sagen, f ist n-fach differenzierbar.

Beispiel. Wir betrachten die Funktion

fTR — R
—22, wenn x <0,
T 9
z°, wenn x > 0.

Man kann ohne grofle Miihe zeigen, dass die Funktion f differenzierbar ist mit Ableitung

f"R — R
s —2z, wenn z < 0,
& 2z, wenn z > 0.

Mit anderen Worten, es ist f'(z) = 2-|z|. Die Funktion f’ ist stetig, jedoch ist die Funktion
f" im Punkt x = 0 nicht differenzierbar. Also ist die urspriingliche Funktion f stetig
differenzierbar, jedoch nicht zweimal differenzierbar ist.

Beispiel. In diesem Beispiel wollen wir kurz aufzeigen, dass hchere Ableitungen auch im
echten Leben durchaus eine Rolle spielen. Nehmen wir an, wir sollen die Bahn eines Aufzugs
programmieren, welche bei ¢ = 0 bei h(0) = 0 anfingt und bei einer Zeit T bei h(T) = H
angekommen ist. Dazu miissen wir eine Funktion h: R — R konstruieren mit folgenden
Eigenschaften:

(1) h(0) =0 und A(T) = H.

(2) T sollte moglichst klein sein, Sie wollen ja schnell am Ziel sein.

(3) |A'(t)] sollte aus Sicherheitsgriinden nicht gréfier als 2,57 sein.
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(4) |h"(t)| entspricht der Kraft, welche auf einen Korper wirkt. Diese sollte aus Gesund-
heitsgriinden durch 0,1-¢g =0,1-9,81% begrenzt sein.

(5) K3 (t), d.h. die Anderung der Kraft, welche auf einen Kérper wirkt, wird in der Phy-
sik als Ruck bezeichnet. Der Absolutbetrag des Rucks, d.h. |h(®)(¢)], sollte ebenfalls
niedrig gehalten werden, denn grofler Ruck wird von Menschen normalerweise als
unangenehm empfunden 7]

5]

Geschwindigkeiten von Aufziigen

Velocity (m/s)

-

o 2 <4 a 2 10

Tims(s) Quelle: httns://peters-research com/index nhn/papers/ideal-lift-kinematics/

85 AuBer man ist auf der Dult und zahlt ein Vermégen, um genau das zu erfahren.


https://peters-research.com/index.php/papers/ideal-lift-kinematics/
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13. DER MITTELWERTSATZ DER DIFFERENTIALRECHNUNG
13.1. Globale und lokale Extrema von Funktionen.

Definition. Es sei D C R eine Teilmenge, es sei f: D — R eine Funktion und es sei zy € D.
(1) Wir sagen f nimmt bei zy ein globales Maximum an, wenn gilt:

fzo) > f(x) fiir alle x € D.
(2) Wir sagen, f nimmt bei xy ein lokales Maximum an, wenn gilt:
es gibt ein § > 0, so dass  f(zg) > f(z) fiirallez € D mit z € (zg—3J,x0+0).

Ganz analog definieren wir lokales und globales Minimum. Wir sagen f nimmt bei z( ein
lokales Fxtremum an, wenn f bei xy ein lokales Maximum oder ein lokales Minimum an-

nimmt.
T \/\/\/\/_< Graph von f

| i —— i °
P N
' ' Zo hier wird ein globales
lokales Maximum wird
hier angenommen

Minimum angenommen
($0—5,$0+(5) ang

Definition. Es seien —oco < a < b < +o0. Fiir ein Intervall der Form [a, ], (a,b] oder [a,b)
bezeichnen wir das Intervall (a,b) als das Innere des Intervalls.

Satz 13.1. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im
Inneren des Intervalls differenzierbar istF9%udem sei o € I ein Punkt im Inneren des
Intervalls. Wenn f ein lokales Extremum in xy annimmt, dann ist f'(zq) = 0.

Ableitung ist 0, obwohl kein lokales Extremum vorliegt

Graph einer
Funktion f:(a,b] =R — [

o —— 5
AN \ \ / /
f nimmt hier lokale Extrema an

Bemerkung. Die Umkehrung der Aussage von Satz gilt nicht: Wenn f’(z() = 0 bedeutet
das nicht, dass bei z; ein lokales Extremum vorliegt. Wenn wir beispielsweise f(r) = a3
betrachten, dann ist f'(z) = 322, also ist f/(0) = 0, aber 0 liegt kein lokales Extremum vor.

Beweis. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im Inneren
des Intervalls differenzierbar ist. Zudem sei zo € I ein Punkt im Inneren des Intervalls.

86Wenn also beispielsweise f: [a,b) — R eine Funktion ist, dann fordern wir, dass f auf dem Intervall
(a,b) differenzierbar ist. Im Punkt a fordern wir, dass f stetig ist, aber auch nicht mehr.
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Wir nehmen an, dass f bei xg ein lokales Minimum annimmt. (Der Fall, dass ein lokales
Maximum vorliegt, wird ganz analog bewiesen.) Es gibt also per Definition ein § > 0, so
dass f(xg+ h) > f(xg) fur alle h € (—6,0).
Nachdem zy im Inneren des Intervalls liegt und nachdem f differenzierbar ist, existiert
also der Grenzwert o) = lim Flao+h) — f(zo)
h—0 h

Nach der Definition des Grenzwertes }llirr(l) einer Funktion, siehe Seite [102], miissen die links-
*>

und rechtsseitigen Grenzwerte }111;11 und }111{11 existieren und diese miissen mit f'(z) tiber-
0 0

einstimmen. Es gilt also

f'(zg) = lim J@oth)=J(z0) < 0 undesgilt f'(zg) = lim Jaoth)=(z0) > 0.

0 h , ANO . h ,
fiir h € (-6,0) gilt: fir h € (0,0) gilt:
h<0und f(zo+h)> f(zo) h>0und f(zo+h)> f(zo)
also ist der Bruch <0 also ist der Bruch > 0

Wir haben also gezeigt, dass f'(z¢) < 0und f’'(zo) > 0. Dies impliziert, dass f'(x¢) =0. W

Bemerkung. Es sei f: [a,b] — R eine stetige Funktion auf einem kompakten Intervall. Nach
Satz nimmt f ein globales Maximum an. Es gibt nun zwei Moglichkeiten:
(1) Das globale Maximum wird in den Endpunkten a oder b angenommen.
(2) Das globale Maximum wird im Inneren (a, b) des Intervalls angenommen. Wenn f auf
(a,b) differenzierbar ist, dann muss nach Satz die Ableitung an diesem Punkt
null sein.

Die Beobachtung erlaubt es uns oft, das globale Maximum einer explizit gegebenen Funktio-
nen zu bestimmen. Die gleiche Diskussion gilt natiirlich auch fiir Minima anstatt Maxima.

globales Extremum wird am Rand angenommen oder im Inneren, dort gilt dann f(x¢)=0

13.2. Mittelwertsatz der Differentialrechnung. Der folgende Satz ist einer der ganz
zentralen Sitze der Analysis 1.

Satz 13.2. (Mittelwertsatz der Differentialrechnung) Es seien a < b € R und es sei
f:]a,b] — R eine stetige Funktion, welche auf (a,b) differenzierbar ist. Dann gibt es ein

€ € (a,b), so dass F(b)—f(a
e = Lo
Bemerkung. Wir kénnen uns W als die “durchschnittliche Steigung” der Funktion

f: [a,b] — R vorstellen. Der Mittelwertsatz der Differentialrechnung besagt also, dass es
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ein £ € (a,b) gibt, so dass an dem Punkt ¢ die Ableitung, d.h. die Steigung der Tangente
im Punkt (&, f(§)), gerade der durchschnittlichen Steigung entspricht.

\\ durchschnittliche Steigung ist JO) = /@)

b—a
\ Steigung der Tangente bei &
’ [(b)—[(a)
T F©) ist £1(8) = =

Wir beweisen den Mittelwertsatz zuerst fiir den Spezialfall, dass f(a) = f(b). Dieser
Spezialfall ist schon so wichtig, dass er als eigener Satz formuliert wird.

Satz 13.3. (Satz von RolleED Es seien a < b € R und es sei g: [a,b] — R eine stetige
Funktion, welche auf (a, b) differenzierbar ist. Wenn g(a) = g(b), dann gibt es ein & € (a,b),
so dass ¢g'(§) = 0.

Beweis des Satzes von Rolle. Da ¢ stetig ist existieren nach Satz zwei reelle Zahlen
xg, 1 € [a,b], so dass

g(xo) > g(z) > g(xq) fir alle x € [a, b].
Bei xg liegt also insbesondere ein lokales Maximum vor und bei z; liegt insbesondere ein
lokales Minimum vor.

(1) Wenn g € (a,b), dann folgt aus Satz[13.1] dass ¢/(zo) = 0. Also sind wir fertig.

(2) Genauso, wenn z; € (a,b), dann folgt wiederum aus Satz [13.1] dass ¢'(z1) = 0. Wir
sind also wiederum fertig.

(3) Wenn zy und z; auf den Endpunkten des Intervalls liegen, dann folgt aus g(a) = g(b),
dass g(a) = g(b) sowohl der maximale als auch der minimale Funktionswert ist. Es
folgt also, dass, die Funktion g konstant ist. Dies bedeutet aber, dass ¢'(z) = 0 fiir
alle = € (a,b). |

— Graph der Funktion g: [a,b] — R

| |
| a To T b

Beweis des Mittelwertsatzes der Differentialrechnunyg.

Wenn f(a) = f(b), dann ist die gewiinschte Aussage gerade der Satz von Rolle. In
der Tat werden wir nun den allgemeinen Fall mit einem kleinen Trick auf den Satz
von Rolle zuriick fiithren.

8TDer Satz ist nach dem franzosischen Mathematiker Michel Rolle (1652-1719) benannt.
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Wir betrachten die stetige Funktion
b) —
g(x) = f(x)— fb) — fle 1)7— i(a) Az —a),
welche auf dem Intervall [a, b] definiert ist. Diese Funktion ist stetig und sie ist differenzier-
bar auf (a,b). Durch explizites Einsetzen sieht man, dass g(a) = f(a) = g(b). Nach dem
Satz von Rolle existiert also ein £ € (a,b), so dass ¢'(§) = 0. Nachdem
1oy — gy F(0) = fla)
g(x) = f(z) T b4
folgt also, wie gewiinscht, dass b) —
Im Folgenden wollen wir einen Zusammenhang zwischen Monotonie und Ableitung herlei-
ten. In der folgenden Abbildung erinnern wir dazu noch einmal an den Begriff der (strengen)
Monotonie, welchen wir auf Seite [[13] eingefiihrt hatten.

/ :1l:1 :;;2 o/ I

monoton steigende Funktion streng monoton steigende Funktion

T o

Satz 13.4. (Monotoniesatz) Es sei [ C R ein Intervall und es sei f: I — R eine stetige
Funktion, welche im Inneren des Intervalls differenzierbar ist. Dann gilt:

(1) f'(x) >0 fir alle inneren Punkte x von I <= f ist monoton steigend
(2) f'(x) >0 fiir alle inneren Punkte x von I = [ ist streng monoton steigend.

Zudem gelten die offensichtlichen analogen Aussagen fir (streng) monoton fallende Funk-
tionen.

Bemerkung. Im Allgemeinen gilt in (2) nicht die Umkehrung. Wir betrachten beispielsweise
die Funktion f(z) = 23, deren Graphen wir unten skizzieren. Diese Funktion ist streng
monoton steigend. Aber es gilt f/(0) = 0, d.h. die Ableitung ist nicht immer positiv.

die Funktion ist streng
monoton steigend

/ \ die Ableitung bei x = 0 ist 0

Beispiel. Wir betrachten die Funktion fi[0,00) — R

x = = T2
Nach der Diskussion auf Seite ist diese Funktion stetig. Nach Korollar [12.11] ist die
Funktion x — /2 auf dem offenen Intervall (0, o) differenzierbar und fiir jedes = € (0, c0)

. : 3
Graph der Funktion z — z I
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Y LU B
vV

Es folgt also aus Satz dass die Funktion streng monoton steigend ist.

gilt: > 0.

1
— Graph von = — /z = x2

Beweis. Es sei I C R ein Intervall und es sei f: I — R eine stetige Funktion, welche im
Inneren des Intervalls differenzierbar ist.

(1) Wir beweisen zuerst die “<”-Richtung. Es sei also f monoton steigend. Dann gilt
fiir alle inneren Punkte x des Intervalls I, dass

da h > 0 und f monoton steigend
ist der Zéhler > 0 und der Nenner > 0,
also ist der Quotient > 0

Wir beweisen nun die “="-Richtung. Es sei also f'(z) > 0 fiir alle z im Inneren des
Intervalls 1. Wir miissen also folgende Behauptung beweisen:

Behauptung. Fiir alle xo > xq gilt f(z2) > f(x1).

Wir fithren einen Widerspruchsbeweis durch. Wir nehmen nun also an, dass es
x9 >y in I gibt, so dass f(zg) < f(z1). Wenn wir den Mittelwertsatz auf die
Einschrankung von f auf [z1, x5] anwenden, erhalten wir ein § € (1, x2), so dass

(&) = Fa) =7 @) g6 folgt: Fe) = S =f@)

X9 — Iq To — T )[‘
da z3>z1 und f(z2) < f(z1)

im Widerspruch zur Voraussetzung, dass f’(x) > 0 fiir alle  im Inneren von I.

flx) 4 / [ —— Graph von f

Ty Ty ™~ Intervall I

(2) Die zweite Aussage des Satzes wird eigentlich genau wie die “="-Richtung von (1)
mithilfe eines Widerspruchbeweises bewiesen [ u

88Es ist eine gute Ubungsaufgabe sich zu iiberlegen, warum man denn die “<”-Richtung von (2) nicht
auch ganz analog wie die “<”-Richtung von (1) beweisen geht. Was lduft da schief?
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Korollar 13.5. (Tachosatz) FEs sei [ ein Intervall und es sei f: I — R eine stetige
Funktion, welche im Inneren des Intervalls differenzierbar ist. Wenn f'(x) = 0 fir alle x
im Inneren von I, dann ist f konstant.

Bemerkung. Etwas salopp besagt das Korollar also: wenn der Tacho des Autos immer bei 0
ist, dann ist das Auto immer am gleichen Ort.

40 60
20 80 /%
—° 100 Q L1 Q
0 km/h

Beispiel. Wir betrachten die Funktion f(z) = sin®(z) + cos?(x). Fiir alle z € R gilt
f'(z) = 2sin(x)-sin’(z) + 2-cos(x)-cos’(x) = 2sin(x)-cos(x) + 2 cos(z)-(—sin(x)) = 0.
A A

aus (z") =n- 2" und aus der Kettenregel nach Satz gilt sin’(z) = cos(z)
folgt: (f(x)") =n- f(x)"~*- f'(x) und cos’(z) = —sin(x)

Aus Korollar folgt also, die uns natiirlich schon lidngst bekannte Tatsache, dass die
Funktion 2 + sin®(x) + cos?(z) eine konstante Funktion ist.

Beweis. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im Inneren
des Intervalls differenzierbar ist, und so dass f’(z) = 0 fiir alle  im Inneren von . Es folgt
aus dem Monotoniesatz[13.4] dass f sowohl monoton steigend als auch monoton fallend ist.
Das ist nur moglich, wenn f konstant ist.[g_g] [

Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im Inneren des
Intervalls differenzierbar ist. Zudem sei xq € I ein Punkt im Inneren des Intervalls. In
Satz hatten wir gesehen, dass wenn f ein lokales Extremum in zy annimmt, dann ist
f'(x9) = 0. Andererseits hatten wir auch gesehen, dass aus f’(zp) = 0 nicht notwendiger-
weise folgt, dass bei z( ein lokales Extremum vorliegt.

Der néchste Satz besagt nun, dass wir in vielen Féllen, mithilfe der 2. Ableitung, doch
die Aussage treffen konnen, dass ein lokales Extremum vorliegt. Fiir die Formulierung des
Satzes erinnern wir an die Definition des lokalen Extremums und wir fithren eine neue, eng
verwandte, Definition ein.

Definition. Es sei D C R eine Teilmenge, es sei f: D — R eine Funktion und es sei ¢y € D.
(1) Wie auf Seite sagen wir, f nimmt bei xy ein lokales Mazximum an, wenn gilt:

es gibt ein § > 0, so dass f(xg) > f(x) fiir alle z € D mit z € (xg—3, x9+9).
(2) Wir sagen, f nimmt bei xo ein striktes lokales Mazimum an, wenn gilt:

es gibt ein § > 0, so dass f(xg) > f(x) fir alle zq #x € D mit z € (xg—09, g+0).

89Man kann die Aussage natiirlich auch leicht direkt mithilfe des Mittelwertsatzes m beweisen.
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Ganz analog definieren wir den Begriff des strikten lokalen Minimums.

|

I

| hier liegt ein lokales Maximum hier liegt ein striktes
aber kein striktes lokales lokales Maximum vor

Maximum vor

Satz 13.6. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im
Inneren des Intervalls zweifach differenzierbar ist. Zudem sei xo € I ein Punkt im Inneren
des Intervalls.
(1) Wenn f'(xo) = 0 und f"(x¢) > 0, dann liegt bei xo ein striktes lokales Minimum vor.
(2) Wenn f'(xg) = 0 und f"(zo) < 0, dann liegt bei xqo ein striktes lokales Mazimum vor.

Beispiel. Wir betrachten die Funktion f(z) = 2. Dann ist f'(z) = 2z und f”(x) = 2. Also
gilt f/(0) = 0 und f”(0) =2, und f nimmt in der Tat in bei x = 0 ein lokales Minimum an.

Graph von f(z) = z*

(a)=2, also ist £(0)=0 Graph von f(z) = —a?
f"(x)=2, also ist f"(0)=2 f'(x)=—2x, also ist f'(0)=0
f'(x)=-2, also ist f"(0)=-2

Beweis. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion, welche im Inneren
des Intervalls zweifach differenzierbar ist. Zudem sei xqg € I ein Punkt im Inneren des
Intervalls.

(1) Wir nehmen nun an, dass f/(zy) = 0, und dass f”(zo) > 0. Es folgt:
f'(xo +h)

/ g
fim PG i FEE ) > 0
- T T T
denn f'(x9) =0 Definition von f”(x9)  nach Voraussetzung

Aus der Definition des Grenzwertes folgt, dass es ein ¢ > 0 gibt, so dass m
fiir alle 0 # h € (~4,6) gile: L0 F0 5 g

Es folgt:
(a) fir alle h € (=4,0) gilt:  f'(zo+h) < O,
(b) fir alle h € (0,0) gilt: f'(xg+h) > 0.

90Ganz allgemein gilt: wenn tlim g(z) = b > 0, dann folgt aus der Definition des Grenzwertes angewandt
—a

beispielsweise auf ¢ = 27 dass es ein § > 0 gibt, so dass g(t) > %b > 0 fiir alle t € (a —d,a+9).
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Es folgt nun aus diesen Ungleichungen und dem Monotoniesatz

(a) f ist auf dem Intervall [xy — §, zo] streng monoton fallend,
(b) f ist auf dem Intervall [xg, 2 + d] streng monoton steigend.

Dies wiederum impliziert, dass bei zq ein striktes lokales Minimum vorliegt.
(2) Diese Aussage wird natiirlich ganz analog bewiesen. |

Graph der Ableitung f'—_ |

Graph von f —

—

Graph der zweiten Ableitung f" \/\w “
xo Intervall (zo—d,29+9)

ABBILDUNG 40. Skizze fiir den Beweis von Satz [13.6]
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14. ARKUSFUNKTIONEN UND DIE REGEL VON L’HOPITAL

14.1. Grenzwerte von Quotienten. Analog zur Diskussion auf Seite [43] fithren wir aber
erst einmal folgende Notation ein.

Notation. Es sei f: (a,b) — R eine Funktion.

li;rlljf(:c) =07 & h%f(x):o & es gibt ein § >0 so dass f(z)>0 fiir z€ (b—6,b),
1i;%f(x) =0 & 1i;%f(x):0 & es gibt ein § >0 so dass f(z) <0 fir z€ (b—4,b).

Wir fiihren die analoge Definition auch fiir rechtsseitige Grenzwerte ein.

N [ [—_

/ N——"
11 T = 117 i = + 1 = -

Notation. Analog zur partiellen Multiplikation auf Seite 42| fithren wir nun auf der Menge
R U {#o00} U {0*} folgende partielle Division ein:

: a<0 0 a>0 400 —o0
b>0 b 0 5 400 —00
0F —00 * 400 400 —00
0~ +o00 * —00 —00 +00
b<0 - 0 7 —00 +00
+00 0 0 0 * *
—00 0 0 0 * *

Hierbei bedeutet das Symbol “x”, dass die Division nicht definiert ist.
Wir kénnen nun folgenden Satz formulieren.

Satz 14.1. Es seien f,g: (a,b) — R Funktionen, so dass g(x) # 0 fiir alle x € (a,b), und
so dass h;*rzl)f(x) und li;r})g(x) ezxistieren oder bestimmt gegen oo divergieren. Dann gilt:

RO T
@ z)  limg(z) ’
Jb o g(x) limg

wenn der Quotient auf der rechten Seite in der obigen Tabelle definiert ist. Fiir linksseitige
Grenzwerte gelten natirlich die analogen Aussagen.

Beweis. Der Bewelis ist ganz dhnlich zum Beweis von Satz [3.11] (2) und Satz [3.10] u
Beispiel. Es ist .
. sin(z) 1
xh/r% cos(xz) — 0 00

14.2. Umkehrfunktionen von trigonometrischen Funktionen.
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Definition. Die Tangensfunktion ist definiert als die Funktion
tan: R\ {§ +n-7[ne€Z} — R

T tan = it

cos(x)

LI ) e
I

Lemma 14.2.

(1) Es ist d _ 1
dx tan(z) = cos(z)?"
(2) Die Einschrdnkung der Tangensfunktion auf das Intervall (=%, %) ist streng monoton
steigend.
(&) b il lim tan(z) = —oo und lim tan(z) = +o0.
TN~ 5 z,/+5
Beweis.
(1) Es gilt: Quotientenregel, siche Satz Satz [12.6]
itan(x) _ dsin(z) 7 cos(z)-sin’(x) — sin(z)-cos'(x) i cos(x)? +sin(z)? 1
dx ~ dxcos(x) cos(r)? N cos(z)? ~ cos(z)?’

(2) Aus (1) folgt, dass die Ableitung der Tangensfunktion auf (-7, 7) positiv ist. Es folgt
aus dem Monotoniesatz dass die Einschrankung der Tangensfunktion auf das
Intervall (—7, 7) streng monoton steigend ist.

. . IR sin(x) _ +1 _
(3) Aus Satz [14.1| folgt: 271\11}[1% tan(z) = ml\lggg wos(s)] = oF = T00. |

Definition. Wir betrachten die Funktion tan: (=7, %) — R. Nach Lemma @ (2) ist die
Funktion streng monoton und daher nach der Bemerkung auf Seite[115]injektiv. Zudem folgt
aus Lemma@ (3) und Lemmam 9.2, dass tan((—5, 5)) = (—00,00) = R. Wir bezeichnen
die zugehorige Umkehrfunktion

arctan: R — (=%,%)

r +— arctan(z) := tan"!(z)

als die Arkustangensfunktion, oder kurz, als den Arkustangens.
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. Graph der Tangensfunktion auf (-3, 3)
: i s / xy-Diagonale
ERCELEELETLELEE s CEEEELS R Ry S S R R T TE
1
! Graph der Arkustangensfunktion
5 t t f
5 —L L3
—7 1o
7777777777777777777 /4:/7” ”””_.7__.§””7;””””7””””””
Lemma 14.3.
1) Es ist d 1
(1) 7z arctan(z) = 5.
(2) Die Arkustangensfunktion ist streng monoton steigend.
(3) Es ist . - ' W
lim arctan(z) = —= und lim arctan(x) = +-
T——00 2 z—00 2

Bemerkung. Die Aussage, dass in der Ableitung der Arkustangensfunktion keine trigono-
metrische Funktion auftaucht, ist iiberraschend und wird spéter noch eine sehr wichtige
Rolle spielen, wenn wir Stammfunktionen betrachten.

Bewezs.

1) Es gilt:
(1) Es gi % arctan(z) = tan’ 1t () } = cos(arctan(z))?.
an’(arctan(z) 4 costarctan(a)?

die Umkehrregel fiir Ableitungen  nach Lemma W (1) gilt: tan’(z) = m
besagt: (f71)(z) = 72—
U@
Wir miissen also noch zeigen, dass fiir alle z € R gilt: cos(arctan(z))* = 1. Wir
geben zwei Argumente, eines ist sehr kurz und prézise, das andere ist dafiir etwas
anschaulicher.
(a) Wir fithren folgende Berechnung durch:

wir setzen zwischenzeitlich y := arctan(z) wir teilen Zahler und Nenner durch cos(y)?
2 v 2 cos(y)* v 1 1
cos(arctan(z))? = cos(y)? = e e T ()
_ 1 cos(y)?
¥ 1422’

denn y = arctan(x)

(b) Im anschaulichen Argument betrachten wir der Versténdlichkeit halber nur den
Fall, dass # > 0. Wir schreiben a = arctan(x) € (0, 7). In einem rechtwinkligen



167

Dreieck mit Winkel a wie in Abbildung [41] links gilt, dass

. Gegenkathete Ankathete
sinf) = ————  und cos(a) = ——
Hypotenuse Hypotenuse
Also folgt:
50 108 tan(a) — Gegenkathete
~ Ankathete

In Abbildung[T]rechts betrachten wir jetzt ein rechtwinkliges Dreieck mit Winkel

a und Ankathete der Linge 1. Aus tan(«) = x folgt dann, dass die Lange der

Gegenkathete x betridgt. Aus dem Satz von Pythagoras folgt dann, dass die

Hypotenuse die Lange v/1 + x2 besitzt. Zusammengefasst erhalten wir also, dass
Ankathete 1

cos(a) = = .
(a) Hypotenuse V1422

Daraus folgt nun aber, dass

1

cos(arctan(z))? = cos(a)? = o

Hypotenuse

AN

__~ Gegenkathete zu o

N

Ankathete zu a

ABBILDUNG 41.
(2) Diese Aussage folgt aus Lemma (2) und Lemma[9.5] Alternativ folgt die Aussage
aus (1) und aus Satz[13.4]
(3) Diese Aussage folgt leicht aus den Definitionen und Lemma[14.2(3). Der Beweis dazu
ist eine freiwillige Ubungsaufgabe. [ |

Nachdem die Umkehrfunktion der Tangensfunktion soviel Freude bereitet hat, betrachten
wir nun auch noch Umkehrfunktionen der Sinus- und Kosinusfunktion.

Definition. Wir betrachten die Einschrédnkung der Sinusfunktion auf das Intervall [—7, 7].

Nachdem -Lsin(z) = cos(z) > 0 fiir alle z € (-2, ) folgt aus Satz , dass die Sinus-
funktion auf dem Intervall [-7, 7] streng monoton steigend ist. Die dazugehorige Umkehr-
funktion

arcsin: [-1,1] — [-%,F]
wird die Arkussinusfunktion genannt. Ganz analog kann man zeigen, dass die Einschréankung
der Kosinusfunktion auf das Intervall [0, 7] streng monoton fallend ist. Die dazugehérige
Umkehrfunktion

arccos: [—1,1] — [0, 7]

wird die Arkuskosinusfunktion genannt.
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Graph der Sinustunktion Graph der Kosinusfunktion

N
N AN

streng monoton steigend

NI

streng monoton fallend

Graph der Arkussinusfunktion m Graph der
Graph der Sinusfunktion Arkuskosinusfunktion
” au/f dem Intervall [~5, 5] Graph der Kosinusfunktion
2 / . \ auf dem Intervall [0, 7]
1
—3 1 N
L3 -1 ~1 m
—1 _1
-3

Wir beschlieen das Kapitel mit folgendem Lemma, welches in Prasenziibungsblatt 10
bewiesen wird.

Lemma 14.4. Die Arkussinusfunktion und die Arkuskosinusfunktion sind auf dem Inter-
vall (—1,1) differenzierbar. Zudem gilt auf dem Intervall (—1,1):

% arcsin(z) = \/11_? und % arccos(z) = — \/11——x2
Auch in diesem Fall sehen wir also, dass die Ableitungen nicht durch trigonometrische
Funktionen gegeben sind.

14.3. Die Regel von I’Ho6pital. In Satz [14.1| hatten wir Grenzwerte der Form limM

a\ag(z)
betrachtet. Der Satz macht jedoch keine Aussage fiir folgende zwei Félle:
1) lim f(x) =0 und lim g(x) =0 2) lim f(z) = 400 und lim g(x) = +o0.
1)l (2) lin g(z) @)l /() lin g(2)

Die Regel von I’'Hopital erlaubt es zum Gliick, viele von solchen Grenzwerten zu bestimmen.

Satz 14.5. (Regel von I’'Hopital) Es seien f,g: (a,b) — R differenzierbare Funktionen,
so dass g(x) # 0 und ¢'(x) # 0 fir alle x € (a,b). Wenn einer der folgenden beiden Fille
ewntritt:

1) 1 — 0 und li =0 2) i = d i = +00,
(1) lim f(z) = 0 und lim g(z) (2) lim f(z) = %00 und lim g(x) = +oo
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dann gilt (@)

lm S5 = lm G € RU{~oo}U {oo},

wenn der Grenzwert auf der rechten Seite existiert oder bestimmt gegen oo divergiert. Die
Regel von U’Hopital gilt ganz analog auch fiir rechtsseitige Grenzwerte und fiir beidseitige
Grenzwerte.

Beispiel. Es gilt: ' Ji  wrH . 5= ‘ 1 1
lim =7 =—— lim = lim : = - = +oo.
zN0 Sin(z) \ N0 c0s(7) N0 2V cos(x) 0

wir zeigen mit “%” an, dass die Grenzwerte der Funktionen im Nenner jeweils 0 sind,
. . . ’ . . ~ .
und wir zeigen mit “/_” an, dass wir die Regel von ’'Hopital anwenden

Bei manchen Gelegenheiten muss man die Funktion erst umschreiben, bevor man die Regel

1A N -
von I’'Hopital anwenden kann. Beispielsweise gilt: Vereinfachen des Bruchs

oo 1 1 +
. . | 2UVH P .
lim(z-In(z)) = lim nﬁx) lim—*—— = lim(-z) = 0.
z\,0 T N\0 z\,0 —=z z\,0
der Grenzwert ist von der Form 0 - oo, wir schreiben die Funktion als Bruch um,
so dass wir die Regel von 'Hopital anwenden kénnen

Zudem gilt:

sin(z)—z rH . cos(x) — 1 UH .. —sin(z)

. 1 1
() - :
;{‘% z  sin(z) N zI{‘I(l) x-sin(x) :pl{‘% x-cos(x) + sin(x) N0 —x-sin(x) + 2-cos(z)

der Grenzwert ist von der Form oo — oo, wir schreiben die Funktion wiederum als Bruch um

Fiir den Beweis der Regel von I’'Hopital benttigen wir folgenden Satz.

Satz 14.6. (Verallgemeinerter Mittelwertsatz der Differentialrechnung) Es seien
fyg: [a,b] = R zwei differenzierbare Funktionen. Wenn ¢'(x) # 0 fir alle x € (a,b) und
wenn g(a) # g(b), dann existiert ein £ € (a,b) mit

f©  _ _f)-f(a)

g'(€) 9(b)=g(a) -

Bemerkung. Wenn ¢(z) = z, dann erhalten wir gerade die Aussage vom iiblichen Mittel-
wertsatz der Differentialrechnung.

Beweis des Verallgemeinertern Mittelwertsatzes der Differentialrechnung.

Wie wir gerade gesehen haben, ist der Satz eine Verallgemeinerung vom Mittelwert-
satz welchen wir mithilfe des Satzes von Rolle bewiesen hatten. Auch den
jetzigen Satz konnen wir mit fast dem gleichen Trick auf den Satz von Rolle zuriick
fiithren.

Wir betrachten die Funktion, welche definiert ist durch

N (OB () BRI
pla) = () = TP=T (g(0) — (@)
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Es gilt ¢(a) = f(a) und ¢(b) = f(a). Wir konnen also den Satz von Rolle auf die
differenzierbare Funktion ¢ anwenden und erhalten ein £ € (a,b), so dass ¢'(§) = 0. Dann
gilt
0 = _ _ )~ fla) )
4O = £ - 10T g
Nach Voraussetzung gilt ¢’(£) # 0. Wir erhalten also, wie gewiinscht, dass
€ _ fb)—f(a)
7E& g —gla) u
Beweis der Regel von I’Hopital. Wir betrachten nur folgenden Spezialfall der Regel von
I'Hopital: Es seien f, g: [a, 00) — R zwei stetige Funktionen, welche auf (a, co) differenzier-
bar sind, so dass g(z) # 0 und ¢'(x) # 0 fur alle x € (a,00) und so dass gilt:ﬂ
(1) f(a) = g(a) =0,

(2) der Grenzwert li{n g :83 ist reelle Zahl.

Alle anderen Fille der Regel von I’'Hopital werden in [E], Kapitel 16] bewiesen.
Wir erinnern zuerst daran, dass fiir jede Funktion h: (a,00) — R und d € R per Defini-

tion gilt:
& imh(z)=d = Y 3 VYV |h(z)—d <e
N\ >0 >0 z€e(a,a+d)
Nach Voraussetzung (2) existiert der Grenzwert
d = lim f /(x) eR und wir miissen zeigen, dass lim ACH
a\a ¢'(z) a\a 9()
Es sei also € > 0. Nachdem lim,\, g :83 = d folgt aus der obigen Definition des rechtsseitigen

Grenzwert, dass es ein § > 0 gibt, so dass

(%) fiir alle £ € (a,a + 0) gilt: ﬁg—d < e
Es geniigt nun folgende Behauptung zu beweisen.
Behauptung. fir alle z € (a,a + 9) gilt: ‘;Eg —d| < e

Es sei also x € (a,a + 0). Dann gilt:

nach Voraussetzung (1) gilt f(a) = g(a) =0 folgt aus (x), da & € (a,z) C (a,a + 9)
+ +
flx) _ | f@)=fla) _ _ |
dl = d|l = - d| < e
9(x) 9(z) — g(a) 9'(§)
der verallgemeinerte Mittelwertsatz besagt, dass es ein £ € (a, )
gibt, so dass diese Gleichheit gilt |

Der folgende Satz besagt nun, dass die Regel von ’'Hopital anstatt fiir Grenzwerte + — a
auch fiir Grenzwerte x — oo angewandt werden kann.

91Die Voraussetzungen sind beispielsweise erfiillt fiir lim ?
xT
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Satz 14.7. (Regel von I’'Hépital) Es seien f,g: (a,00) — R differenzierbare Funktionen,
so dass g(x) # 0 und ¢'(x) # 0 fir alle x € (a,00). Wenn einer der folgenden beiden Fille
ewntritt:
(1) lim f(z) =0 und lim g(z) =0 (2) lim f(z) = oo und lim g(x) = +oo,
T—>00

T—r00 T—00 T—r00

dann gilt ,
im L& = m L& cRU{—o0} U {oo},

g—oo  9(T) - amse O )
wenn der Grenzwert auf der rechten Seite existiert oder bestimmt gegen £oo divergiert.
Genau die gleiche Aussage gilt auch fiir den Grenzwert x — —o0.

Beispiel.
(1) Fiir jedes o > 0 gilt:
. 1 ’ . 4 n(x . 1 .11
lim n(f) 2 lim 7‘“(1 (a) = lim —— = lim =.— = 0.
r—oo T T T—>00 %l‘ T =0 - X r—oo & I T
Regel von 1"Hopital Korollar [2.10] und Korollar [2.17] denn a>0

Das heifit fir x — oo wichst die Logarithmusfunktion In(z) “langsamer” als jede
positive Potenz von z.
(2) Fir jedes n € N gilt:
e’ I'H e g U'H ;. e’

X
z—co T" z—oo nan ! z—oo n(n — 1)zn—2 z—oon(n—1)-----2-1 +

Man kann dieses Argument noch etwas verallgemeinern und wir sehen, dass fiir alle
a>1und d € R gilt

lim & 4 " im In(a)" - a* = lim In{a)" - a* 2" = oo
z—vo0 T4 ; T a5 d(d—1)---(d+n—1) - zd—n a0 d(d—1)---(d—n+1) ; '
wir setzen n := max{[d],0} und wir wenden da a>1und n—d>0

die Regel von 'Hopital n-Mal an

Das heif}t fiir © — oo wéchst jede Exponentialfunktion a® mit a > 1 “schneller” als

jede Potenzfunktion z¢.

Im Beweis von Satz werden wir folgendes Lemma verwenden.
Lemma 14.8. Es sei f: (0,00) — R eine Funktion. Fir jedes a € R gilt:
Ih_)rglof(x) — @ = ilg(l) f(2) =a

Die gleiche Aussage gilt auch fiir bestimmte Divergenz gegen +oo.

Beweis von Lemma[14.8 Die Aussage folgt eigentlich sofort aus den Definitionen der bei-
den Grenzwerte links und rechts, welche wir auf den Seiten und eingefiihrt hat-
ten. |

Wir wenden uns jetzt dem Beweis von Satz zu.



172

Beweis von Satz[1].7]

Der Gedanke ist natiirlich, dass wir die Aussage von Satz mithilfe von Lem-
ma [I4.§ auf Satz zuriickfithren wollen.

Wir setzen k(z) := f(2) und I(z) := g(2). Wir erhalten:

gilt nach der urspriinglichen Regel von 'Hopital, also Satz

Lemma [I4.§] wenn wir zeigen koénnen, dass der Grenzwert rechts in R U {£o0} existiert
3 \ :
lim J@) 2 lim ka) 2 lim 7 ()
z—o0 g() 2N\0 () \0 (x)

~—~
8|

L o I L ¢ I R L €5 B
= lim 77—~ = lim —F—*— = lim —~ = lim .
N0 F0(3) 4 e g F 4 0 IE) e g'()

Kettenregel Kiirzen Lemma [T4.§

Nach Voraussetzung existiert der Grenzwert rechts in R U {fo0o0}. Wir hatten also die
Regel von 1'Hopital legitim verwendet. [

Wir haben jetzt den Begriff Grenzwertbegriff — oo zweimal eingefiihrt, einmal fiir Folgen,
und einmal fiir Funktionen. Hierbei herrscht folgender Zusammenhang;:

Lemma 14.9. Es sei f: (0,00) — R eine Funktion. Fir a € RU{xoo} gilt:

lim f(x) = a - lim f(n) = a.
T—>00 n—o0
Grenzwert der Funktion Grenzwert der Folge
f:(0,00) = R (f(n))nen

Beweis. Der Satz folgt sofort aus den Definitionen, welche wir auf den Seiten [32] und
eingefiihrt hatten. [ |

Beispiel. Wir betrachten die Folge a,, = (1 + )" mit n € N. Dann giltﬂ
lim (1—1—%)” = lim exp (ln(l—l—%)%) = exp(hm 1n(1+}1)~n) = exp (lim ln(l—l—%)-x)

Definition von Potenzen, siehe Seite folgt aus Satz[7.4] da exp stetig Lemma [Z4.9]
1 =1

. In(14+2)\ v oIl e :
= exp (hm Il(lx)> = exp ( lim ch_l) = exp(xhﬁrﬁlo li%) = exp(l) = e.
/r\

T—00 = T—00 —5
x T

Regel von I"Hépital

Wir sehen also, dass wir mithilfe von Ableitungen und der Regel von I’Hopital Grenzwerte
von Folgen von reellen Zahlen bestimmen kénnen, welche ansonsten zumindest sehr schwer
zu berechnen wéren.

92)Manchmal wird die Gleichheit lim (1 + L)n — ¢ auch als Definition der Eulerschen Zahl verwendet.
n—oo
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Beispiel. Die Umkehrung von Lemma [14.9] nicht. Wenn wir beispielsweise die Funktion
f(z) = sin(mx) betrachten, dann gilt fiir den “Folgengrenzwert”, dass

lim f(n) = lim sin(7n) = lim0 = 0,
n—00 n—00 n—r00

aber der “Funktionengrenzwert” lim f(z) existiert nicht.
T—00
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15. DAS RIEMANN-INTEGRAL
15.1. Definition des Riemann-Integrals.

Definition. Eine Zerlegung Z von einem Intervall |a,b] ist eine Menge Z = {zo, 21,...,2n}
von reellen Zahlen, so dass
a=20< 21 <z3<- < 2zp_1 <2z, =>0.

Sei nun f: [a,b] — R eine beschrinkte Funktion. Wir definieren

n—1

die Untersumme U(f,Z) = > (zk41 — 2x) - inf f([2k, 2x41]) und
k=0
n—1
die Obersumme O(f,Z) = > (zk+1— 2&) - sup f([2zk, 2k+1])
k=0
von f beziiglich der Zerlegung Z.
Graph der Funktion f: [a,b] — R Obersumme beziiglich Z
Zo=a 21 %y 23 zg =0 20:(1,\21/7:2 / 23 /24:11
~N\ /7 o
Zerlegung des Intervalls [a, 0] Untersumme beziiglich Z
Beispiel. Wir betrachten die Funktion 00,1 - R
r — T
Fiir n € N sei Z, := {0, %, ..., 21 1} die Zerlegung von [0,1] in n Intervalle der Liinge +.
Dann gilt:
sy S T k k+1 1 1 (n—1n n—1
U(f, Zn) _k:O\( " _E)J'inff([ﬁ’ " ]), —;-Eﬂk‘ ;ﬁ 5 = Ton
=z = Lemma 2.3
0
o k1 ok k k+1 1l T 1 n(n+1) n+1
012 = & (2B swp Yy = L8 ) = Lot ok
1 _ kil

Definition. Es sei Z eine Zerlegung von [a,b]. Eine Verfeinerung der Zerlequng Z ist eine
Zerlegung, welche wir aus Z durch Zufiigen von endlich vielen Punkten in [a, b] erhalten.

Wir fassen im folgenden Lemma einige grundlegende Eigenschaften von Untersummen
und Obersummen zusammen.
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Lemma 15.1. Es sei f: [a,b] — R eine beschrinkte Funktion.
(1) Wenn Z' eine Verfeinerung einer Zerlegung Z ist, dann gilt
U(f,z) < U(f,2")  und  O(f,2) < O(f,2).
(2) Es seien Z,7' zwei Zerlegungen von [a,b], dann gilt
U(f,z") < O(f,2).
(3) sup{U(f,2)|Z Zerlegung von [a,b]} < inf{O(f,Z)|Z Zerlegung von [a,b]} [

Obersumme beziiglich Z Obersumme beziiglich 7’
7 vl
Zerlegung Z Verfeinerung Z’ der Zerlegung Z

Beweis. Es sei f: [a,b] — R eine beschrinkte Funktion.

(1) Wir erhalten eine Verfeinerung in dem wir zu einer Zerlegung endlich viele Punkte
hinzufiigen. Indem wir diese der Reihe nach hinzufiigen sehen wir, dass es geniigt
folgende Behauptung zu beweisen.

Behauptung. Es sei Z = {zy,...,2,} eine Zerlegung und w ein weiterer Punkt in
la,b]. Dann gilt U(f, Z) < U(f,ZU{w}) und O(f, ZU{w}) < O(f, Z).
Es ist w € [a, b]. Also existiert ein i € {0,...,n—1}, so dass w € [z;, z;11]. Dann gilt:

alle anderen Terme in den Untersummen heben sich weg

$
= (w=2z) - inf f([w, z]) + (zip1 —w) - nf f([zi00, w]) = (2001 —2) - inf f([2, 2i44])
—_—— —_—
>inf f([2i,2i41)) >inf f([zi,2i+1])
> ((w—2) + (zi —w) = (zig1 — 2)) - Inf f([zi, 201]) = 0.
=0
Insbesondere ist also U(f, Z) < U(f, ZU{w}). Mit fast dem gleichen Argument zeigt
man, dass O(f, Z U{w}) < O(f, Z).
(2) (a) Nehmen wir zuerst an, dass Z = Z'. Nachdem fiir eine beliebige beschrinkte

nichtleere Teilmenge M C R gilt, dass inf(M) < sup(M), folgt sofort aus den
Definitionen, dass U(f, Z) < O(f, Z).

93Die Menge {U(f, Z) | Z Zerlegung von [a, b]} ist also die Menge aller Untersummen, welche beziiglich
beliebigen Zerlegungen auftreten. Aus a < b folgt, dass diese Menge der Untersummen nichtleer ist und

aus (2) folgt, dass diese Menge nach oben beschrinkt. Nach Satz existiert daher das Supremum dieser
Menge.
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(b) Es seien nun Z, Z' zwei beliebige Zerlegungen von [a, b]. Dann gilt{"]
uf,z) < ulf,.zuz) < O(f,zuZz) < O(f2)
folgt aus (1) folgt s (a) f:lgt aus (1)
(3) Diese Aussage folgt aus (2) und aus der Definition von Supremum und Infimum. W

Im Folgenden sagen wir nun, dass eine Funktion f Riemann-integrierbar ist, wenn die
Gleichheit in Lemma m (3) gilt. Genauer gesagt haben wir folgende Definition.
Definition. Eine beschrinkte Funktion f: [a,b] — R heifit Riemann-integrierbar, wenn

sup{U(f, Z) | Z Zerlegung von [a,b]} = inf{O(f,Z)|Z Zerlegung von [a, b]}.

Wenn f Riemann-integrierbar ist, dann nennen wir diesen gemeinsamen Wert das Riemann-
Integral iber f von a nach b, und wir schreiben

b
ff(:v) dx = inf{O(f,Z)| Z Zerlegung von [a, b]}.
¢ =sup{U(f,2)| Z igrlegung von [a, b]}
Bemerkung. Wir sagen in Zukunft oft auch “integrierbar” anstatt “Riemann-integrierbar”

und “Integral” anstatt “Riemann-Integral”. Wenn f Riemann-integrierbar ist, dann sagen
wir auch, dass das Integral fab f(z)dx existiert

Beispiel. Es sei f: [a,b] — R eine konstante Funktion, das heifit es gibt ein ¢ € R, so dass
f(z) = c fur alle x € [a,b]. Dann gilt fiir jede Zerlegung Z = {zo, ..., 2,} von [a,b], dass

U(f,Z) = :g:(zkﬂ — zk)-inff([zk, zk+1]2 = Zg(l)(Zk_l’_l —2E) - C : c(z, — 20)=c-(b—a).

-~
= ¢ da [ konstant alle anderen Terme heben sich weg

Genauso zeigt man auch, dass O(f, Z) = ¢-(b—a). Wir haben also gezeigt, dass f Riemann-
integrierbar ist, und dass

ff(x)da: = c¢-(b—a).

Beispiel. Wir betrachten die Dirichlet-Funktion

f-[L,5 — R
0, wennz e QnIL,j]
v { 2, andernfalls.

9Hier verwenden wir, dass fiir zwei Zerlegungen eines Intervalls [a, b] auch die Vereinigung Z U Z’ eine
Zerlegung ist, und diese ist eine Verfeinerung sowohl von Z als auch von Z'.

9Wenn wir schreiben “Riemann-integrierbar”, dann stellt sich die Frage, ob es denn noch andere De-
finitionen von “Integrierbarkeit” gibt, aufler der Riemann-Integrierbarkeit. Dies ist in der Tat der Fall, in
Analysis IIT werden wir das Lebesgue-Integral kennenlernen, welches viel allgemeiner (und auch deutlich
komplizierter) ist.
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Es sei Z = {z1,...,2,} eine beliebige Zerlegung des Intervalls [1,5]. Dann gilt

U(F.2) = (o —a) - wff(mamn)) = S(on—2)-0 = 0

= 0, weil [zx, zx+1] nach
der Bemerkung auf Seite
rationale Zahlen enthélt

O(f, Z) = :;;(Zk—kl — Zk) . gup f([zk, Zk—H]Z = :g;(zkﬂ — Zk) -2 = (5 — 1) -2 = 8.

= 2, weil [zg, zx+1] nach
der Bemerkung auf Seite [6]]
irrationale Zahlen enthélt

Die Funktion f ist also nicht Riemann-integrierbar. m

Der folgende Satz erlaubt es, die Integrabilitit einer Funktion zu zeigen, ohne direkt mit
Infimum und Supremum zu arbeiten.

Satz 15.2. FEs sei f: [a,b] — R eine beschrinkte Funktion. Es gilt:
o ‘ es gibt eine Folge von Zerlegungen (Z,)nen
f ist integrierbar <= o [a,b], so dass im U(f, Z,) = lim O(f, Z,).

Zudem gilt: wenn solch eine Folge von Zerlequngen vorliegt, dann ist
b

Jf@)de = lmU(f,Z,) = limO(f, Zy).

Beweis. Wir beweisen zuerst die “=-"-Richtung. Wir nehmen also an, dass die Funktion
f: [a,b] — R integrierbar ist. Wir setzen [ := fab f(z) dx. Per Definition gilt

sup{U(f, Z) | Z Zerlegung von [a,b]} = [ = inf{O(f,Z)|Z Zerlegung von |a, b|}.
Nach Satz [5.3| existieren also Folgen von Zerlegungen (W,,),eny und (W)),en mit
lm U(f,W,) = [ = lim O(f, W)).
n—00 n—oo

Dann gilt
= Tm U(f,W,) < EmU(f,W, UW;) < lmO(f,W,UW}) < lmO(f,W}) = I.
n—o0 n o n oo n oo

Lemma [15.1] (1) Lemma [15.1] (2) Lemma [15.1] (1)

Dann gilt Nachdem der erste Ausdruck gleich dem letzten Ausdruck ist, miissen alle Un-
gleichheiten also schon Gleichheiten sein. Die Folge von Zerlegungen (W, U W), cn hat
also die gewiinschte Eigenschaft.
Wir beweisen nun die “«<”-Richtung. Wir nehmen nun also an, es gibt eine Folge von
Zerlegungen Z,, von |a, b|, so dass
imU(f,Z,) = li_}rn O(f, Zn).

n—oo

961 Analysis III werden wir sehen, dass f Lebesgue-integrierbar ist mit Lebesgue-Integral 4 - 2 = 8.
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Dann gilt folgt aus der Definition des Supremums und Satz

4
lim U(f, Z,) < sup{U(f,W)|W Zerlegung von [a, b]}

n—00 -
< inf{O(f, Z) | Z Zerlegung von [a,b]} < lim O(f,Z,).
n—oo
4\

weil nach Lemma [15.1] (1) immer gilt U(f, W) < O(f, Z) Definition des Infimums.
Wir haben angenommen, dass der erste Ausdruck gleich dem letzten Ausdruck ist. Wir
sehen also wiederum, dass alle Ungleichheiten schon Gleichheiten sind. Insbesondere ist f
integrierbar. Zudem folgt aus den Gleichheiten, dass das Integral in der Tat der Grenzwert

—

der Untersummen U(f, Z,)) und der Obersummen O(f, Z,,) ist. [
Beispiel.
(1) Wir betrachten wiederum die Funktion f:[0,1] — R
T = x,
zusammen mit der Folge von Zerlegungen Z,, := {0, %, cee "T_l, 1}, n € N. Es gilt:
lim U(f,Z,) = lm "2 = 1 = 1im "™ = 1im O(f, Z,).
n—oo 4 n—oo 2n 2 n—oo 2N 4 n—oo

auf Seite hatten wir gezeigt, dass U(f, Z,) = "2;1 und O(f, Z,,) = &t

2n
Es folgt also aus Satz dass fol f(z)dx = 3.
(2) Wir betrachten die Funktion — f: [-1,1] — R

{ 0, wenn x # 0,
Tr 1
3, wenn x =0,
zusammen mit der unten skizzierten Folge von Zerlegungen Z, := {1, —5-, 5, 1}.
Dann gilt
U(f,Zn) = 0,
O(f. Zy) 5 G —(=5) = 5
Die Grenzwerte dieser Folgen von Untersummen und Obersummen sind jeweils 0. Es
folgt also aus Satz|15.2] dass f integrierbar ist mit f_ll f(z)dx =0.

j *)7 Graph von f
-1 =1 i 1 1

I
T
2n 2n

15.2. Eigenschaften des Riemann-Integrals. In diesem Kapitel wollen wir einige grund-
legende Eigenschaften des Riemann-Integrals beweisen.
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Satz 15.3. Es seien f,g: [a,b] — R integrierbare Funktionen und A € R. Dann sind auch
die Funktionen f + g und X - f integrierbar und es gilt

f 1@ +o@de = [ @) do+ fol@)da

fbA~f(:U)dx = )\-ff(:c)dx.

Beweis (x). Es seien f,g: [a,b] — R integrierbare Funktionen. Wir miissen zeigen, dass
f + g integrierbar ist mit

[ f@) +g(@)de = [ f(z)de+ [ g(z)da.

Nach Satz existieren Folgen von Zerlegungen (X, )neny und (Y;,),en von [a, b], so dass

imU(f,X,) = lmO(f,X,) = [ fz)de, und

n—oo n—oo

limU(g,Ya) = lmU(gYa) = [ glx)de

Nach Satz geniigt es nun zu zeigen, dass

b b
im U(f +¢.X,UY,) = lmO(f +9,X,UY,) = [ f@)de + [ g(x)dx.

n—oo
a

Fiir den Beweis dieser Aussage benétigen wir folgende Behauptung.
Behauptung. Fiir jede Zerlegung Z von [a, b] gilt:

U(f,2)+U(g,2) < U(f+9,2)
und es gilt: O(f+9,.2) < O(f,Z2)+0O(g,2).

Wir beweisen die Aussage fiir die Untersummen. Die Aussage fiir die Obersummen wird
dann ganz analog bewiesen. Es folgt sofort aus den Definitionen, dass es geniigt zu zeigen,
dass fiir jedes Intervall [c, d] folgende Ungleichung gilt:

inf (f([c.d])) +inf (g([c,d])) < inf ((f +g)([c,d])).
Aus der Definition von inf((f + g)([c, d])) folgt, dass es geniigt zu zeigen, dass

inf (f([c,d])) +1inf (g([c.d])) < (f+g)(x) fiir alle z € [c, d).

Es gilt aber in der Tat fiir ein beliebiges = € [c, d], dass

inf (f([e, d])) +inf (g([c,d])) % f@)+g(x) = (f+9)().

aus der Definition des Infimums folgt inf(f([c,d])) < f(x) und inf(g([e,d])) < g(z) a)
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Mithilfe der Behauptung kénnen wir nun zeigen, dass folgende Ungleichungen gelten:

[ fayde+ [" g lim U(f, X,,) + lim U(g,¥;,)

< limU(f, X,UY,) + lim U(g,X,UY,) nachLemmall5.1] (1)
< nh_;;OU(f + g, X,,UY, ) o nach der Behauptung
< TLI?IZOO(f + g, X,UY,) nach Lemmal[15.1] (2)
< :l;é:()(f X,UY,) + JLH;OO(Q, X,UY,) nach der Behauptung
< lim O( X,) + hm O(g, Y,) nach Lemmal[15.1] (1)

:ff dL“rj(}

Dies ist jedoch nur moglich, wenn alle Ungleichheiten schon Gleichheiten sind. Wir haben
damit also die gewiinschte Aussage beziiglich f + g bewiesen.

Es sei nun A € R. Die Aussage fiir A- f wird mit &hnlichen Methoden wie oben bewiesen.
Die Ausfithrung dieses Beweises verbleibt als freiwillige Ubungsaufgabe. |

Korollar 15.4. Es sei f: [a,b] — R eine integrierbare Funktion. Wenn g: [a,b] — R eine

Funktion ist, welche sich von f nur in endlich vielen Punkten unterscheidet, dann ist g
ebenfalls integrierbar und es gilt

fg(x) dr = ff(x) dx.

- Graph von f . _ Graph von g
/ J /
I .——'O\/

| I
| a —V b | a b
Beweis. Esseienty,...,t, die Punkte im Intervall [a, b] an denen sich f und g unterscheiden.
Dann gilt
g = f+@—1Ff) Z unktion, welche iiberall, aufler bei ¢;, null ist.
= das Beispiel auf Sei;er zeigt, dass eine
solche Funktion integrierbar ist mit Integral =0
Das Korollar folgt nun aus dieser Beobachtung und Satz [15.3] |

Lemma 15.5. (Monotonieeigenschaft des Integrals) Es seien f,g: [a,b] — R zwei
integrierbare Funktionen, so dass f(z) < g(x) fir alle x € [a,b]. Dann ist

[ f)dz < [ g(x)dx
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Beweis. Fiir jedes Intervall [c, d] in [a, b] gilt, dass

inf (f([c, d])) < inf (g([c, d]))
Also gilt auch fiir alle Zerlegungen Z von [a, b], dass
U(f,2) < Ulg,2).

Das Lemma folgt nun leicht aus dieser Beobachtung. [ |
Lemma 15.6. Es sei f: [a,c] — R eine beschrinkte Funktion und es sei a < b < c¢. Dann

ngt @ b c
ff(a:)d:c = ff(x)dx -+ {f(x)d:l;,

wenn die beiden Integrale auf der rechten Seite existieren.

Beweis (x). Nach Satz existieren Folgen von Zerlegungen (X, )nen von [a, b] und (Y},),en
von [b, ] gibt, so dass

b
imU(f,X,) = lmO(f,X,) = [ f(x)dx,

n—oo n—o0

n—oo n—o0

ImU(f,Y,) = limO(f,Y,) = j‘f(x)dx
b

Fiir eine beliebige Zerlegung X von [a, b] und eine beliebige Zerlegung Y von [b, ] ist X UY
eine Zerlegung von [a, ¢|. Es folgt sofort aus den Definitionen, dass

(x) UL, X)+Uf,Y) =U(f,XUY) und O(f,X)+O(f,Y) = O(f, X UY).

Es folgt also, dass
folgt aus (x)

Ff@)des [ f@)de = Tim U(f,X) + lim U(SYs) ~ Tim U(f, X, UY,)
a b n—oo

n—oo n—o0

< lim O(f,X,UY,) = lim O(f,X,) + lim O(f,Y,) = ff(w)dx—kff(x)dm

1\
folgt aus (x)

Alle Ungleichheiten miissen also Gleichheiten sein. Also folgt:

c b c
[ f@)de = lim O(f,X,UY,) = [flx)de+ [ f(z)d.
a /I\ n—oo /I\ a b
Satz [15.2] diesen kénnen wir anwenden weil oben alles Gleichheiten sind

weil oben lauter Gleichheiten vorliegen [ ]
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15.3. Beispiele von integrierbaren Funktionen. In diesem Kapitel wollen wir von ver-
schiedenen Typen von Funktionen zeigen, dass diese integrierbar sind. Beispielsweise wollen
wir zeigen, dass stetige Funktionen immer integrierbar sind. Wir werden dazu folgendes In-
tegrabilitatskriterium verwenden:

Satz 15.7. (Riemannsches Integrabilititskriterium) FEs sei f: [a,b] — R eine be-
schrinkte Funktion. Es gilt:

zu jedem € > 0 gibt es eine Zerlequng Z

f ist integrierbar <= von |a,b] mit O(f,Z) —U(f,Z) < e.

Beweis (x). Wir beweisen zuerst die “="-Richtung. Wir nehmen also an, dass die Funktion
f: [a,b] — R integrierbar ist. Wir setzen I = ff f(z)dzx. Dann gibt es nach Satz @ eine
Zerlegung Z mit I — U(f, Z) < § und mit O(f, Z) — I < §. Daraus folgt die Ungleichung
O(f,Z)-U(f, Z) <e.

Wir beweisen nun die “<”-Richtung. Wir nehmen also an, dass es zu jedem € > 0 eine
Zerlegung Z des Intervalls [a, b] gibt, so dass O(f, Z) — U(f, Z) < €. Insbesondere gibt es
zu jedem n € N eine Zerlegung Z, von [a,b], so dass O(f, Z,) — U(f,Z,) < % Es folgt
wiederum aus der Definition der Konvergenz von Folgen, dass

imU(f,Z,) = limO(f,Z,).
n—oo n—oo
Also ist f nach Satz integrierbar. [ |
Wir wollen nun die Differenz O(f, Z) — U(f, Z) besser verstehen.

Notation. Es sei f: [a,b] — R eine beschrinkte Funktion. Fiir eine nichtleere Teilmenge
M C [a,b] definieren wir:

d(f, M) = sup{f(ac)—f(m’)|x,x'€M}.
Bemerkung. Aus |a — b| = max{a — b, b — a} folgt:
d(f. M) = sup{|f(x) = f(z)||2.a" € M}.

,,,,,,,,,,,,,,,,,,,,, _— Graph von f

,,,,,,,,,,,,,,,,

Lemma 15.8. Es sei ¢: [a,b] — R eine beschrdankte Funktion. Fiir jede beliebige Zerlegung
Z ={20,21,---,2n} von [a,b] gilt:

n—1

O(p, Z2) = U(p, Z) = > (ziy1 — 2) - d(, |21, 2i41])-

=0
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Beweis. Das Lemma erhalten wir durch folgende Berechnung:

n—1 n—1

Op, 2) = U(p,Z) = Z;)(Zm — z;) -sup o([2i, 2i41]) — ;)(Zi—irl — z;) - inf p([2i, 2iy1])
— 5 auns = 2 (b (i 2a]) — i (2]
- j:i:(ziﬂ — z;) - sup {(p(m) — gp(m'U x, @ € [z, zi+1]}/
ne1 =d(p,[2i,2i41])
= Z;)(Zm = z) - d(, [z, zig1])- =

Satz 15.9. Wenn f: [a,b] — R eine integrierbare Funktion ist, dann ist auch |f| integrier-
bar und es gilt: b

Jf@yds| < [If(@)da.

a

Beweis der Integrierbarkeit von |f|. Es sei also f: [a,b] — R eine integrierbare Funktion.
Wir miissen zeigen, dass |f|: [a,b] — R ebenfalls integrierbar ist. Es folgt leicht aus dem
Riemannschen Integrabilitédtskriterium dass es geniigt zu zeigen, dass fiir jede Zerle-
gung Z von [a, b gilt:

o(f,2) = U(|f.2) < O(f,2)-U(f,2).
Diese Aussage wiederum folgt sofort aus Lemma und folgender Behauptung.
Behauptung. Fiir jede nichtleere Teilmenge M C [a,b] gilt:  d(|f|, M) < d(f, M).
Es gilt in der Tat:
d(|f[, M) = sup{|/(x)|=[f (") |z, 2" € M} - sup{[/f(z) = f (@) |z, 2" € M} = d(f, M).

aus der Dreiecksungleichung folgt fiir alle z, 2" € M, dass |f(z)| — | f(2")] < |f(z) — f(2')],
die Aussage iiber die Suprema folgt sofort aus dieser Beobachtung [ |

Beweis der Ungleichung. Aus der Tatsache, dass fir alle x € [a, b] gilt

—[f@)| < fla) < |f(2)]
und aus der Monotonieeigenschaft des Integrals folgt:

—[1f(@)de < [f2)dz < [|f(z)|de.

Es folg also wie gewiinscht, dass | fab f(z)dz| < fab |f(z)] d. |

9Hier verwenden wir die Aussage, dass aus —y < z < y folgt: |2] < y.
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Satz 15.10. Jede stetige Funktion f: [a,b] — R ist integrierbar.

Beweis. Es sei f: [a,b] — R eine stetige Funktion. Wir wollen mithilfe des Riemannschen
Integrabilitatskriteriums [15.7] zeigen, dass f integrierbar ist. Es sei also € > 0. Wir miissen

also eine Zerlegung Z = {zo, ..., z,} finden, so dass gilt:
n—1
;)(Ziﬂ — z;) - d(f, [z, 2i11]) S O(f,z2)-U(f.2) < e
Lemma [15.§]

Wir miissen dazu nur folgende Behauptung beweisen.@

Behauptung. Es gibt eine Zerlegung Z = {zy, ..., z,}, so dass fiir alle ¢ gilt:

d(f, [z, zip1]) <

€

b—a’

Wir miissen also eine Zerlegung des Intervalls [a, b] finden, welche so “fein” ist, dass
die maximale Differenz auf jedem Teilintervall [z;, z;11] hochstens ;= betragt. An-
ders ausgedriickt, die z;’s miissen so eng beieinander liegen, dass die Funktionswerte
dazwischen sich nur noch um héchstens < unterscheiden koénnen. Eine solche Zer-

legung finden wir, wenn wir uns der gleichméfigen Stetigkeit entsinnen.

Nachdem f stetig ist und auf dem kompakten Intervall [a, b] definiert ist, folgt aus Satz|7.14]
dass f gleichméfig stetig ist. Zur Erinnerung, das heifit
v 3 Vo @)= @) <

n>0 6>0 2 € [a,b]
mit [z—2'|<§

Mit anderen Worten, es gilt
vV d i d(f,|c,d]) <n.
n>0 6>0  Intervalle (f [ ]) g
[¢,d] C [a, b]
mit Linge < 4§

€

b—a

Wir setzen nun 1 = und wir wéhlen ein § > 0 mit der obigen Eigenschaft.

Die Idee ist nun eine Zerlegung zu wéhlen, so dass die Lange von jedem Teilintervall
2k, zk+1) hochstens § betrégt.

Wir wéhlen ein n € N, so dass =2 < §. Wir betrachten dann die Zerlegung z; = a +1i - =2

n n

wobei ¢ = 0,...,n. Dann gilt, wie gewiinscht fiir alle ¢, dass d(f, [2;, zi11]) < 3% [ |

9BWenn fiir alle ¢ gilt d(f. [z, 2zi41]) < <, dann folgt

n—1 n—1 € €

> (zig1 —zi) - d(f, [z, 201]) < Y (g1 —z) —— = (b—a)- = €

i=0 izo b—a b—a
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Hohe entspricht d auf den Teilintervallen

| a i b | a Zerlegung Z b

ABBILDUNG 42. Hlustration fiir den Beweis von Satz [15.10l

15.4. Mittelwertsatz der Integralrechnung. Der Mittelwertsatz der Differentialrech-
nung[13.2] besagt, dass unter gewissen Voraussetzungen, die “mittlere Steigung” einer Funk-
tion f: [a,b] — R als Wert f’(§) der Ableitung an einem Punkt angenommen wird. Der
folgende Mittelwertsatz der Integralrechnung macht nun eine dhnliche Aussage iiber “mitt-
lere Funktionswerte”.

Satz 15.11. (Mittelwertsatz der Integralrechnung) Wenn f: [a,b] — R eine stetige
Funktion ist, dann gibt es ein £ € [a,b], so dass

f&) = 7= [ f(z)da.

mittlerer Funktionswert

1 b
m{f(@dx

_— Graph von f
| ==

Beweis.
Die Aussage erinnert etwas an den Zwischenwertsatz fiir stetige Funktionen. Al-
lerdings gibt es keinen Grund anzunchmen, dass ;- fab f(z)dz zwischen f(a) und
f(b) liegt. Beispielsweise ist dies nicht der Fall fiir die Funktion, welche in der Abbil-
dung unten skizziert ist. Die Idee ist nun, dass wir uns auf ein Teilintervall [xg, 1]
von [a, b] einschrinken, so dass das Intervall [f(xg), f(21)] “so grol wie moglich” ist.

— Graph von f

| a g & 11 b
Nachdem f stetig ist, folgt aus Satz dass es xg, x1 € [a, b] gibt, so dass fiir alle x € [a, b]

gilt:
flxo) < flz) < flo).
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Es folgt aus der Monotonieeigenschaft des Integrals, dass

b b b
1 1 1
f(wo):b_a' ff(fﬁo)d-’ﬂ < b_a'ff(”f)df Sb—a. ff(xl)dx = f(x1).
. ~— ~ ir \a—\/—/
= f(zo) - (b—a) da liegt also zwischen = f(z1) - (b—a) da
Integrand konstant f(zo) und f(z1) Integrand konstant

Wir sehen also, dass ;= fab f(z)dx zwischen den Funktionswerten f(xg) und f(z1) liegt.
Es folgt nun also aus dem Zwischenwertsatz dass es ein & zwischen zy und z; gibt,
welches die gewiinschte Eigenschaft besitzt. [ |
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16. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
16.1. Stammfunktionen.

Definition. Es sei f: I — R eine Funktion auf einem Intervall und es sei F': I — R eine
stetige Funktion, welche differenzierbar ist im Inneren von I. Wir definieren:

F ist Stammfunktion von f <= F'(x)= f(x) fiir alle inneren Punkte = von I.

Eine Stammfunktion wird manchmal auch Aufleitung genannt.
Beispiel. Wir betrachten die Funktion

0 —- R 0 — R
0, 00) 1 eine Stammfunktion ist gegeben durch 0, 00) 9
T = T =2x7, z = 2.z

Bemerkung. Aus den schon bestimmten Ableitungen erhalten wir sogar eine lange Tabelle
an Stammfunktionen:

Nlw

Funktion f(x) Ableitung f'(x) Funktion g(x) Stammfunktion G(x)
1 1
arctan(zx) o T arctan(x)
arcsin(z) ! ! arcsin(z)
V1—2a? V1—2?

e’ e’ e’ e’
sin(x) cos(z) cos(x) sin(x)
cos(z) — sin(z) sin(x) — cos(x)

1 1
tan(x) 0@ w0 (@) tan(zx)
B+1
o a—1 B fi3 _ z
x a-x P fur 8 # —1 571
In(x) fir z >0 1 % In(|z|)
In(—z) fir x <0 1

Wenn F' eine Stammfunktion einer Funktion f ist, dann erhalten wir weitere Stamm-
funktionen von f, indem wir zu F' eine beliebige konstante Funktion dazu addieren. Das

folgende Lemma besagt nun, dass dies die einzige Moglichkeit ist, weitere Stammfunktion
zu finden.

Lemma 16.1. Es sei f: I — R eine Funktion auf einem Intervall. Wenn F und G Stamm-
funktionen von f: I — R sind, dann ist die Funktion ' — G eine konstante Funktion.

Beweis. Fiir alle x im Inneren von [ gilt:
(F=G)(x) = F'(z) - G'() = flx)=flz) =0
da F und G Stammfunktionen von f

Da F und G zudem per Definition einer Stammfunktion stetig sind folgt nun aus dem
Tachosatz, also Korollar [13.5] dass F' — G eine konstante Funktion ist. [ |

Lemma [16.1] motiviert nun folgende Notation.
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Notation. Fiir zwei Funktionen F,G: I — R schreiben wir:

F =G <— F — @ ist eine konstante Funktion.
Beispiel. Es ist 242 = 22 -3 und sin®(z) = —cos*(x).

Frage 16.2. Besitzt jede stetige Funktion f: I — R eine Stammfunktion?

Es ist normalerweise schwierig fiir eine gegebene Funktion eine Stammfunktion explizit
hinzuschreiben. Beispielsweise, was eine Stammfunktion der Funktion z — In(x) oder was
ist eine Stammfunktion der Funktion z — exp(—x?)?

16.2. Der Hauptsatz der Differential- und Integralrechnung. In diesem Teilkapitel
wollen wir Frage beantworten. Dazu benétigen wir folgende Notation.

Notation. Es sei I ein Intervall und es sei f: I — R eine stetige Funktion. Fiir b < a in [
definieren wir .

Fiir @ € I definieren wir zudem

]f(a:)dx = 0.

Wir konnen nun einen der wichtigsten Sétze der Analysis I formulieren, welcher ganz
nebenbei auch Frage mit “Ja” beantwortet.

Satz 16.3. (Hauptsatz der Differential- und Integralrechnung - HDI) Es sei im
Folgenden f: I — R eine stetige Funktion auf einem Intervall I und es sei xg € I. Die
Funktion

F:1 —- R .

v = F(r) = [ f(t)dt,
0o

Riemann-Integral
) ) _ existiert, da f stetig
st eine Stammfunktion von f.

Beweis. In Ubungsblatt 11 zeigen wir, dass F stetig ist. Wir miissen also noch zeigen, dass
F im Inneren des Intervalls differenzierbar ist und dort F’ = f gilt. Es sei x € I ein belie-
biger innerer Punkt. Dann gilt

lim FEEN = F@ o L xjhf(t)dt—jf(t) dt
RN\.0 h r\0 h o ) o

folgt aus Lemma [I5.6| und aus ko > 0 weil f stetig
+ 1 z+h N
S G = lm f(&) = f(limé) - f@)
—_———
= f(&n) fiirein &, € [z, 2 + h], denn aus &, € [z, x+h]
nach dem Mittelwertsatz

folgt lim &, =«
der Integralrechnung h™\0
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Ganz analog gilt auch fiir den linksseitigen Grenzwert:

h z+h T
R 1im1-(£f(t)dt—£f(t)dt>

h 0 h,0 h
folgt aus Lemma [15.6] und aus h < 0 weil f stetig

+ 1 - ¥

= lim - [ f(t)at — i = (1' ): .
i = ] S0 fim £(&) = f( im & 5 /()

—_—————

= f(&,) fiirein &, € [z, x + h), denn aus &, € [z, z+h]
nach dem Mittelwertsatz

folgt lim &, =z
der Integralrechnung h, 0

Wir sehen also, dass sowohl der rechtsseitige als auch der linksseitige Grenzwerte existieren
und mit f(z) tibereinstimmen. Wir haben also die gewiinschte Aussage bewiesen. |

Satz 16.4. Es sei f: [ — R eine stetige Funktion auf einem Intervall I und es sei F' eine
Stammfunktion von f. Dann gilt fiir alle a,b € I, dass

[ f@)de = F(b) — F(a).

Beweis. Es sei f: I — R eine stetige Funktion auf einem Intervall I und es sei F' eine
Stammfunktion von f. Wir betrachten die Funktion

G:I - R
v oo [t

Der Hauptsatz der Differential- und Integralrechnung besagt, dass G ebenfalls eine
Stammfunktion von f ist. Nachdem sowohl F' als auch G Stammfunktionen von f sind
folgt aus Lemma [16.1} dass ein C' € R existiert, so dass F(z) = G(x) 4+ C fiir alle z € I.
Also gilt:

ff(;v)dx—jf(x)da: = G(b) —G(a) = (G(b)+C)—(G(a)+C) = F(b) — F(a).

I m

Notation. Fiir eine beliebige Funktion F': I — R und a,b € I schreiben wir

z=b
F@)| = F) - Fla)
Beispiel. Wir fiihren folgende zwei Berechnungen durch:
(1) i 22 qa=1 120 1
Jzdr = [5]5 = 5-5 =3
/'\

folgt aus Satz und der Tatsache, dass © +— %x2 Stammfunktion von x — x ist
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Wir haben also jetzt ganz einfach das Riemann-Integral berechnet, welches wir auf
Seite noch miihevoll mithilfe der Definition des Riemann-Integrals bestimmt
hatten.

(2)

r=-—5

J e = [l )75 = In(l = 1) = (] = 5) = In(1) ~ In(5) = ~In(s)

=0
folgt aus Satz und der Tatsache, dass x + In(|z|) eine Stammfunktion von @ +— 1 ist

16.3. Bestimmung von Stammfunktionen. Der Hauptsatz der Differential- und
Integralrechnung motiviert folgende Notation.

Notation. Wenn F(z) eine Stammfunktion von f() ist, dann schreiben wir im Folgenden"
[ f@)dz = F().

Beispiel. Es ist 1

14 22

f L _dr = arctan(z) aber auch f

T dr = arctan(z) + 3.

Satz gibt uns weitere Motivation um Stammfunktionen fiir explizit gegebene Funk-
tionen zu bestimmen. Wir beginnen mit folgendem elementaren Lemma.

Lemma 16.5. Es sei I ein Intervall, es seien f,g: I — R stetige Funktionen und es sei
A € R. Dann gilf™)

ff(a:)—l—g(x)dx = ff(x)dx+fg(x)dx,
[X-f@)yde = X [ f(z)de.

Beweis. Dieses Lemma folgt aus Satz und der Definition von Stammfunktionen. W

Es stellt sich nun die Frage, welche weiteren Integrationsregeln es gibt. Beispielsweise
wiirde man sich erhoffen, dass es Produktregeln und Quotientenregeln fiir Stammfunktionen
gibt. Auf Seite hatten wir unter anderem gesehen, dass

f%dw = In(|x|) und f !

14 22
Es folgt aus diesen beiden Beispielen, dass es keine Produktregel oder Quotientenregel fiir
Stammfunktionen gibt, d.h. es gibt beispielsweise keine allgemein giiltige Regel, wie man
eine Stammfunktion eines Produkts f - ¢ aus den Funktionen f und g und aus Stammfunk-
tionen von f und g herleiten kann.

dxr = arctan(x).

997ur Erinnerung, wir schreiben F = G, wenn die Funktionen F und G sich nur um eine konstante
Funktion unterscheiden. Es folgt aus Lemma dass fiir je zwei Stammfunktionen F und G einer
Funktion auf einem Intervall gilt F' = G. Deshalb ist es bei der Beschreibung von Stammfunktionen besser
mit “=" als mit “=" zu arbeiten.

1000\ it anderen Worten, wenn F eine Stammfunktion von f ist, und wenn G eine Stammfunktion von g
ist, dann ist F' 4+ G eine Stammfunktion von f + g.
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16.4. Stammfunktionen von elementaren Funktionen (x). Wir wollen die Diskussi-
on am FEnde des letzten Teilkapitel noch etwas fortsetzen. Wir miissen dazu etwas weiter
ausholen und fiihren erst einmal folgende Definition ein.

Definition. Die elementaren Funktionen sind die Funktionen, welche man aus den Poly-
nomfunktionen, der Exponentialfunktion, der Sinusfunktion durch (mehrfaches) Anwenden
folgender Operationen erhalten kann:

(1) Addition, Subtraktion, Multiplikation, Division,

(2) Einschrénkung des Definitionsbereichs auf ein offenes Teilintervall,

(3) Verkniipfung,

(4) Bilden der Umkehrfunktion.

Beispiel. Die folgenden Funktionen sind beispielsweise elementar:
22 1 . m _ sin(x) . arctan(x)
e e cos(z) = sin (z + 2), tan(z) = e und  sin(v/7) + @13
Es folgt aus der Produktregel [12.4] der Quotientenregel [12.4] der Kettenregel und der
Umkehrregel [12.9], dass die Ableitung einer elementaren Funktion wiederum eine elementare
Funktion ist. Der folgende Satz besagt, dass die analoge Aussage fiir Stammfunktionen nicht

gilt.

Satz 16.6. Die elementaren Funktionen x — e=%" und x ﬁ besitzen keine Stamm-

funktionen, welche elementar sind.

Beweis. Der Satz wird in [C, Theorem 4.1] und [AEL Seite 44] bewiesen. |

Wir sehen also, dass wir beim Betrachten von Stammfunktionen neue, uns bisher unbe-
kannte Funktionen entdecken.

16.5. Partielle Integration. In diesem und dem néchsten Teilkapitel wollen wir zwei
Methoden kennenlernen, mit denen man zumindest manchmal Stammfunktionen explizit
bestimmen kann.

Nachdem Stammfunktionen iiber Ableitungen definiert sind kénnen wir aus unseren Er-
gebnisse iiber Ableitungen neue Aussagen iiber Stammfunktionen gewinnen. In diesem, und
dem folgenden Teilkapitel werden wir sehen, wie die Produktregel und die Kettenregel fiir
Ableitungen uns bei der Bestimmung von Stammfunktionen helfen kénnen.

Satz 16.7. (Partielle Integration) Es seien u,v: I — R zwei stetig differenzierbare E
Funktionen auf einem offenen Intervall I und es sei V' eine Stammfunktion von v. Dann
gilt

1017y Erinnerung, eine Funktion f: (a,b) — R heifit stetig differenzierbar, wenn f differenzierbar und
wenn f’ stetig ist. Wir benétigen diese Voraussetzung, um sicher zu stellen, dass u(x)-v(z) und u'(z) -V (z)
stetig sind.
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Beweis. Aus der Produktregel der Ableitung und der Definition einer Stammfunktion

folgt, dass
(u(z) - V(2)) = u'(z) V(z)+ul@)- v(z),
e

(u(z) - V(2)) = ' (z) - V(x).

Iso ist
also is w(x) v(z) =
Aus Lemma und der Definition einer Stammfunktion folgt nun, wie erhofft, dass
- V(x)dx.

fu(r)v(r)dx = u(x —fu’(x)

Bemerkung.
(1) Die Formel aus dem vorherigen Satz kann man sich wie folgt merken
u'(x) - V(zr)de.
ﬂ\

fu(ac) cv(x)de = x)-V(zx
) + 4
Die Pfeile | und 4 zeigen an, ob der Term abgeleitet oder aufgeleitet wurde. Das

Symbol e zeigt an, dass dieser Faktor sich nicht &ndert

(2) Fiir a,b € I folgt zudem aus Satz [16.4] dass gilt
b b
b /
fu(x)u(a") de = [u(z)- V(x)]a — fu (x)
Beispiel.
(1) Wir wollen eine Stammfunktion von z +— x - cos( ) bestimmen. Es gilt
° + +
p. 1.
f r -cos(z)dr = sm f 1 -sin(z) dr = x - sin(x) + cos(x).
W—’ \\/ Rf—’
v T U V \%4
wir setzen  u(z) ==z v(x) = cos(x)
dann ist  u/(z) =1 V(z) = sin(z)
(2) Manchmal muss man ein Integral erst geschickt als Produkt umschreiben, um parti-
elle Integration erfolgreich anwenden zu kénnen. Beispielsweise ist
P 1 1 :
fln(x)dx = fln(x) lde = In(z)-z — f;-.rd:x = In(z) -z — x.
o 4 +
(3) Es kann notwendig sein, partielle Integration mehrmals anzuwenden. Beispielsweise
gilt: o I.
[ 22 cos(zx)dr = a?-sin(z) — [ 2z -sin(z)dw
(22 - (—cos(z)) — f 2 (— cos(x)) dx)

p. 1.
= - sin(z) —

x? -sin(z) + 2z - cos(x) — 2 - sin(x).
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Bemerkung. Mithilfe der partiellen Integration kann man also ein Integral durch ein an-
deres, hoffentlich deutlich leichteres, Integral ersetzen. Die partielle Integration bietet sich
an, wenn u(z) eine “einfachere Ableitung” besitzt, z.B. u(z) = 2™ oder u(z) = In(x). Denn
durch den Ubergang von u(z) - v(z) zu /() - V(z) erhalten wir dadurch, mit etwas Gliick,
einen einfacheren Integranden.

Beispiel. Manchmal muss man auf der Suche nach Stammfunktionen auch Ausdauer und
Kreativitiat zeigen und darf dabei den Uberblick nicht verlieren. Beispielsweise gilt:

p. I.
f cos®(z) dr = f cos(x) - cos(x)dxr = cos(x)-sin(zr) — f (—sin(x)) - sin(z) dx
° + 4 4
= cos(z) - sin(z) + f(l — cos?(z)) dx
= cos(z) - sin(z) +x — f cos?(z) du.
Wir 16sen jetzt nach [ cos®(x) dx auf, und erhalten, dass
[ cos*(x)de = % - (cos(z) - sin(z) + ).

16.6. Substitution.

Lemma 16.8. FEs sei I ein Intervall, es sei f: I — R eine stetige Funktion und es sei F
eine Stammgfunktion von f. Fir alle c,d € R gilt

ff(cx+d)dx = L. Flez +4d).

Beweis. Es gilt:
cwers. 1S gl (1 . Flex + d))' = L Fl(cr+d) - (crtd) = fler+d).
4 +
Kettenregel [I2.4] fiir Ableitungen da F Stammfunktion von f
Per Definition einer Stammfunktion ist das genau die Aussage, welche wir beweisen muss-
ten. |
Beispiel.
(1) Es gilt f cos(2x +3) de = % -sin(2z + 3).

/l\

folgt aus Lemma und der Tatsache, dass F'(z) = sin(x)
eine Stammfunktion von f(z) = cos(z) ist

(2) Wir wollen jetzt noch mal einen anderen Ansatz wihlen um eine Stammfunktion fiir
cos?(x) zu finden. Die Idee ist dieses Mal, dass wir cos?(z) geschickt umschreiben.
Wir wissen, dass

sin?(z) + cos?(z) = 1 ud  cos(2z) = cos?(x) — sin’(x).
+ 4
Lemma [[T.3] folgt aus Satz

Durch Aufldsen nach cos®(x) erhalten wir: ) 1
cos’(x) = 5(cos(Qx) +1).
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Es folgt:
fcosQ(x) dr = 1fcos(?x) +1ldx = 1fcos(?x) d:L‘—f-lfldl“ = }sin(Qa:) + 1
2 2 2 A 4 2
folgt aus Lemma und der Tatsache, dass sin Stammfunktion von cos ist

Satz 16.9. (Substitutionsregel fiir Stammfunktionen) Es seien I und J zwei offene
Intervalle, es sei u: I — R eine stetig differenzierbare Funktion mit uw(I) C J und zudem
sei p: J — R eine stetige Funktionen. Wenn ®: J — R eine Stammfunktion fir ¢ ist,
dann gilt

Jou@) (@) de = d(u(z) =

Funktion, welche wir erhalten, indem

(1) 2  wiru=u(x) in fgo(u) du einsetzen.
Beweis.
o d
Bl Zou@) = Pu@) - v@) = pu) @
Kettenregel fiir Ableitungen da ® Stammfunktion von ¢

Also ist ®(u(z)) in der Tat eine Stammfunktion von p(u(x)) - v/(z).

(2) Die zweite Gleichheit des Satzes folgt aus der Beobachtung, das der Term ganz rechts
nur eine andere Schreibweise des mittleren Terms ist, denn [ ¢(u)du ist ja gerade
die Notation fiir eine Stammfunktion von ¢. |

Beispiel. Wir fiithren folgende Berechnung durch:

[sin(g? +3)- 20 dr = [sin(u)du = —cos(u) = —cos(z?+3).
:;u(;lj) :71,,(717) T T
Substitutionsregel mit Riicksubstitution, d.h. wir setzen u = 2243
¢(u)=sin(u) und u(z)=2243 in die Stammfunktion [ sin(u)du = — cos(u) ein

Ansatz 16.10. In der Praxis fihrt man Integration durch Substitution also wie folgt durch.

(1) Man versucht den Integranden in die Form f(x) = p(u(x)) - u/(z) fir geeignete
Funktionen ¢ und u zu bringen.

(2) Man bestimmt [ ¢(u) du.

(3) Man setzt u = u(z) in [ p(u)du ein, um eine Stammfunktion fir die urspringliche
Funktion f(x) = p(u(x)) - u/(z) zu erhalten.

Beispiel. In vielen Beispielen braucht man etwas Geschick um eine zielfithrende Substitu-

tion zu finden. L .
Substitution © = 2243 mit v’ = 2z

4
fln(:1;2 +3)- 2z dxr = %fln(u) du
=wu(x) =u’(x)

cw- (In(u) — 1) ? 3 (2*+3) - (In(2? + 3) — 1).

eite Riicksubstitution u = 2 + 3

D=

1) [a-In(2®+3)de

=

/I\
siehe

0w
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(2) z” R O - A | 1 . .
f dx f 15 ()2 3r° dx 3 f du 3 arctan(u) 3 arctan(x

1+ 25 3 1+ u?
4 4
Substitution u = 2% mit v’ = 322 Riicksubstitution uv = x
. 1
3 cos(vx)der = 2-[cos(vx ) Vo - —dx = 2| cos(u)-udu
(3) [ eos(va) Jeos(W/z) 5/ J costw)
T =u(z)  =wu(z) T
=u/(z)
wir wollen die Substitution uw=+/z durchfiihren, Substitution v = \/z

dazu miissen wir den Term v/ = ﬁ einfiihren

= 2(u-sin(u) +cos(u)) = 2(y/x-sin(y/z) + cos(y/x)).
4 +

auf Seite [[92 hatten wir mithilfe von = Riicksubstitution v = \/x

partieller Integration eine Stamm-

Funktion von u +— cos(u) - u bestimmt

Das néchste Beispiel ist so interessant, dass wir es als Lemma formulieren.

Lemma 16.11. Es ist

1
f\/l—l‘Qd{B = %W.
.l

Bemerkung. Nachdem der Graph von /1 — x2 gerade einen Halbkreis von Radius 1 be-
schreibt, besagt dieses Lemma, dass “unsere” Definition von 7 aus Kapitel in der Tat
mit der “iiblichen” Definition von 7 iiber den Fldcheninhalt iibereinstimmt.

___— Graph der Funktion z — /1 — x? ist ein Halbkreis

-1 1

Beweis. Wir ignorieren erst einmal die Grenzen des Integrals und fiihren folgende Berech-

nung durch
. 1
f\/l—xzdx = f(l—:v2)- mdm

. . 1 .
= f(l — sin(arcsin(r))?) - dex = f 1 — sin(u)? du
—_—— V1—2?
=wu(x) \"_I/ +
=u/(x) Substitution u = arcsin(x)
= f cos?(u) du = ju+ sin(2u) = 1 arcsin(x) + { sin(2arcsin(z)).
J]\
siehe Seite [[94] Riicksubstitution u = arcsin(x)

102\ fan kénnte den Term sin(2 arcsin(z)) ganz am Ende noch vereinfachen, fithrt uns aber nicht weiter,

und wir unterlassen dies deshalb.
1031y Ubungsblatt 12 werden wir aus Freude am Rechnen partielle Integration, anstatt Substitution,

verwenden, um eine weitere Stammfunktion von v/1 — 22 zu bestimmen.

3).

3
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Jetzt erinnern wir uns an die Grenzen des Integrals und erhalten:

1
j;\/l—xQ dr = [4arcsin(z) + L sin(2 arcsin(af:))]l_1 = 2+ sin(m) — F — Isin(—7) = g

0 0
folgt aus Satz und der gerade bestimmten denn arcsin(1) = § und arcsin(—1) = -5
Stammfunktion von v1 — z2 |

Der folgende Satz ist eine Variante der obigen Substitutionsregel fiir Stammfunktionen.

Satz 16.12. (Substitutionsregel fiir Integrale) Es seien I und J zwei offene Intervalle,
es seiu: I — R eine stetig differenzierbare Funktion mit uw(I) C J und zudem sei p: J — R
eine stetige Funktionen. Fir alle a,b € I gilt:

[o@) (@) de = [ o(u)du.

Beweis. Es sei ®: J — R eine Stammfunktion von ¢. Wir fithren folgende Berechnung
durch:

b u(b)
x=b u=u(b)
Jo(u(@) - v(x)de = [®(u(x)]) = (ub)) - ®(u(a)) = [2(W)] e = | lu)du.
¢ T 1 @)
nach Satz ist ®(u(x)) eine Stammfunktion Satz [16.4]
also folgt die Gleichheit aus Satz |
Beispiel.
=5 =5 u=u(5)=5v/3
1 1 1 1
— _dr = f — V3dr = f ———_du
2 2
=2 1+3- T r=2 \/g 1+ (fx T /u,:u(2):2\/§ \/3 1+u
wir treffen Vorbereitungen fiir eine Substitution u = v/3z
Substitution v = v/3x
= L [ arctan(u) }qu\/g - L ( arctan (5\/3) — arctan (2\/5))
G w23 V3

folgt aus der Tabelle auf Seite

Bemerkung. Zusammengefasst sehen wir also, dass es nur wenige Ansétze gibt, Stamm-
funktionen einer gegebenen Funktion explizit anzugeben:

(1) Wir haben die Tabelle von Stammfunktionen auf Seite [L87

(2) Partielle Integration.

(3) Substitution.

(4) Geschicktes Umschreiben von Funktionen und Termen, so dass wir mit (1)—(3) vorwérts

kommen.

Aber Satz sagt uns, dass diese Ansétze bei vielen (ja eigentlich sogar bei den allermeis-
ten) Funktionen zum scheitern verurteilt sind. Es ist leider im Allgemeinen nicht moglich,
eine Stammfunktion einer gegebenen Funktion explizit anzugeben.
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17. UNEIGENTLICHE INTEGRALE
Definition. Es sei f: [a,b) — R eine stetige Funktion, wobei a € R und b € RU {oco}. Wir
definieren

b d
{f(:c)dx = lli}rll){f(:v)dx € RU {f+o0},

wenn der Grenzwert auf der rechten Seite in R U {£o00} existiert. Wenn dies der Fall ist,
dann nennen wir den Grenzwert das uneigentliche Integral von f auf [a,b). Ganz analog
definiert man das uneigentliche Integral auf einem halb-offenen Intervall (a, b].

Beispiel. Es sei p € (—o00,0). Dann gilt:

fe’” dr = lim fe’“” dr = lim [1 : e’”} = lim (+-er?—1) = -1
0 d—o0 0 T d—oo L H 0 d—oo " H K T H
folgt aus Lemma [16.8 folgt aus < 0

Fiir spater formulieren wir das néchste Beispiel als Lemma.

Lemma 17.1. Fir s € (0,00) gilt 1
1 { ——,  falls s > 1,
dr = s—1

400, falls s < 1.

~——— Graph von z x%

Graph von z + 1
x

1
T

raph v €T
Graph von x +— 7

| [ [
1 5 10

Beweis. Wir betrachten zuerst den Fall s # 1. In diesem Fall gilt:

o0

d —s+11d sl 1
fidaz = lim fa:_sdgj = lim [:z: } — lim (d + 1 > _ falls s> 1,
1" e dooo L=s+ 111 dooeo \=s+1 = s—1 +oo, falls s<1.

Nun betrachten wir noch den Fall s = 1. In diesem Fall gilt:

00 d
1 o 1 o d _ _ _
Jodo = Jun [ode = Jun (@], = Jim (n(@) @) = 4o g

Definition. Es sei f: (a,b) — R eine stetige Funktion, wobei a € R U {—o00} und wobei
b€ RU{oco}. Wir withlen ein ¢ € (a,b). Wir definieren das uneigentliche Integral von f auf
(a,b) wie folgt: 5 . 5

Jf@yde = [ f(@)dz+ [ f(x)de,

a a
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wenn die beiden uneigentlichen Integrale rechts in RU{+o00} definiert sind, und wenn dann
auch die Summe im Sinne der Tabelle auf Seite 42| definiert ist [[7]

Satz 17.2. Es sei f: (a,b) — R eine stetige Funktion und es sei F' eine Stammfunktion
von f. Dann gilt

b
x)dr = lim F(x) — lim F(x),
J fta)de = tim P) ~ lim P2
wenn die rechte Seite definiert ist.

Beweis. Der Satz folgt eigentlich sofort aus Satz und aus den Definitionen. Es sei also
f: (a,b) = R eine stetige Funktion und es sei F' eine Stammfunktion von f. Es sei ¢ € (a, b)
beliebig. Dann gilt

b b c T c
[f@)de = [fx)de+ [ f(z)de = li [ ra) dt + lim [ f@t)at
= lim(F(m)—F(c))—i—glci{‘rtll(F(c)—F(a:)) = glci;%F(a:)—limF(:z:).

T ra
Satz 16.4 F(c) hebt sich weg [
Beispiel. © . |
J e dx T xll_{go arctan(z) — xll)r_noo arctan(z) = 5 —(—=3) = 7.

nach der Tabelle auf Seite ist arctan(z) Stammfunktion von 1-&-%

Graph der Funktion x — 17

\

“Flacheninhalt” = =

Im Folgenden werden wir noch die Konvergenz von Reihen und von uneigentlichen Inte-
gralen in Verbindung bringen.

Satz 17.3. (Integral-Vergleichskriterium) Es sei f: [1,00) — [0, 00) eine stetige Funk-
tion, welche monoton fallend ist. Dann gilt

> f(n) Fkonvergiert <= das uneigentliche Integral f f(z) dx ist endlich.
1

n>1

Beweisskizze. Essei f: [1,00) — R eine stetige, monoton fallende Funktion. Wir betrachten
die Funktionen
p:[l,00) = R and Y:[l,00) — R
z = f(lz]) v f(le]+1) = e(z+1).

104\ [an kann leicht mithilfe von Lemma zeigen, dass die Definition nicht von der Wahl von ¢ € (a, b)
abhéngt.
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Da f monoton fallend ist, und da |z] < =z < |z] + 1 gilt p(x) > f(x) > (x) fir alle
€ [1,00).

P Graph von ¢
— Graph von f

o — Graph von ¢
]

Dann gilt

i ?s@ > if ? > f(n).

folgt aus ¢ > f > > 1 und der Monotonieeigenschaft [15.5] des Integrals
Wir beweisen zuerst die “«<"-Richtung. Wenn f x) dz endlich ist, dann folgt aus den
Ungleichungen, der Monotonie von f und Satz 7 dass die Reihe > f(n) konvergiert.
n>2

Damit konvergiert aber auch die Reihe > f(n).
n>1

— |V

Wir beweisen nun die “="-Richtung. Wenn > f(n) konvergiert, dann folgt aus den
n>1

Ungleichungen und dem Analogon von Satz 4.3 3 fiir Grenzwerte von monoton steigenden
Funktionen, dass der Grenzwert hm f1 x)dxr = f1 x) dx endlich ist. |

Beispiel. Es sei s € (0,00). Wir sehen:

[e.o]
. 1 . .
Z — konvergiert = <= f — istendlich <= s>1
n>1 4 =1 T N
Satz [I7.3 Lemma [[7.1]

Wir konnen daraus folgende Schliisse ziehen:

(1) Wir erhalten einen neuen Beweis der Aussage, dass die Reihe Y - konvergiert, und
n>1

dass die harmonische Reihe ) % divergiert.
n>1

(2) Wir sehen jetzt auch, dass fiir jedes s € (1,00) die Reihe Z - konvergiert. Diese

Aussage hat nichts mit Integralen zu tun, aber zumindest fur s € (1,2) ist es sehr
schwierig die Aussage, ohne Zuhilfenahme von Integralen zu beweisen.
(3) Wir sehen also insbesondere, dass fiir jedes € > 0 die Reihe ) % konvergiert. Mit
n>1"
anderen Worten, die harmonische Reihe “divergiert gerade so eben”.
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18. DIE GAMMA-FUNKTION (%)

In diesem Kapitel wollen wir die Gamma-Funktion einfithren und einige Eigenschaften der
Gamma-Funktion beweisen. Dieses Kapitel ist nicht Teil der Analysis-Vorlesung. Aber es
kann nichtsdestotrotz interessant sein, dieses Kapitel zu lesen, weil es eine gute Gelegenheit
bietet, das Gelernte zu trainieren und anzuwenden.

In diesem Kapitel werden wir unter anderem folgendes Lemma beweisen.

Lemma 18.1. Flir jedes s > 0 konvergiert das uneigentliche Integral
[t e tat.
0
Wir verschieben den Beweis des Lemmas auf etwas spéter. Mithilfe des Lemmas kénnen
wir nun schon einmal den Hauptdarsteller des Kapitels einfiihren.

Definition. Wir bezeichnen I':(0,00) — R
r — I(z):= ft‘”fl e tdt
0
als die Gamma-Funktion.

4__

9 + — Graph der Gamma-Funktion I": (0,00) — R

In diesem Kapitel werden wir zudem den folgenden Satz beweisen, welcher einige der
wichtigsten Eigenschaften der Gamma-Funktion zusammenfasst.

Satz 18.2.
(1) T(1)=1,
(2)  fir alle z € (0,00) gilt I(z+1) = z-T(x),
(3)  fir allen € N gilt: F(n) = (n—1).

Bemerkung. Satz besagt also, dass man die Gamma-Funktion als Erweiterung der
Fakultat n! von natiirlichen Zahlen auf beliebige positive reelle Zahlen auffassen kann.

Wir werden nun im Folgenden Lemma und Satz beweisen. Fiir den Beweis von
Lemma bendtigen wir dabei den folgenden Satz, welchen man mithilfe von Lemma[15.5
leicht beweisen kann. Wir iiberlassen den Beweis als freiwillige Ubungsaufgabe.

Satz 18.3. (Majoranten-Kriterium fiir uneigentliche Integrale) FEs seien im Fol-
genden f,g: la,b) — R zwei stetige Funktionen gegeben, wobei b € R U {oo}. Nehmen wir
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an, es gibt ein C € R, so dass
g(x) > [f(2)] fir alle x € [C,)).
Dann gilt folgende Aussage fiir uneigentliche Integrale:

b b
fg(a:) dx konvergiert —— ff(a:) dx konvergiert.

FEine analoge Aussage gilt auch fiir uneigentliche Integrale von Funktionen, welche auf einem
halb-offenen Intervall der Form (a,b] definiert sind.

Beispiel. Wir betrachten das uneigentliche Integral

o0

f x+ 10
@3 + 22 + 2 + arctan(z)

Man kann leicht zeigen, dass 57— fﬂlaorctan(x) < z% fir alle z € [5,00). Es folgt also aus

Lemma und aus Satz [I8.3], dass das obige uneigentliche Integral konvergiert.
Mithilfe von Satz konnen wir nun Lemma beweisen.

Beweis von Lemma [18.1. Es sei also s > 0 gegeben. Die Funktion 571 - e~ ist nur auf dem
Intervall (0, 00) definiert. Per Definition des uneigentlichen Integrals gilt

o) 1 o0
[ttoetat = [ lettdt + [eloetdt
0 0 1
—— ——
uneigentliches Integral (1)  uneigentliches Integral(2)

wenn beide uneigentlichen Integrale rechts existieren. Wir miissen nun also zeigen, dass
beide uneigentliche Integrale in der Tat existieren.

(1) Wir starten mit dem ersten uneigentlichen Integral. Fiir alle ¢ € (0, 1] gilt e~* € (0, 1],
also gilt +*~1 - e~* < +*~1. Nach Satz [18.3| geniigt es zu zeigen, dass das uneigentliche
Integral fol ts~1 dt konvergiert. Dieses wiederum bestimmen wir wie folgt:

1 t=1

. s . 1 s 1

fts_ldt = hm[t—] = lim <f—d—) = -,
0 o0 L Je=d N0 \s s s

folgt aus Satz und der Tabelle auf Seite

Wir zeigen nun, dass auch das zweite uneigentliche Integral floo ts~1.e~t dt existiert.
Wir beweisen zuerst folgende Behauptung:
Behauptung. Es gibt ein C' € R, so dass fiir alle t > C' gilt:

et < 1

Auf Seite hatten wir mithilfe der Regel von I’'Hopital gesehen, dass
g1, ot st
lim ——— = lim = 0.

1
+2

t

t—o0 t—o0 (&
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Wenden wir die Definition von tlim tx; = 0 auf e = 1 an, sehen wir, dass es ein C' € R
—00
gibt, so dass fiir alle t > C gilt: t*71 . et < tiQ m

Wir hatten in Lemma gezeigt, dass das uneigentliche Integral [~ % dt kon-

vergiert. Es folgt dann wieder aus Satz , dass auch floo ts~le=t dt konvergiert. W
Wir werden uns nun dem Beweis von Satz [I8.2] zu.

Beweis von Satz[18.2 Wir hatten schon auf Seite gesehen, dass gilt:
o0 d
— -z _ : —x . . —z d . . _d o
F(l)—{e dx—dlg]élo{e d;z:_dlggo[—e }O_Cllggo(e +1) = L

Wir wenden uns nun dem Beweis der zweiten Aussage des Satzes zu. Fiir a,b € (0, 00)
folgt mithilfe von partieller Integration, dass

b b
[troetdt = [0 (—e )] = [a ot (et dt.
a ° /I\ a \l, /]\
Es folgt, dass Definition des uneigentlichen Integrals obige Nebenrechnung
[e'e) 1 b
_ —t . T —t : x —t _
[z +1) —{t:C'B dt—il{r(l)[t%f dt—l—blggo{t-e dt =
1 b
— 1; z —t|t=1 z—1_ ,—t : x —t]t=b z—1_ ,—t
—(111{‘1(1)<[—t-e L:a—i-m[t ‘e dt)+blir£10([—t-e ]t1+x-{t e dt)
= —lim(—a”-e )+ lim —b"-e" +ux- ft””‘l ce7tdt
. a\,0 B Q—)oo , 0
;6 = 0, nach I’Hopital

siehe Seite [IT1]
=z [tV etdt = a-D(x).
0

Wir haben damit die zweite Aussage bewiesen.
Die letzte Aussage des Satzes folgt nun aus (1) und (2) durch Induktion. |



19. FUNKTIONENFOLGEN (%)

19.1. Punktweise und gleichmiflige Konvergenz von Funktionenfolgen.

Beispiel. Fiir jedes n € N betrachten wir die Funktion f, - 0,1 — R
r = "
Fiir jedes einzelne x € [0, 1] erhalten wir also die Folge f,,(z) = ™. Hierbei gilt

lim f,(z) = lim 2" = { 0, wemn z € [0,1),
n—oo n—00 4 1, wenn x = 1.

Los Alamos Satz [3.9]

Wir bezeichnen die Funktion rechts mit ©.

1 T) = T
filz) = , die Funktionenfolge L
folz) = fn(z) = 2™ konvergiert
fa(z) = 2° punktweise gegen die

[ — fulz) = o folgende Funktion ©
1

Dieses Beispiel fiithrt uns zu folgender Definition.

203

Definition. Es sei D C R eine Teilmenge und es sei (f,: D — R),en eine Folge von Funk-
tionen. Wir sagen die Funktionenfolge (f,)nen iSt punktweise konvergent, wenn fiir jedes

x € D die Zahlenfolge (f,(z))nen konvergiert. In diesem Fall nennen wir die Funktion

D — R
v o f(@) = lim f()

die Grenzfunktion der Funktionenfolge (fn)nen-

Beispiel.

(1) Wir hatten gerade gesehen, dass die obige Funktionenfolge f,(x) = 2™ auf dem
Intervall [0, 1] punktweise konvergiert. Die Grenzfunktion ist die Funktion ©, welche

gegeben ist durch ©(z) =0 fir 2 € [0,1) und O(1) = 1.
(2) Fiir jedes n € N betrachten wir die Funktion  f,: R — R

Die Funktionenfolge (f,,)nen konvergiert punktweise gegen die Funktion
R —- R

1. Z‘k s xk
r nl—g}ok:oﬁ = kz::oﬁ = exp(z).
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Wir sehen also, dass die Funktionenfolge (f,,)nen punktweise gegen die Exponential-
funktion konvergiert.

Es sei (fy)nen eine Funktionenfolge, welche punktweise konvergiert. Das erste Beispiel
zeigt, dass aus der Stetigkeit der Funktionen f,, nicht notwendigerweise folgt, dass auch die
Grenzfunktion stetig ist. Unser Ziel ist nun ein Kriterium fiir Funktionenfolgen zu finden,
welches garantiert, dass die Grenzfunktion einer Folge von stetigen Funktionen wiederum
stetig ist. Wir fithren dazu folgende Definition ein:

Definition. Es sei @ # D C R und es sei f: D — R eine Funktion. Wir bezeichnen PEI

I£]l == sup {|f(z)| |z € D} € RxoU {00}
als die Supremumsnorm von f.

1T O / Crant f \
> ~— Graph von |
/1] =2
1+ /
—9 o
Lemma 19.1. Es seien p,1: D — R Funktionen und A € R. Dann gilt
(1) le+oll < el + 1l (Dreiecksungleichung)

(2) A=l = [l llell
zudem gilt fir jedes x € D, dass

(3) |0 ()]

IN

lell-

Beweis. Das Lemma folgt ziemlich leicht aus den Definitionen und wir tiberlassen den
Beweis als freiwillige Ubungsaufgabe. [ |

Beispiel. Es seien g,h: D — R zwei Funktionen und d > 0. Wenn ||g — h|| < d, dann
“bewegt” sich der Graph h in dem “+d-Band” um den Graphen der Funktion g.

1 + Graph von g . Graph einer Funktionh mit ||g — k|| = %
1t L g,
i : ||i:ll!;!!!!!::iii|||||||||||||||||||!|||HiIl!'~||!!Il!!!l||||...|Il!|||||!l!!:ii;i|iiiiﬂlll
. 7 Bl \/2
2

“j:%-Band” um den Graphen von g

105Fiir eine nach oben unbeschriinkte Menge M schreiben wir hier sup(M) = oo.
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Zur Erinnerung, auf Seite 32/ hatten wir fiir eine Folge (a, )nen von reellen Zahlen folgende
Definition eingefiihrt:

a konvergiert gegen a € R «<—= VYV 4 VYV la,—al <e.
( n)nGN g geg S €>0 NeN n>N | n |

Mit fast der gleichen Definition fithren wir nun ganz analog den Begriff der gleichméfiigen
Konvergenz einer Folge von Funktionen ein.

Definition. Es sei (f,,)nen eine Folge von Funktionen f,,: D — R. Wir definieren

(fn)nen konvergiert gleichméafig gegen f: D - R <= CYO N%N n\gN Ifn — fll <e

Beispiel.

(1) Fiir n € N betrachten wir die Funktion f,(z) = % -sin(z) auf R. Es gilt || f,|| = %,
und wir sehen, dass die Funktionenfolge (f,,)nen gleichmifig gegen die Nullfunktion
konvergiert.

(2) Wir betrachten noch einmal die Funktionen f,(z) = z™ auf [0, 1]. Diese Funktio-
nenfolge konvergiert punktweise gegen die Funktion ©. Aber fiir jedes n € N ist
Il fn — ©] = 1, also konvergiert die Funktionenfolge nicht gleichméBig gegen ©.

Lemma 19.2. Jede gleichmafig konvergente Funktionenfolge konvergiert auch punktweise.

Beweis. Es sei (f,)nen eine Folge von Funktionen f,,: D — R, welche gleichméfig gegen f
konvergiert. Wir miissen zeigen, dass (f,)nen punktweise gegen f konvergiert. Es sei also
x € D. Wir miissen also zeigen

V3 Y famfll<e — ¥ 3V |f@)-f@)<e

e>0 NeN n>N e>0 NeN n>N

Diese Implikation folgt leicht aus folgender Beobachtung:
[fu(z) = f(2)| = [(fn = F)(2)] E 1o = £l

folgt aus Lemma m (3) angewandt auf ¢ = f, — f [ ]

[43

Der folgende Satz zeigt nun, dass sich gleichméfig konvergente Funktionenfolgen “im
Grenzwert” deutlich besser verhalten als beliebige Funktionenfolgen.

Satz 19.3. Fs sei (f,)nen eine Funktionenfolge stetiger Funktionen auf D C R. Wenn diese
Funktionenfolge gleichméflig gegen f: D — R konvergiert, dann ist die Grenzfunktion f
ebenfalls stetig

Beweis. Es sei also (f,)nen eine Funktionenfolge stetiger Funktionen, welche gleichmifig
gegen f: D — R konvergiert. Wir miissen zeigen, dass f stetig ist. Es sei also xg € D und
es sei zudem € > 0 gegeben. Wir miissen nun zeigen, es existiert ein 6 > 0, so dass

|f(z) = f(zo)] < € fir alle z € (29 — d, 20+ 0) N D.
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Die Voraussetzungen besagen, dass wir Kontrolle iber |f(z) — f.(z)| fir alle z € D
zugleich haben (hier beniitzen wir die gleichméfBige Konvergenz und Lemma
(3)), und dass wir fiir jedes n € N Kontrolle iiber |f,(z) — f.(x)| erhalten (wegen
der Stetigkeit der Funktionen f,). Mithilfe folgender Abschétzung konnen wir dann
diese Informationen auf unsere Problemstellung anwenden:

[f (@) = fzo)l < |f(2) = ful@)] + |ful2) = falzo)] + [fn(z0) = f(20)].

Die Idee ist nun, n € N und § > 0 so geschickt zu wéhlen, dass alle drei Terme jeweils
kleiner als £ sind.

Wegen der gleichméfBiigen Konvergenz von (f,),en existiert ein n € N, so dass

(A) fy) = fuy)] < 5 fiir alle y € D.
Wegen der Stetigkeit von f,, existiert zudem ein § > 0, so dass
(B) |fu(®) = fulz0)| < 3 fir alle z € (zg — 0,29 +0) N D

Dann gilt fiir alle x € (xg — 0,29 + ) N D, dass
[f (@) = fzo)| < |f(x) = ful@)] + |fn(x) = fn(o)

-~

Vv Vv
<5 wegen (A) <% wegen (B) <3 wegen (A) [ |

+ | ful(xo) — f(zo)| < e

S/ [\

19.2. Kriterien fiir die gleichmiflige Konvergenz von Funktionenfolgen. Wir ha-
ben also gesehen, dass es wichtig ist, mit gleichméflig konvergenten Funktionenfolgen zu
arbeiten. Allerdings wollen wir eher ungern fiir eine gegebene Funktionenfolge “per Hand”
iiberpriifen, ob diese tatséchlich gleichméBig konvergiert. Wir werden deshalb im Folgenden
verschiedene Kriterien beweisen, welche garantieren, dass eine gegebene Funktionenfolge
gleichméfig konvergiert.

Folgende Definition ist ein Analogon der Definition auf Seite [51]

Definition. Es sei (f,,)nen eine Folge von Funktionen auf D C R. Wir definieren

(fu)nen ist eine Cauchy-Folge <= G\Z’O NEE|N nmlv’ZN | fr — fll <€

Satz 19.4. (Cauchy-Kriterium fiir gleichmiflige Konvergenz)

(1) Jede gleichmdfig konvergente Funktionenfolge ist eine Cauchy-Folge.
(2) Jede Cauchy-Folge (fn)nen von Funktionen D — R konvergiert gleichmdfig gegen
eine Funktion f: D — R.

Bewezs.

(1) Es sei (fn)nen eine Folge von Funktionen, welche gleichméBig gegen eine Funktion f
konvergiert. Mithilfe von Lemma [19.1] (1) und (2) kénnen wir wort-wértlich den
Beweis von Satz iibernehmen, um zu zeigen, dass (f,),en eine Cauchy-Folge ist.
Der Vollsténdigkeit halber fithren wir das Argument. Wir miissen also zeigen:

V 3 V |fa—Ffll<w = V 3V |fa—fal <e

p>0 NeN n>N e0 NeN nm>N
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Es sei also € > 0. Wir wihlen ein N € N, welches fiir 4 = § die linke Eigenschaft
besitzt. Dann gilt fiir alle m,n > N, dass

o= Full = W= F+F=Full < M= Fl+1fu=fll < 5+5 =€
+ 4
folgt aus Lemma [19.1] (1) und (2) denn m,n > N

(2) Es sei nun (f,,)nen eine Cauchy-Folge von Funktion auf D C R. Ganz analog zum
Beweis von Lemma sieht man, dass dann fiir jedes z die Folge (f,,(2))nen eine
Cauchy-Folge von reellen Zahlen ist. Insbesondere existiert fiir jedes x der Grenzwert
flx) = ILm fo(z). Wir zeigen nun, dass (f,,)nen gleichméfig gegen diese Grenzfunk-

tion f konvergiert.
Sei also € > 0. Nach Voraussetzung existiert ein N € N, so dass fiir alle n,m > N
gilt || fn — fmll < 5. Insbesondere gilt fiir alle n > NN, dass

If = fall = sup{|f(z) = fu(2)| |z € D}

—swpf|lim () = K@) ||eeD} < f <
T fir m> N gilt na\c; Lemma [19.1] (3)
m —Jn < m — In £
folgt aus f(z) = li_r)n fm(@) | fm () — fa(z)] < IS fall < 5 .

Ganz analog zum Begriff der Reihen von reellen Zahlen, welchen wir auf Seite [47] ein-
gefiihrt hatten, definieren wir nun den Begriff der Reihen von Funktionen ein.

Definition. Es sei (gx)r>w eine Folge von Funktionen auf D C R. Wir bezeichnen mit

> gr :=  die Folge der Partialsummen Y g, mitn=w,w+1,...

k>w k=w
als die zugehorige Funktionenreihe.
Wir erhalten nun folgendes Kriterium fiir die gleichméfiige Konvergenz von Reihen.

Satz 19.5. (Majoranten-Kriterium fiir Funktionenreihen) Es sei (gx: D — R)i>y

eine Folge von Funktionen. Wenn es eine konvergente Reihe ). by von reellen Zahlen gibt,
k>w

so dass
lgrll < br  fiir alle k> w,

dann konvergiert die Funktionenreihe ). gi gleichmdfig.
k>w

Beweis. Der Beweis dieser Aussage ist Wort fiir Wort fast der Gleiche wie der Beweis des
Majoranten-Kriteriums [6.8f Der Vollstandigkeit halber fithren wir das Argument jedoch
aus.

Um die Notation zu vereinfachen nehmen wir an, dass w = 0. Fiir n € Ny betrachten wir
die Partialsummen

Sp = 2 Gk und t, = > b.
k=0
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Nachdem eine (Funktionen-) Reihe genau dann konvergiert, wenn die Partialsummen eine
Cauchy-Folge bilden miissen wir also folgende Aussage beweisen:

lgnll < b, fiir alle n € Ny und V 4 V |th—tnl<e= V H"n Sl < €.
>0 NeN n,m>N e>0 NeN n,

Es sei also € > 0 gegeben. Nach Voraussetzung existiert ein N € Ny, so dass fiir alle
n>m > N gilt |t, — t,,| < e. Dann gilt aber auch fiir alle n > m > N, dass

n
50 = smll = H > ng Y olgd €% b= fa—tal < e
k=m+1 k=m+1 T k=m-+1 T
alle anderen Terme Drelecksunglelchung nach Voraussetzung Wahl von N
heben sich weg siche Lemma [19.1] (1)

Wir kénnen jetzt einen neuen Beweis von Satz [7.8 geben.

Satz. Die Ezxponentialfunktion exp: R — R
r o=y % ist stetig.

Beweis. Wir miissen also zeigen, dass die Exponentialfunktion in jedem beliebigen Punkt
xo € R stetig ist. Wir wéhlen ein a > 0, so dass 2 € (—a, a). Es geniigt zu zeigen, dass die
Einschriinkung von exp auf das Intervall (—a,a) stetig ist. Nachdem alle Partialsummen

x_

N stetig sind, folgt nun aus Satz|19.3| dass es geniigt folgende Behauptung zu beweisen.

Behauptung. Die Funktionenreihe Z konverglert gleichméBig auf (—a,a).

Wir setzen gi(x) = ‘Z—T Wir wollen nun mithilfe des Majoranten-Kriteriums zeigen,

dass die Funktionenreihe > g auf dem Intervall (—a,a) gleichméBig konvergiert.
k>0

Wir wihlen ein K € N, so dass K > 2|a|. Dann gilt fiir alle £ > K und = € (—a,a), dass

T oK | |2k - K a kK a® |z x
(@)= lox()]- gg;i((x)) ®||okm| S E (K+1) -k il 'K|+|1 |k|
~—
a1\ K <g<i <f<3
< K \2 denn |z| < a
: : ) . k—K
Daraus folgt insbesondere, dass ||gx| < ot (k=K Da die geometrische Reihe (2
Kl \2 2

konvergiert, folgt nun aus dem Majoranten-Kriterium [19.5| dass die Funktionenreihe >_ g
k>K

gleichméBig konvergiert. Also konvergiert auch die Funktionenreihe kz gr gleichmafig. W
>0
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19.3. Integrale und Funktionenfolgen. Es sei f,: [a,b] — R eine Folge von integrier-
baren Funktionen, welche punktweise gegen eine integrierbare Funktion f: [a,b] — R kon-
vergiert. Es stellt sich die Frage, ob dann ganz allgemein gilt, dass

b b
. 7?7 ..
J fim, fule) do = Jim [ fole)
TS a
:f x

Mit anderen Worten, kann man Grenzwertbildung und Integral vertauschen? Das folgende
Beispiel zeigt, dass das im Allgemeinen nicht der Fall ist.

Beispiel. Wir betrachten die Funktionenfolge ( f,,)nen, welche in der Abbildung unten skiz-
ziert wird. Jede dieser Funktionen ist stetig mit Integral f02 fn(x)dx = 1. Andererseits
konvergiert diese Funktionenfolge ( f,,)nen punktweise gegen die Funktion f(x) = 0. In die-
sem Fall gilt also, dass

f2f<:c>d:c =0 # 1= lim ffn(x)dx.
0

n—o0 0

o P 37T

_ die Funktionenfolge
- f2 konvergiert punktweise

/ - fi gegen die Nullfunktion

Folge von Funktionen f,
wobei f02 falz)de =1

fiir alle n

\kh

1 2 1 2

Der folgende Satz besagt nun, dass dieses Problem wiederum dadurch umgangen werden
kann, dass man sich auf gleichméflig konvergente Funktionenfolgen einschrankt.

Satz 19.6. (Konvergenz-Satz fiir Integrale) Fs sei f,,: [a,b] — R eine Folge von Funk-
tionen, welche gleichméBig gegen f: [a,b] — R konvergiert. Wenn alle Funktionen f, in-
tegrierbar sind, dann ist auch f integrierbar, und es gilt

b b
[ f(x)dz = lim [ f,(x)dz.
a n— o0 a

Im Beweis von Satz werden wir folgendes Lemma verwenden.

Lemma 19.7. Es sei g: [a,b] — R eine beschrinkte Funktion. Dann gilt fir jede Zerlegung
Z wvon [a,b], dass

0(9, 2)| < lgll - (b—a).
Zudem, wenn g integrierbar ist, dann qult

[o@)da] < lgll-(b—a)
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Beweis von Lemma[19.7. Fiir x € [a,b] gilt nach Lemma (3), dass g(x) € [—|lgll, 9]l ]-
Die erste Aussage folgt nun leicht aus den Definitionen. Die zweite Aussage folgt direkt aus
der ersten Aussage. [ |

Wir kénnen jetzt Satz beweisen.

Beweis von Satz[19.0.

Nach Satz geniigt es, eine Folge von Zerlegungen (Z)ren von [a,b] zu finden,
so dass die dazugehorigen Unter- und Obersummen von f gegen lim fab fulz) dz
n—oo

konvergieren. Die Idee ist nun fiir jedes k eine Zerlegung “fiir f,” zu nehmen, so dass
fiir grofle k die Zerlegungen “immer besser werden”.

Wir konstruieren nun eine Folge von Zerlegungen (Zy)ren wie folgt. Es sei k& € N. Nachdem
fr integrierbar folgt aus Satz[15.2] dass es eine Zerlegung Z; von [a, b] gibt, so dass

‘O(fk,Zk)—fbfk(x)dx‘ <7 und ‘U(fk,Zk)—ffk(x)dg;‘ < L

a ; k
Nach Satz geniigt es nun folgende Behauptung zu beweisen.

Behauptung. Es ist b
imU(f, Zy) = klimO(f, Zy) = lim [ f(z)dx
—00 n—00 a

k—o00

Wir werden jetzt zeigen, dass klim O(f, Zx) = hm f fn(z)dx. Die Aussage iiber den
—00

Grenzwert der Untersummen wird dann ganz analog bew1esen
Wir beginnen mit einer Abschéitzung. Fiir beliebiges k € Ny ist

b
01,2 - lim | 1) do

b
< 'O(f,Zk)—O(fk,Zk) ’ (fi: Zr) — [ fu() ffk )dx — lim ffn
b a
= |O(f = fr Z)| + |O(fe, Zk) — [ fa(z)dx| + nh—>nolo z) — fo(z)dx
<If - fill - —al <1 <llfa—fell-Jo—al
nach Lemmal19. 1] nach LemmalI9. 7]

Es sei nun € > 0. Wir wollen jetzt zeigen, dass fiir geniigend grofle k alle drei Summanden
< £ sind.

Nachdem die Funktionenfolge f,, : [a b] — R gleichméfig gegen f: [a, b] — R konvergiert,
gibt es ein K7, so dass || f — fx]| < 6“) o fiir alle k > K. Nach Satz @ gibt es zudem ein

Ky € N, so dass || f, — fx]| < fiir alle n, k > K». Fiir alle & > max{ K7, 2, K>} gilt




dann, dass

0(7.20) = Jim. [ fu(w)da

b

b
+ O, Z) = [ fu(@) dz| + lim | [ fi(w) = fu(e) dz| <

7/ . N 7
~~ N~

& dak > Ky < £ dak> <g dak> Ko

O(f — fr, Zk)

<

wlm
oW

b
Wir haben also gezeigt, dass klim O(f, Zx) = lim [ f,(x)dx.
— 00 n—oo a
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20. POTENZREIHEN
20.1. Definition von Potenzreihen.

Definition. Es sei w € Ny und es sei (¢,)n>w €ine Folge von komplezen Zahlen und es sei
a € C. Eine Potenzreihe ist ein formaler Ausdruck von der Form

ch ’ (Z_a’)na

n>w
wobei z eine Variable ist.
Wir interessieren uns im Folgenden fiir die Menge der komplexen Zahlen z € C, fiir
welche eine gegebene Potenzreihe konvergiert.

Beispiel.
(1) Wir betrachten die Potenzreihe >_ 2". Fiir z € C gilt:

n>0

(a) Wenn |z| < 1, dann konvergiert die Reihe >_ z™ nach dem Quotientenkriterium.
n>0

(b) Wenn |z| > 1, dann ist (2"),en, keine Nullfolge, das heiit die Reihe divergiert.
(2) Betrachten wir die Reihe Y. Z-. Es sei z € C.

n>1

) Wenn |z| < 1 dann konvergiert die Potenzreihe nach dem Quotientenkriterium.

) Wenn |z| > 1 dann divergiert die Reihe, nachdem % keine Nullfolge ist.

) Fiir z = 1 erhalten wir die harmonische Reihe, welche nach Satz divergiert.

) Fiir 2 = —1 konvergiert die Potenzreihe nachdem Leibniz-Kriterium [6.7}

) Fiir z = i ist es eine schone Ubungsaufgabe zu zeigen, dass die Reihe konvergiert.
) Die Reihe konvergiert sogar fiir jedes z € C mit |z| = 1 und z # 1. Der Beweis

dieser allgemeineren Aussage ist allerdings etwas kniffelig.

Punkte bei denen die Potenzreihe > %
n>1

Radius 1- —— konvergiert beziehungsweise

— divergiert

Notation. Es sei @ € C und r € R. Wir bezeichnen

D(a,r) = {2€C||lz—a| <71} als die abgeschlossene Scheibe von Radius r um a
D(a,r) = {2€C||z—a| <71} die offene Scheibe von Radius r um a.

bei der offenen
~— — Scheibe D(a,r) ist der
Randkreis nicht dabei

bei der abgeschlossenen

Scheibe D(a,r) ist
der Randkreis dabei r

Auf Seite hatten wir die Supremumsnorm einer Funktion f: D — R definiert. Die
Definition iibertragt sich problemlos auf komplexe Funktionen:
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Definition. Fir D C C und eine Funktion f: D — C definieren wir die Supremumsnorm

Il := sup{[f(2)| | 2 € D} € RxpU{oo}.
Der Begriff der gleichméfligen Konvergenz von Funktionenfolgen, welchen wir auf Seite
eingefiihrt hatten, iibertragt sich wort-wortlich auf komplexe Funktionen.

Satz 20.1. Es set
f@) = Ten (z—a)"

eine Potenzreihe, welche fiir ein zy € C konvergiert. Fir jedes 0 < r < |zy — a| konvergiert
die Potenzreihe auf der abgeschlossenen Scheibe

D(a,r) = {z€C||z—a| <71}
gleichmdfsig.

<0

—— die Potenzreihe ) ¢, - (# — a)™ konvergiert am Punkt z,

n>w

> ¢en - (2 — a)™ konvergiert gleichméBig auf D(a,r)

n>w

Beweis. Um die Notation etwas zu vereinfachen, betrachten wir nur den Fall ¢ = 0 und
w=0. Es sei also f(z) = > ¢, 2" eine Potenzreihe, welche fiir ein z5 # 0 € C konvergiert.
n>0

Es sei 0 < r < |29|. Wir miissen zeigen, dass die Reihe auf D(0,7) = {z € C||z| < r}
gleichméBig konvergiert.

Es folgt aus Satz und der offensichtlichen Verallgemeinerung des Majoranten-Kri-
terium [19.5| auf komplexe Funktionen-Folgen, dass es geniigt folgende Behauptung zu be-
weisen.

Behauptung. Es gibt ein C' € R und ein § € [0,1), so dass fiir alle n € Ny gilt:

| cn-2" || < C-0" mit anderen Worten lep - 2" < C-6"  alle z € D(0,r).
als Funktion
auf D(0,r)

Fiir z € D(0,r) und n € Ny ist [¢, - 2"[ = [c, - 5] - [£]". Wir wollen jetzt also den
ersten Faktor durch eine feste Zahl C abschitzen und den zweiten Term durch einen
Term 6", wobei 6 € [0, 1).

Nachdem die Reihe > ¢, - 2J konvergiert, folgt aus Satz zusammen mit Satz dass

n>w

die Folge (¢, - 2§ )nen, beschrankt ist. Es existiert also ein C' € R, so dass
lcn - 2p] < C

fiir alle n € No. Setzen wir zudem ¢ := ||, dann gilt fiir alle z € D(0,7) und alle n € Ny,
dass
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n
en- 2" = e 28l ()" < lew-sgl- | 2] < o
Zol 20
4 N
denn z€ D(0,7) =0 [ ]

20.2. Der Konvergenzradius einer Potenzreihe.

Definition. Es sei f(z) = > ¢, - (2 — a)™ eine Potenzreihe. Wir bezeichnen
n>w

R = sup{|z—a| | ¥ cu-(z—a)" konvergiert } € RxoU {oo}
n>w -
als den Konvergenzradius der Potenzreihe f(z).

In folgendem Lemma bestimmen wir einige interessante Konvergenzradien.

Lemma 20.2.
(1) Der Konvergenzradius der Reihen Y. 2™ und Y. % ist eins.

n>0 n>1
(2) Der Konvergenzradius der Exponentialreihe 3 Z; ist 0o.
n>0""

Beweis.

(1) Auf Seite hatten wir gesehen, dass beide Reihen fiir alle z € C mit |z| < 1
konvergieren. Also ist der Konvergenzradius mindestens 1. Andererseits hatten wir
auch gesehen, dass beide Reihen fiir alle z € C mit |z| > 1 divergieren, also ist der
Konvergenzradius hochstens 1.

(2) Der Beweis von Satz [6.17| zeigt, dass die Exponentialreihe > Z—T fiir jedes z € C

n>0""
konvergiert, also ist der Konvergenzradius oco. [
Lemma 20.3. Es sei f(z) = > ¢, (2 —a)" eine Potenzreihe mit Konvergenzradius R.
n>w

Fir jedes z € C gilt lz—a|<R = f(z) konvergiert,

|z —a| >R = f(z) divergiert.

Konvergenzradius der Potenzreihe > ¢, - (2 — a)"
n>w
es gibt keine allgemeine Aussage fiir die
Konvergenz auf dem Kreis |z —a| = R

die Potenzreihe konvergiert auf der offenen Scheibe D(a, R)
die Potenzreihe divergiert auflerhalb der geschlossenen Scheibe D(a, R)
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Bemerkung. Am Beispiel der Reihe ). %" auf der Seite 212 hatten wir schon gesehen, dass
n>1

wir keine allgemeine Aussage iiber die Konvergenz einer Reihe fiir komplexe Zahlen z mit
|z — a] = R treffen konnen.

Beweis.

(1) Es sei also z € C mit |z —a| < R. Dann existiert per Definition des Konvergenzradius
ein zg € C mit |z — a| < |2 — a|, und so dass die Potenzreihe f(z) konvergiert. Es
folgt dann aus Satz [20.1} angewandt auf r := |z — a|, dass die Potenzreihe f(2)
ebenfalls konvergiert.

(2) Die zweite Aussage folgt aus der Definition von R. |

n

Konvergenzradius der Potenzreihe > ¢, - (z — a)
n>w

Den Begriff von Stetigkeit kann man wort-wortlich auch fiir komplexe Funktionen iiber-
nehmen. Genauer gesagt, wir haben folgende Definition.

Definition. Es sei D C C eine Teilmenge, es sei f: D — C eine Funktion und es sei z € D.
Wir definieren

f ist stetig im Punkt 2 <= V \ |f(w) — f(2)] < e

€0 6>0 2z e D mit
|lw—2| <o
Wir sagen f: D — C st stetig, wenn f in jedem Punkt des Definitionsbereichs stetig ist.
Wir kénnen nun folgendes Lemma formulieren und beweisen.

Lemma 20.4. Es sei f(z) = > ¢,-(z—a)" eine Potenzreihe mit Konvergenzradius R. Die
n>0

Funktion D(a,R) — C
z = f(z)
15t stetig.

Beispiel. Lemma [20.4] zusammen mit Lemma [20.2] gibt uns einen weiteren Beweis der
Stetigkeit der Exponentialfunktion. Zudem kann mit Lemma [20.4] problemlos beweisen,
dass die Sinus- und die Kosinusfunktion stetig sind.

Beweis. Es sei also z € C mit |z — a| < R. Wir wollen zeigen, dass f im Punkt z stetig ist.
Per Definition des Konvergenzradius existiert ein zp € C mit |z — a| < |29 — a|, und so dass
die Potenzreihe f(zy) konvergiert. Wir wéhlen ein r mit |z — a| < r < |2y — a|. Es folgt
aus Satz , angewandt auf r, dass die Potenzreihe f(z) auf der abgeschlossenen Scheibe
D(a,r) gleichméBig konvergiert. Es folgt dann aus der offensichtlichen Verallgemeinerung
von Satz [19.3] auf komplexe Funktionen, dass f stetig ist auf der abgeschlossenen Scheibe
D(a,r) ist. Nachdem z € D(a,r) folgt, dass die Funktion f im Punkt z stetig ist. |
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Im néchsten Kapitel wird folgendes etwas technische Lemma eine wichtige Rolle spielen.

Lemma 20.5. Es sei f(z) = > ¢, - (2 —a)" eine Potenzreihe und es sei k € 7. Es gilt:
n>w

Konvergenzradius von Y. n*-c,-(z —a)® = Konvergenzradius von Y. ¢, - (z — a)™
n>w n>w

Beispiel. Wir hatten schon auf Seite [212| gesehen, dass die beiden Reihen Z% - 2" und
n>1"

>- 2™ den gleichen Konvergenzradius 1 besitzen. An diesem Beispiel siecht man auch, dass
n>1

sich die Konvergenz auf dem Kreis |z — a| = r durchaus &ndern kann.

Beweis (x). Um die Notation etwas zu vereinfachen, betrachten wir wieder den Spezialfall

a = 0 und w = 0. Der allgemeine Fall wird ganz analog bewiesen. Es sei also f(2) = > ¢,-2"
n>0

eine Potenzreihe und es sei k € Z.

Behauptung 1. Es sei (d,,)nen, eine Folge von reellen Zahlen, so dass fiir alle 6 € [0,1) gilt,
dass lim d,, - " = 0. Dann gilt fiir jede Folge (s,)nen, von komplexen Zahlen, dass
n—oo

Konvergenzradius von » d,, - s, -2" > Konvergenzradius von »_ s, - z".
n>0 n>0
Es folgt aus der Definition des Konvergenzradius, dass es geniigt zu beweisen, dass wenn

die Potenzreihe »_s, - 2" fiir ein 2y € C konvergiert, dann konvergiert die Potenzreihe
n>0

> dy, - sy, - 2" fiir jedes z € C mit |z] < |20|. Es sei also solch ein z5 € C gegeben und es sei
n>0

zudem z € C mit |z| < |zo|. Wir wahlen v, w € C mit |z| < |v| < |w| < |2o]. Dann gilt
Sy su- 2 = N dy () s w0t (D)
n>0 v

n>0 w

b (2)'] = m d, - 2" = 0.

Da 0 := {%| < 1 folgt aus der Voraussetzung, dass lim
n—oo n—oo

o0
Zudem konvergiert nach Voraussetzung die Reihe > s, - w", also ist auch |s, - w"| eine
n=0

Nullfolge. Da || < 1 sehen wir nun, wie im Beweis von Satz[20.1} dass die Reihe Y dy,-s,,-2"
n>0

konvergiert. H
Behauptung 2. Die Voraussetzung von Behauptung 1 ist erfiillt fiir die Folge d,, = n*.

Es sei s € [0,1).

(1) Wenn k < 0, dann folgt aus Satz[3.9/ und Lemma [3.12} dass lim n* - s" = 0.

n—oo
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(2) Wenn k£ > 0, dann folgt aus Regel von I'Hopital, angewandt wie auf Seite m,

zusammen mit Lemma [14.9, dass lim n* - s" = 0. H
n—0o0

Wir erhalten nun folgende Gleichheit:

Konvergenzradius von Y. n*.¢c, 2" =  Konvergenzradius von >_ ¢, - 2"

n>0 /]\ n>0

> folgt aus Behauptung 1, angewandt auf d,, = n* und s, = ¢,
< folgt aus Behauptung 1, angewandt auf d,, = n%und s, =nF- ¢, [ |

20.3. Ableitungen und Stammfunktionen von Potenzreihen. Im Folgenden betrach-
ten wir Ableitungen und Stammfunktionen von Funktionen, welche durch Potenzreihen
definiert werden. Nachdem wir den Begriff der Ableitung und der Stammfunktion von
komplexen Funktionen noch nicht definiert haben, werden wir von jetzt an nur noch reelle
Reihen betrachten.

Der folgende Satz besagt, dass man durch Potenzreihen definierte Funktionen “naiv”
ableiten und aufleiten kann.

Satz 20.6. Es sei (¢,)nen eine Folge von reellen Zahlen und es sei a € R. Wir nehmen

an, dass es ein R > 0 gibt, so dass die Reihe >_ ¢, - (x — a)™ fir alle x € (a — R,a + R)
n>0

konvergiert. Dann gilt auf dem Intervall (a — R,a + R):

(1) % Sep(r—a)" = dSn-c, (v —a)"! “gliedweise Ableitung”
n=0 =1
f Sep-(z—a)de = Y -2 (z—a)*H! “gliedweise Aufleitung”.
n=0 n=0 " +1
Insbesondere konvergieren die Reihen auf der rechten Seite fiir alle x € (a — R,a + R).
Beispiel.
(1) Wir betrachten die Exponentialfunktion. Es gilt
d " o0 n—1 o0 nfl o0 £E
Lope) = LT = Tpt L o I BT ).
x :nTn:I Tn:ln )'T:

folgt aus Satz denn = = ﬁ Substitution k =n — 1

Wir haben also noch einmal gezeigt, dass die Ableitung der Exponentionalfunktion
wiederum die Exponentialfunktion ist.
(2) Es ist sehr amiisant mithilfe von Satz zu zeigen, dass - sin(z) = cos(z), und
d

dass 7= cos(z) = —sin(x).

Beweis. Es sei (¢,)nen eine Folge von reellen Zahlen und R der Konvergenzradius der
Potenzreihe 3_ ¢, - (x — a)™. Es folgt aus Lemmas [20.3/ und [20.5| dass die beiden Reihen
n>0

1 n+1

Sn-ey-(z—a)"! und >

Z n20n+1'Cn'(x—a)




218

ebenfalls auf (a« — R, a + R) konvergieren.

Wir beweisen nun zuerst Aussage (2). Per Definition einer Stammfunktion miissen wir
also zeigen, dass auf (a — R, a + R) folgende Gleichheit gilt:

di (x — ni ni"l (@ — a)’l+1) = (x = f(r) = nio o+ (2 — a/)n) .

=0
In der Tat gilt fir alle z € (a — R,a + R):

00 z k
Yen-(x—a) = f(z f f(t) i f lim > ¢, (t—a)"dt
n=0 /]\ a k—o0 20

per Definition d1e Funktion f(z) = Z e - (x — a)™ ist stetig nach Lemma [20.4] die Gleichheit

folgt also aus dem Hauptsatz [16.3] der Differential- und Integralrechnung
k x

= hmfzcn (t—a)"dt = —lim > Cn (t—a)"t?
/]\

T k—o00 dx k—oo | jzgm+1

a
nach Satz konvergiert die Funktlonenfolge Eﬁ:o cn-(t—a)™  ibliche Integration von Polynomen
auf dem abgeschlossenen Intervall von a bis = gleichméBig, es folgt
also aus Satz dass wir “den Grenzwert rausziehen konnen”

= % Jim zk: S (z— )"t = ii Sz —a)" !
" dx koo Sy +1 Codz [y n+l '

Wir beweisen nun Aussage (1). Wir miissen also beweisen, dass ganz allgemein gilt:
(a) iZdn-(x—a)": Sn-d, - (x—a)"
dx n=0 n=1

Mit anderen Worten, wir miissen beweisen, dass

(b) Z:Od w—ay = [ % >nedy- (o =)' d.

Aber die umformulierte Aussage folgt sofort aus (2), angewandt auf ¢, = n - d,. |
Beispiel.
(1) Aus der Satz angewandt auf z = —ux, folgt, dass
1 e n o om .
T = ;::0(—1) T fir alle z € (—1,1).

Wir betrachten jetzt Stammfunktionen dieser Funktion. Aus £ In(z) = 1, aus Satz
und aus Lemma folgt, dass es ein C' € R gibt, so dass

o0 n+1
In(l+z) = 3 (-1 = +C fur alle x € (—1,1).
=0 n+1

Indem wir x = 0 einsetzen, sehen wir, dass C' = 0. Also ist

n(l+2) = > (<12

=0 n+1

n+1

fir alle xz € (—1,1).
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Es folgt aus dem Leibniz-Kriterium[6.7, dass die Reihe auf der rechten Seite fiir x = 1
konvergiert. Es stellt sich die Frage, ob die obige Gleichheit auch fir z = 1 gilt. Wir
werden die Fragen im néchsten Teilkapitel beantworten.

(2) Aus Satz [3.16, angewandt auf z = —z?, folgt auch, dass

1 _ S _ 1\ . ,2n i —
oz = n;o( n"-x fir alle z € (—1,1).
Wir betrachten jetzt Stammfunktionenen dieser Funktion. Aus -2 < arctan(z) = #,
aus Satz [20.6| und aus Lemma [16.1] - folgt, dass es ein C' € R gibt, so dass
2n+1
arctan(z) = Z(—l)” +C fir alle x € (—1,1).
= 2n + 1
Indem wir wiederum z = 0 einsetzen, sehen wir, dass C' = 0. Also ist
e , w2l ..
arctan(z) = ngo(—l) it fir alle x € (—1,1).
Es folgt wiederum aus dem Leibniz-Kriterium [6.7, dass die Reihe auf der rechten
Seite fiir x+ = —1 und = = 1 konvergiert. Auch hier stellt sich die Frage, ob die

obige Gleichheit auch fiir z = £1 gilt, und auch dieses Mal werden wir die Frage im
néichsten Teilkapitel beantworten.

20.4. Der abelsche Grenzwertsatz und seine Anwendungen.

Satz 20.7. (Abelscher Grenzwertsatz) FEs sei (¢,)nen eine Folge von reellen Zahlen

und a € R. Es sei
flz) = Y e (z—0a)”

n>0
die dazugehorige Potenzreihe. Wenn die Potenzreihe f fiir ein xo > a konvergiert, dann ist
die Funktion x — f(x) auf dem Intervall [a, x| stetig.

Beweis. Es sei xg > a, so dass die Potenzreihe f(z) = > ¢, (v —a)" fir x = zo konvergiert.
n>0

Um die Notation etwas zu vereinfachen, nehmen wir an, dass a = 0 und zy = 1. Der
allgemeine Fall wird ganz analog bewiesen.

Wir miissen zeigen, dass die Funktion z +— Z cn - 2" auf dem abgeschlossenen Intervall

[0,1] stetig ist. Es folgt aus Lemma [20.4] dass d1e Funktion auf dem halb-offenem Intervall

[0, 1) stetig ist. Es verbleibt also zu zeigen, dass die Funktion x +— Z ¢n - 2™ auch im Punkt
n=0

x = 1 stetig ist.

Es sei also € > 0. Wir miissen zeigen, dass es ein 6 > 0 gibt, so dass |f(1) — f(x)] < €
fiir alle z € (1 — 6, 1]. Folgende Behauptung wird es uns erlauben f(1) — f(z) in den Griff
zu kriegen.

Behauptung. Fiir jedes x € [0,1) gilt

) k [eS)

f)=f(x) = (1—x)- > (s—sp) 2", wobeis; := > ¢, und s := f(1) = > ¢,.

n=0 n=0 n=0
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Wir setzen zudem s_; := 0. Fiir z € [0,1) gilt dann, dass
elementare Umformung

k 4

00 k
flz) = Ylep-2™ = lim > ¢, 2™ = lim > (s, — $pq) - 2" =
n—0 k—00 ,—0 k00 ) () N e’

=cn

k=1 00
= 1im<sk-xk+(1—x)-28n-x”> = (1—x) > s, a™
n=0

k—o0 n=0 T

wir hatten vorausgesetzt, dass die Potenzreihe bei x = 1 konvergiert,
die Folge der Partialsummen (sg) ist daher konvergent, insbesondere beschrinkt,
da x €[0,1) ist (z¥) eine Nullfolge, also ist nach Satz|3.5 auch s, - 2* eine Nullfolge

Es folgt nun, dass fiir jedes x € [0, 1) gilt:

f)—f(z) = s-(1—x)- z_:oxn —(1—x)- z_josn-x" = (1—-2x)- ZO(S—sn)w”.
=1, naC}TSatz = f(=), ;i,ehe oben ]

Nachdem lim (s — s,) = 0 existiert ein N € N, so dass [s — s,| < § fiir alle n > N. Fiir
n—oo

alle z € [0,1) gilt dann:

obige Behauptung Lemma, [6.2]
+ 0o ¥ N-1 oo
1) = f@)] = |1 =2) S smsar| = [0 2) Z (smsa)a" + (1= 2) 3 (smsa)a”
N_fl n:oo "
< (1—=2a) > ls—su|-2" + (1—2x)- Z%x” < (1—:5)-C’+§.
n=0 n=N
T ._N_l <5.§xn:£L
Satz G100 < O-—nzo‘s_sn‘ =2 = 212
Fiir z € (1 — 55,1) gilt dann also wie erhofft, dass
D)= f@)] < Q-2)-C+5 < s+35 =€
2 n 2 2
denn z € (1 — 55,1) u

Beispiel.
(1) Auf Seite hatten wir gesehen, dass

oo n+1
In(l4+2) = > (-1)"- ::+1 fir alle z € (—1,1).
n=0

Es folgt aus dem Leibniz-Kriterium[6.7], dass die Reihe auf der rechten Seite fiir z = 1
konvergiert. Aus der Stetigkeit der Logarithmusfunktion und aus Satz folgt nun,
dass beide Seiten stetig auf dem Intervall [0,1] sind. Die obige Gleichheit setzt sich
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also auf = 1 fort [ Wir schen also, dass

o0 n+1
In(l4+z) = > (=)= fir alle z € (—1,1].
n=0 n+1
/t
Insbesondere erhalten wir also:
o0 n 1
In(2) = n;o(_l) Sl
Wir konnen die rechte Seite noch etwas umformen, und wir erhalten, dass
—In2) = ¥ (-1
n=1 n

Wir haben jetzt also den Wert eine der Reihen, welche wir mit am langsten kennen,

explizit bestimmt. Die Graphen von In(1 4 x) und der Reihe ZO (—=1)"- % konnen

zudem hier betrachtet werden:
https://www.desmos.com/calculator/7sfr2txfwd

(2) Auf Seite hatten wir gesehen, dass

o0 n x2n+1 .
arctan(z) = 1;0(_1) T fir alle z € (—1,1).

Es folgt aus dem Leibniz-Kriterium [6.7, dass die Reihe auf der rechten Seite fiir
x = —1 und x = 1 konvergiert. Aus der Stetigkeit der Arkustangensfunktion und aus
Satz folgt nun, dass beide Seiten auf [—1, 1] stetig sind. Die obige Gleichheit gilt
also auch fiir x = —1 und x = 1. Wir sehen also insbesondere, dass

. & e

7= arctan(1l) = n;() T

Zur anndherungsweisen Berechnung von 7 ist diese Darstellung allerdings ungeeignet,
weil die Reihe nur “langsam” konvergiert. Beispielsweise, wenn Sie 7 bis auf sechs

Stellen berechnen wollen, dann miissen Sie die Summe En: g;?f fir n = 500.000
k=0

berechnen.

106\ir verwenden hierbei folgende Tatsache: es seien f,g: [a,b] — R zwei Funktionen. Wenn f und g
auf [a,b) iibereinstimmen, und wenn f und g stetig sind, dann gilt auch f(b) = g(b).


https://www.desmos.com/calculator/7sfr2txfwd
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21. DAS TAYLORPOLYNOM

21.1. Hohere Ableitungen und C'*°-Funktionen. Wir erinnern zuerst an folgende harm-
lose Definition, welche wir auf Seite eingefiihrt hatten.
Definition. Es sei f: I — R eine differenzierbare Funktion auf einem offenen Intervall.

(1) Wenn die Ableitung f” differenzierbar ist, dann schreiben wir

f@ = " = (fY, genannt die 2. Ableitung von f.

(2) Wenn die (n — 1)-te Ableitung von f differenzierbar ist, dann definieren wir die n-te
Ableitung von f als o (f("_l))'

und wir sagen, f ist n-fach differenzierbar.
(3) Wir erweitern die Notation £ und schreiben manchmal f© := f und f® := f’.
(4) Wir sagen f ist eine C*°-Funktion, wenn f beliebig oft differenzierbar ist

Beispiel.
(1) Es sei n € N. Man kann problemlos zeigen, dass die Funktion
f:R - R

. { —z"" wenn x <0,
T
2" wenn x> 0

n-fach differenzierbar ist mit f(z) = (n +1)! - |z|. Nachdem f™(x) nicht differen-
zierbar ist, sehen wir, dass f nicht (n + 1)-fach differenzierbar ist.

(2) Es folgt aus Lemma und den Ableitungsregeln , dass Polynomfunktionen
C*°-Funktionen sind.

(3) Es folgt aus Satz , dass die Exponentialfunktion, die Sinusfunktion sowie die
Kosinusfunktion C'*°-Funktionen sind.

(4) Es folgt aus den Ableitungsregeln [12.4] der Kettenregel und der Umkehrre-
gel dass beliebige Summen, Produkte, Quotienten, Verkniipfungen und Umkeh-
rungen von C'*°-Funktionen wieder C'*°-Funktionen sind.

21.2. Approximationen von Funktionen.

Definition. Es sei f: I — R eine Funktion auf einem offenen Intervall und es sei xy € I.
Wir sagen eine Funktion a: I — R ist eine Approximation von f am Punkt xy von n-ter

Ordnung, wenn i L@=a@) _
T—T0 (CC_mO)n
Bemerkung.

(1) Die Intuition bei der Definition von “Approximation” ist wie folgt. Fiir z “nahe” bei
xo wird der Nenner (z — x9)* “sehr klein”. Damit der Grenzwert des Bruchs 0 ist,

07kiir n € Ny bezeichnet man in der Literatur eine Funktion f als C"-Funktion, wenn f n-fach diffe-
renzierbar ist, und wenn f(™ stetig ist. Wir werden diesen Begriff nicht verwenden.
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muss auch der Ziahler “sehr klein” werden, d.h. die Funktionswerte von a miissen
“nahe” an den Funktionswerten von f liegen.

(2) Wenn a eine Approximation von k-ter Ordnung ist, dann ist a auch fiir jedes [ < k
eine Approximation von [-ter Ordnung.@

Das Ziel ist eine “komplizierte” Funktion f durch einfachere Funktionen zu approximie-
ren. Das folgende Lemma gibt uns ein wichtiges Beispiel einer Approximation.

Lemma 21.1. Es sei f: I — R eine differenzierbare Funktion auf einem offenen Intervall
und es set vy € I. Die Linearisierung

p(z) = f(xo) + f'(x0) - (x — o)

ist eine Approximation von f am Punkt o von erster Ordnung.

~— Linearisierung
pl —
Graph von f \ p(x) == (o) + f'(x0) - (x — 20)

1 t
Zo

Beweis. Das Lemma folgt aus folgender Berechnung;:

f(z) —p(x) f(@) = (f(xo) + f'(w0) - (x — w0))

lim lim
T—T0 r — X9 T—T0 Tr — X
_ . f(z) = f(zo) . f(@o) (w—m0) _ g o _
- IILILIO T — Xo IlLILlO (:L‘ - CL'()) o f ($0) f <:E0) =0
= f(z0), p;,r Definition =f"(zo)
siehe auch Seite [[45] [ ]

21.3. Taylorpolynome. Wir haben in Lemma [21.1] gesehen, dass wir fiir eine gegebene
differenzierbare Funktion an jedem Punkt zy eine Approximation erster Ordnung durch
eine lineare Funktion geben kénnen. Das Ziel ist nun zu zeigen, dass wir allgemeiner Ap-
proximationen n-ter Ordnung durch Polynome von Grad < n geben konnen.

Um solche Polynome zu finden, beweisen wir erst einmal folgendes Lemma.

Lemma 21.2. Es sei f: [ — R eine C*°-Funktionen auf einem offenen Intervall und es
sei xg € I. Fiir eine C®-Funktion a: I — R gilt:

a 1st eine Approximation von f fir alle k € {0,...,n}
am Punkt xy von n-ter Ordnung gilt a®(z0) = f®(z).

1081 der Tat, denn wenn [ < k, dann gilt

@ e f@-a) @ —e)
mlggo ((p—xo)l o rcl—mo (m—xo)k ( 0) ml—mo (x—xo)k rl—mco( 0) 0-

=0 =0,da k>I
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Beweis. Wir zeigen zuerst die “<=”-Aussage. Wir nehmen also an, dass fir K = 0,...,n
gilt: f®)(z0) — a®(24) = 0. Dann gilt:
da f®) (z0) —a®(2¢) = 0 fiir k = 0,...,n kénnen wir die Regel von I’'Hopital anwenden

4 4
_ / M) () —qD) ’
i f@z0) v 0@V on
T—xQ (Ji—l‘o) r—x0 ”"(33—330)
H i f(n_l)('x)‘—(l(‘"_l)(ﬂf) CH i f(”)(x)—'a(")(x) _ f(")(ﬂﬁo)—'a(”)(xo) _
T3z n!l-(z—xo) om0 n! N n!

folgt aus Satz und der Voraussetzung,
dass f(™ und a(™ differenzierbar, also auch stetig sind

Wir wenden uns nun dem Beweis der “="-Aussage zu["| Wir setzen r(z) = f(z) —a(z).

Wir nehmen also an, dass r(z)
lim =0
z—zo (. — x20)" ’
und wir miissen folgende Behauptung beweisen.
Behauptung. Fiir k= 0,...,n gilt r® (20) =0
Es geniigt zu zeigen, dass wenn wir ein k& € {0,...,n} haben, so dass r¥(zg) = 0 fiir
i=0,...,k—1, dann gilt auch r*)(x) = 0. Dies folgt in der Tat aus folgender Rechnung:
' M ’ ' (k—1) / (k)
0 = lim L)k H lim i)kl vHo o H e ) vH e rP(e)
4 z—zo (T — 2p) 4 z—xo k- (@ — x20)*~ 1 4 z—zo k! (x — x0) 4 z—zo k!
nach Voraussetzung  nach der Regel von I'Hépital, da 7(z) = rW(zg) = - = rFD(z) =0
und der Bemerkung 1 1
f Seit — (k) = — .y
uf Seite 22 = Jm P L om (o).
weil %) stetig. |

Es sei nun f: I — R eine C*°-Funktion und es sei o € I. Zur Erinnerung, wir suchen
ein Polynom p vom Grad n, welches am Punkt xq eine Approximation von f von n-ter
Ordnung ist. Nach Lemma geniigt es ein Polynom zu finden, dessen Funktionswert
und dessen erste n Ableitungen am Punkt zy mit denen von f {ibereinstimmen.

Die Idee ist nun, Polynome von der Form[TJ']

p(z) = z b+ (x — o)

zu betrachten. Bevor wir uns der Bestimmung der richtigen Koeffizienten b; zuwenden, wol-
len wir erst einmal die Ableitungen von solch einem Polynom p(x) am Punkt z( studieren.
Wir beweisen dazu folgendes elementare Lemma.

1097 weiteren Verlauf der Vorlesung benétigen wir nur die “«<”-Aussage. Wir geben den Beweis der
“=7-Aussage nur der Vollstéandigkeit halber.

n
H0Durch Ausmultiplizieren sieht man leicht, dass Y b; - (# — )" in der Tat ein Polynom ist.
i=0

H1Die Linearisierung f(zo) + f(z0) - (x — x¢) ist ggnau von diesem Typ.
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Lemma 21.3. Es seien by, ...,b, € R. Dann gilt fir k € Ny, dass

_ { k! b, wennk <n,

k-te Ableitung von x — > b; - (x — 20)" am Punkt x 0 sonst

i=0
Beweis. Fiir ein beliebiges i € {0,...,n} gilt:

0, wenn i < k,

-te Ableltung von b; - (v — o) = { P (1) oo (i— k1) by (2 — 20)™*, wemni > k.

Insbesondere verschwindet die k-te Ableitung am Punkt z(, aufler fiir £ = i. Fiir k =7 ist
die Ableitung am Punkt xq dann gerade k!-b;. Das Lemma folgt nun aus der Summenformel
fiir Ableitungen. |

Wenn die k-te Ableitung eines Polynoms p(z) = Y_b; - (x — 1)’ mit der k-ten Ableitung
i=0

von einer gegebenen Funktion f iibereinstimmen S(;H, dann muss nach Lemma also
insbesondere b, = % - f®)(z4) gelten. Diese Diskussion fiihrt uns zu folgender Definition.

Definition. Es sei f: I — R eine C*°-Funktion auf einem offenen Intervall und es sei zy € I.
Wir bezeichnen

n (k) (g
Pro(F)(@) = ST (@ —
k=0

als das n-te Taylorpolynom von f bei xo. Wenn f und 2z, aus dem Kontext klar ersichtlich
sind, dann schreiben wir oft einfach auch p,(z).

Bemerkung. Wir kénnen das n-te Taylorpolynom p,(x) := py,..,(f)(x) natiirlich auch wie
folgt ausschreiben:

f(lo) n f/(l,o)<x_l.0) n f/l(2117()) . (I—ZUO)2 + f(S)S(!ZL’(]) . (LU—.I'(])3 44 f(";('l()) . (I'—I())n.

k=0 k=1 e e e

k=0 k=3 k=n

Insbesondere sehen wir, dass das erste Taylorpolynom

p(x) = f(xo) + f'(x0) - (v — w0)

nichts anderes als die Linearisierung ist, welche wir schon auf Seite [140] eingefiihrt hatten.
Die Graphen der Taylorpolynome bis fiinfter Ordnung fiir eine beliebige Funktion und ein
beliebiges xy konnen hier betrachtet werden:

https://www.desmos.com/calculator/qergzsmoau
Bevor wir uns den Beispielen zuwenden wollen wir noch schnell folgenden Satz formulie-
ren und beweisen.

Satz 21.4. Es sei f: I — R eine C*-Funktion auf einem offenen Intervall und es sei
xo € I. Das n-te Taylorpolynom p, .,(f) ist eine Approximation zu f am Punkt xy von
n-ter Ordnung.


https://www.desmos.com/calculator/qerqzsmoau
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Beweis. Es folgt direkt aus Lemma [21.3|und der Definition des n-ten Taylorpolynoms, dass

fiir k= 0,1,...,n gilt f®(z0) = ppa,(f)* (x0). Es folgt also aus Lemma 21.2] dass p,(z)
eine Approximation von f von n-ter Ordnung am Punkt zq liefert. |

Beispiel. Wir betrachten die Sinusfunktion f(z) = sin(z). Wir wollen die Taylorpolynome
bei £y = 0 bestimmen. Wir berechnen dazu folgende Tabelle:

I I . . . . F®(0)
-te Ableitung von sin(z) k-te Ableitung bei zy =0 5

0 fO@z) = sin(z) fO) = o, 0

1 fO@) = cos(z) f0) = 1 1

2 f@) = —sin(2) f@0) = 0 0

3 f@z) = —cos(x) f@0) = -1 —1/3!

4 fOz) = sin(x) f@0) = 0 0

5 fO) = cos() o) = 1

1/5!

Beispielsweise ist das 9-te Taylorpolynom der Sinusfunktion sin(z) bei zp = 0 gegeben

durch:
_ L oos b 5 1 7 1 9
Po(e) = @ — gt 4 geat = a4 g
Die Graphen von sin(z) und den ersten Taylorpolynomen bei 2y = 0 kann man hier be-

trachten:
https://www.desmos.com/calculator/gftfx6hrys.

Wir sehen insbesondere, dass die Taylorpolynome von sin(x) = > (—1)* - % bei xg = 0
k=0 :
gerade den Partialsummen der Reihe entsprechen. Wir werden gleich sehen, dass das kein

Zufall ist.

Beispiel. Wir betrachten die Logarithmusfunktion f(z) = In(z). Wir wollen die Taylorpo-
lynome bei zy = 1 bestimmen. Wir berechnen dazu folgende Tabelle:

k k-te Ableitung von In(z) k-te Ableitung bei zy = 1 ! (kk)'(l)
0 fO) = In(z) O = o 0

1 fO(z) = 7! fHa = 1 1

2 fAz) = —1-272 fAa = -1 —1/2
3 Oy = 2.273 o = 2 1/3
4 fO(z) = —3l.273 fWa = =3 —1/4
5 fO) = 4.2 (1)

= 4l 1/5


https://www.desmos.com/calculator/gftfx6hrys
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Beispielsweise ist das vierte Taylorpolynom von der Logarithmusfunktion In(x) bei zy = 1
gegeben durch:

(=1 g (1)

M| —
W=
N

ps(a) = (2-1)- (el = SO @)

Die Graphen der Logarithmusfunktion In(x) und den ersten Taylorpolynomen bei xzy = 1
kann man hier betrachten:

https://www.desmos.com/calculator/vgfOkmkfy3.

Satz 21.5. Es ser f: I — R eine Funktion auf einem offenen Intervall und zudem sei
xo € I. Wenn es ein € > 0 und eine Folge (c;);en, von reellen Zahl gibt, so dass fir jedes
x € (xg — €,x0 +€) gilt:

fl@) = X ¢ (z—az0),
5=0
dann ist das n-te Taylorpolynom von f bei xog gegeben durch:

p"/@o(f)(x) - z::gcj‘ 0 (l‘—]}o)j‘

Beweis. Ahnlich wie im Beweis von Lemma gilt fiir jedes k € Ny:

k-faches Anwenden von Satz [20.06

oo + o
k-te Ableitung von f(z)=> ¢; - (x —x)? = >, j...(j—k+1)-¢; - (x —x)’ 7"
7=0 j=k

Also folgt:
O (z) = K-

Fiir n € Ny kénnen wir nun das n-te Taylorpolynom berechnen:

n (k) X . c n
Pn($@) = Y I @)t = S EE - n)f = T (0w
k=0 —

Beispiel. Es gilt:
folgt aus Satz

0k N n k
n-tes Taylorpolynom von exp(x) = > % am Punkt 2o=0 = %
k=0 " k=0 "

Die Graphen von der Exponentialfunktion exp(x) und den zugehorigen ersten Taylorpoly-
nomen bei xog = 0 kann man hier sehen:

https://www.desmos.com/calculator/tllpmlc7ue.


https://www.desmos.com/calculator/vgf0kmkfy3
https://www.desmos.com/calculator/tllpm1c7ue
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21.4. Die Restgliedformel von Taylor. Es sei f: I — R eine C"*°-Funktion und es sei
xo € I. Wir hatten in Lemma gesehen, dass das n-te Taylorpolynom

pale) = puag(D)la) = 3L o g

die urspriingliche Funktion f im Punkt zy approximiert, in dem Sinne, dass der Grenzwert

H@)=pn(@) verschwindet. Wir wollen jetzt im Folgenden eine genauere Aussage treffen,

lim @)

T—T0
wie weit denn nun die urspriingliche Funktion f(x) und das n-te Taylorpolynom p,(z)
wirklich auseinander liegen.

Wir wollen im Folgenden also die Differenz f(z) — p,(z) besser verstehen. Wir beginnen
mit einer elementaren Vorbemerkung, nédmlich fiir n = 0 kénnen wir die Differenz wie folgt

ausdriicken:

f@)—mlx) = ﬂ@—ﬂm)? J ) dt.
folgt aus Satz

Der folgende Satz ist nun die Verallgemeinerung dieser Aussage fiir beliebige n.

Satz 21.6. (Restgliedformel von Taylor) Es sei f: I — R eine C*-Funktion auf einem
offenen Intervall und es sei xo € I. Fiirn € Ny bezeichnen wir mit p,(x) = pnu, (f)(z) das
n-te Taylorpolynom von f am Punkt xq. Dann gilt fiir jedes x € I:

x

f@ —pal@) = [

Zo

TaRI0

n!

(z —t)"dt.

Bemerkung. Die Differenz f(x) — p,(z) wird manchmal das n-te Restglied von f bei x
genannt.

x

— f(z) — pu(z) = f

_— Graph von f

foro@)
n! (1

— £)" dt

/ Zo - \\ Graph des n-ten Taylorpolynoms bei g

Beweis. Wir beweisen den Satz mithilfe von Induktion nach n € Ny. Den Fall n = 0 hatten
wir oben schon behandelt. Nun nehmen wir an, die Aussage gilt fiir n — 1. Wir miissen
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dann zeigen, dass sie dann auch fiir n gilt. Wir fithren dazu folgende Berechnung durch:

F(2) = pale) = F(@) — (pua(e) + L2 (0
= f@opale) T gy

hierauf wenden wir die
Induktionsvoraussetzung an

¥ r —¢)n—1 (n) x
B P
o —u(t) —_———

=:v(t)
e n —(x —t)" n —(x—t)" (m) n
- [ﬂ%m-(ij’ — [ oy 2 - L) ()
~— N—— 1 t=1x0 o \‘,f_/ N——
T =u(t) —V (1) =u/(t) V(t)

partielle Integration

= [ED e .

t=x x

Wir erhalten folgendes Korollar.

Korollar 21.7. Es sei f: I — R eine C*°-Funktion auf einem offenen Intervall und es sei
xo € I. Wenn es ein C € R gibt, so dass | f™+V(t)| < C fiir alle t zwischen xo und z, dann

gilt fiir alle x € I, dass c

|f($) _pn(x)l S (77,+1)! . |Z' — $0|n+1.

Beweis. Wir betrachten zuerst den Fall # > xy. Nach Voraussetzung gilt fiir alle ¢t € [z, z]
- < f(n+1) (ZL) < C.

Wir fithren nun folgende Schritte durch:

(1) Wir multiplizieren alle drei Terme mit der, auf dem Intervall [z, 2| nicht-negative,
Funktion ¢ — (w;—f)n

(2) Wir bestimmen das Integral von zq bis x.
Aus der Monotonieeigenschaft des Integrals folgt

[ @—tn [ @D [ @—tr
[t o < [ED emga < [0 car
o z0 o

_(x_t)nj:l t== = f(x)-pn (x)zach Satz —(x—t)\”r*l t=x
- ol ==l

Durch explizites Berechnen der Integrale links und rechts, und durch Anwendung der Rest-

gliedformel von Taylor auf das mittlere Integral erhalten wir folgende Ungleichungen:

(x — x0)" L (x —2o)" !
~CEEET  T@ i) < R
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Aber ist genau die Aussage, welche wir beweisen sollten. Der Fall x < zy wird ganz dhnlich,
mit nur kleinen Abwandlungen des Arguments, bewiesen. [ |

Beispiel. Wir wollen jetzt Taylorpolynome verwenden, um die Werte der Sinusfunktion
niherungsweise zu bestimmen. Es folgt aus der Diskussion auf Seite 226, oder aus Satz[21.5]
dass das sechste Taylorpolynom der Sinusfunktion am Punkt xq = 0 gegeben ist durch

3 5

pe(z) = x—%—i—%.
Die siebte Ableitung von der Sinusfunktion ist — cos(x). Der Absolutbetrag der Kosinus-
funktion ist durch C' = 1 beschrénkt. Es folgt aus dem obigen Korollar dass fiir alle
x € R gilt: . 1 -
[sin(e) - po(w)] < = -[af"
Fiir kleine x gibt also pg(x) schon einen hervorragenden Néherungswert fiir sin(x). Bei-
spielsweise folgt, dass . 1
|sin(0,1) — pe(0,1)] < 5010 107"
In der Tat ist ,
sin(0,1) = 0,099833416646828...
p6(0,1) = 0,099833416666666....

21.5. Die Taylor-Reihe. Wir haben im vorherigen Teilkapitel gesehen, dass Taylorpoly-
nome eine Funktion sehr gut approximieren kénnen, und wir haben gesehen: je héher der
Grad des Taylorpolynoms, desto besser ist die Approximation. Es stellt sich also die Frage,
ob man dann nicht vielleicht den “Grenzwert n — 00” iiber die Taylor-Polynome p,, bilden
kann. Dieser Gedanke fiihrt uns zu folgender Definition.

Definition. Es sei f: I — R eine C*°-Funktion auf einem offenen Intervall und es sei zy € I.
Wir nennen £

Z k!mO) ’ ($ - 370>k

k>0
die Taylorreihe von f am Punkt xg.

Beispiel. Wenn eine Funktion f: I — R auf einem offenen Intervall I durch eine konvergente
Reihe der Form

fz) = i (@ — )t

gegeben ist, dann folgt aus Satz [21.5] dass die Taylor-Reihe von f im Punkt xy gerade
durch diese Reihe gegeben ist. Insbesondere sind die Taylorreihen von exp(x),sin(z) und
cos(z) am Punkt zy = 0 gegeben durch

g . = " L2+ q = 1 x*
eXp(x) _ kgoﬁ’ Sln(x) — kgo(_ ) m un COS(!L‘) = kZ:O(— ) '(Qk)!‘

Es stellen sich in diesem Zusammenhang folgende zwei Fragen:
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Frage 21.8. Es sei f: [ — R eine C*®-Funktion auf einem offenen Intervall I und es sei
xg € 1.

(1) Konvergiert die Taylor-Reihe % - (z — x0)F fiir allex € 17
k>0 :

(2) Wenn die Taylor-Reihe konverg}iert, ist der Wert der Taylor-Reihe gerade der Funk-
tionswert von f?

Das folgende Beispiel gibt eine negative Antwort auf Frage (1).

Beispiel. Wir betrachten die Funktion ¢ p — R

Tr ! .
1422
Fir [z| < 1 gilt: . . - -
_ _ _ _ 2\n — _1\n . ,2n
o) = o = et g S = B

folgt aus |z| < 1 und Satz

Die Reihe rechts ist also, nach der obigen Bemerkung, auch schon die Taylor-Reihe von f
am Punkt zo = 0. Aber es folgt aus dem Quotienten-Kriterium und dem Nullfolgen-
Kriterium dass diese Reihe konvergiert genau dann, wenn x € (—1,1). Insbesondere
konvergiert die Taylor-Reihe nicht im ganzen Definitionsbereich der urspriinglichen Funkti-
on f. Der Graph von f(z) = 5 Jrlxg und seinen ersten Taylorpolynomen kann hier betrachtet
werden:

https://www.desmos.com/calculator/jkq7dfx9ct
Im néchsten Teilkapitel behandeln wir Frage [21.§] (2).

21.6. Eine C*°-Treppenfunktion.

Satz 21.9. Die Funktion R = R

_a
B e 22, wennx >0,
0, wenn z < 0

ist eine C™®-Funktion und es gilt, dass f™(0) = 0 fiir alle n € N.

__ Graph der Funktion
I . F(z) = e V7 wenn z > 0,
N0, wenn x < 0

N

alle Ableitungen verschwinden bei o = 0

Bemerkung. Die Ableitungen von f sind bei 2y = 0 also alle 0. Inbesondere verschwinden
alle Koeffizienten der Taylor-Reihe fiir f am Punkt 0. Mit anderen Worten, die Taylor-Reihe
definiert die Null-Funktion. Andererseits gilt fiir alle x > 0, dass f(z) > 0. Wir sehen also,
dass die Taylor-Reihe fiir kein = > 0 mit der urspriinglichen Funktion iibereinstimmt.


https://www.desmos.com/calculator/jkq7dfx9ct
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Insbesondere erhalten wir also eine negative Antwort auf Frage (2). Mehr Details kann
man auch hier finden:

https://bar.wikipedia.org/wiki/Taylorreihe
Beweis von Satz[21.9. Ein Induktionsargument zeigt, dass es geniigt folgende Behauptung
zu beweisen.
Behauptung. Fiir jedes k € Ny ist die Funktion
ggR — R
[ A
N ™ "-e 22, wennx >0,
0, wenn r < 0

differenzierbar und es gilt

R UL s X 0
J(z) = x e = x e <2, wennzw ,
0, wenn x < 0.

Fiir  # 0 ist g(z) differenzierbar und es folgt aus der Produktregel, dass die Ableitung
¢ (z) fir x # 0 von der angegeben Form ist. Es verbleibt also zu zeigen, dass g im Punkt
xo = 0 differenzierbar ist, und dass ¢’(0) = 0. Es gilt:

k=L
zN\0 x 2\,0 T 2\0
k‘+1 ’ k 1 . k ’ / |
= fim & U gy ERD 2t em R
T z—00 T2 T z—oo 2 - et? ,]\ z—oo €%7-Polynom
nach Lemma nach der Regel [[4.5] von 1'Hopital
Zudem gilt auch: _ _
lim 4®) =90 _ 5 00 _
x 0 x " /0 X
fiir z < 0 gilt g(z) =0
Wir haben also gezeigt, dass g im Punkt z( differenzierbar ist mit Ableitung = 0. [

Wir beschlielen das Kapitel mit folgendem Satz.

Satz 21.10. (x) Es gibt eine C*°-Funktion h: R — R mit folgenden Eigenschaften:

(1) h(z) =0 fir = <0,

(2) h(x) =1 firz > 1, und

(3) h ist monoton steigend.

Anders ausgedriickt, die Funktion von Satz 21.10]ist also konstant = 0 fir # < 0 und
konstant = 1 fiir z > 1, aber die Funktion ist trotzdem beliebig oft differenzierbar. Eine
solche Funktion wird manchmal als C*-Treppenfunktion bezeichnet.

Bemerkung. Die Funktion, welche wir im Beweis von Satz [21.10] konstruieren beschreibt
also eine angenehme Bahn eines Lifts: die Bahn ist konstant fiir x < 0 und x > 1 und
dazwischen beliebig oft differenzierbar.


https://bar.wikipedia.org/wiki/Taylorreihe
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Funktion ist konstant fir t <0 und x > 1

| " Funktion ist O

Beweis (x). Wir betrachten wiederum die Funktion
fiR — R
1
N e 22, wenn x > 0,
0, wenn z < 0.

Wir hatten in Satz gezeigt, dass dies eine C'*°-Funktion ist. Wir betrachten nun die
durch g(z) := f(x)- f(1 —z) definierte Funktion. Nachdem f(z) = 0 fiir 2 < 0 folgt sofort,
dass g(x) = 0 fiir z < 0 und g(z) = 0 fir x > 1, sowie g(x) > 0 fir z € (0,1). Der Graph
von g wird auch in Abbildung skizziert.

Funktion ¢ ist konstant fiir <0 und x > 1
[\ / 1
\

Funktion ist C'*°

Wir setze C = fol g(t) dt. Wir miissen nun noch folgende Behauptung beweisen.

Behauptung. Die Funktion LR — R

1 X
r o C-{g(t)dt
hat die gewiinschten Eigenschaften.

Es folgt aus dem Hauptsatz der Differential- und Integralrechnung, dass h diffe-
renzierbar ist, mit Ableitung h/(z) = & - g(x). Nachdem g eine C°°-Funktion ist, ist also
auch h eine C*°-Funktion. Es folgt nun leicht aus der Definition von h und den Eigen-
schaften von f, dass h(z) = 0 fir x < 0 und h(z) = 1 fiir # > 1. Zudem folgt aus dem
Monotoniesatz [13.4], dass h monoton steigend ist. ]

H2Warum ist das Integral > 07
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